
*For correspondence:

m.h.lamers@lumc.nl

Present address: †Leiden

University Medical Center,

Leiden, Netherlands

Competing interests: The

authors declare that no

competing interests exist.

Funding: See page 16

Received: 21 September 2017

Accepted: 05 December 2017

Published: 06 December 2017

Reviewing editor: Taekjip Ha,

Johns Hopkins University School

of Medicine, United States

Copyright Zhao et al. This

article is distributed under the

terms of the Creative Commons

Attribution License, which

permits unrestricted use and

redistribution provided that the

original author and source are

credited.

Single-molecule studies contrast ordered
DNA replication with stochastic
translesion synthesis
Gengjing Zhao, Emma S Gleave, Meindert Hugo Lamers†*

MRC laboratory of Molecular Biology, Cambridge, United Kingdom

Abstract High fidelity replicative DNA polymerases are unable to synthesize past DNA adducts

that result from diverse chemicals, reactive oxygen species or UV light. To bypass these replication

blocks, cells utilize specialized translesion DNA polymerases that are intrinsically error prone and

associated with mutagenesis, drug resistance, and cancer. How untimely access of translesion

polymerases to DNA is prevented is poorly understood. Here we use co-localization single-

molecule spectroscopy (CoSMoS) to follow the exchange of the E. coli replicative DNA polymerase

Pol IIIcore with the translesion polymerases Pol II and Pol IV. We find that in contrast to the

toolbelt model, the replicative and translesion polymerases do not form a stable complex on one

clamp but alternate their binding. Furthermore, while the loading of clamp and Pol IIIcore is highly

organized, the exchange with the translesion polymerases is stochastic and is not determined by

lesion-recognition but instead a concentration-dependent competition between the polymerases.

DOI: https://doi.org/10.7554/eLife.32177.001

Introduction
To ensure faithful replication of the genomic DNA, replicative DNA polymerases have a narrow

active site that limits the incorporation of incorrect nucleotides. In addition, rare nucleotide mis-

incorporations into the primer strand prevent further DNA synthesis and a 3’�5’ exonuclease is

required to remove the misincorporated nucleotides (Kunkel, 2004). In contrast, when the polymer-

ase encounters a lesion on the template strand in the form of a modified base caused by diverse

chemicals, reactive oxygen species, or UV light (Liu et al., 2016; Lindahl, 1996), the high-fidelity

replicative DNA polymerases are stalled. To bypass these replication blocks, all cells harbor multiple

specialized translesion DNA polymerases (Goodman and Woodgate, 2013) that have more open

active sites and are therefore able to accommodate bulky DNA adducts and continue DNA synthe-

sis. As a result of their more open active sites, the translesion polymerases are error prone and con-

sequently associated with increased mutagenesis, drug resistance, and cancer (Fuchs and Fujii,

2013; Lange et al., 2011). Therefore, the access of the translesion polymerases to DNA needs to be

tightly controlled, but how this is achieved has been the subject of debate.

The ’toolbelt’ model (Indiani et al., 2005) predicts that in E. coli the replicative DNA polymerase

Pol IIIa and the translesion DNA polymerase Pol IV bind simultaneously to the DNA sliding clamp b,

a dimeric, ring-shaped protein that encircles the DNA and provides processivity to the replicative

DNA polymerases (Johnson and O’Donnell, 2005). This way, the translesion polymerase functions

in a manner analogous to the proofreading exonuclease: when the replicative polymerase inserts an

incorrect nucleotide into the nascent strand, it will be removed by the proofreading exonuclease,

whereas when the polymerase encounters a lesion on the template strand, the DNA is transferred to

the translesion polymerase that can bypass the lesion. Thus both the exonuclease and translesion

polymerase act as ’tools’ that enable the replicative polymerase to overcome potential roadblocks

to DNA replication. The toolbelt model, which was originally based on steady-state Förster Energy
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Resonance Transfer (FRET) experiments that showed the simultaneous binding of the replicative and

translesion polymerases to the b-clamp, has found support in several subsequent studies

(Indiani et al., 2009; Furukohri et al., 2008; Heltzel et al., 2012). However, all these studies used

bulk studies that due to the asynchronous nature cannot separate out the sequential steps during a

reaction (Robinson and van Oijen, 2013). More recently, single molecule approaches have also

been used (Kath et al., 2014, 2016), but in these experiments the exchange of polymerases was

inferred indirectly through the change in speed of DNA synthesis and therefore it cannot be deter-

mined whether the polymerases bind simultaneously. In addition, recent studies reveal that during

DNA replication in E. coli the two binding pockets of the dimeric b-clamp are occupied by the repli-

cative DNA polymerase Pol IIIa and the associated proofreading exonuclease e (Toste Rêgo et al.,

2013; Jergic et al., 2013). The cryo-EM structure of the trimeric Pol III-exonuclease-clamp (a, e, b)

complex (Fernandez-Leiro et al., 2015) also shows that most of the clamp is covered, leaving no

space for a second polymerase. Therefore, it remains controversial whether the replicative and trans-

lesion polymerases can co-localize on a single clamp.

Consequently, an alternative view to the toolbelt model is that the translesion DNA polymerases

compete for binding to clamp-DNA through ’mass action’, as evidenced by the fact that the bypass

of a N2-acetylaminofluorene guanine adduct by Pol V or Pol II depends on the relative concentra-

tions of the two polymerases (Becherel and Fuchs, 2001; Fujii and Fuchs, 2004), and that the con-

centrations of Pol IV and Pol V are dramatically increased during the bacterial SOS DNA damage

response (Sutton, 2010).

Regardless of the model, the DNA sliding clamp plays a pivotal role in controlling access of the

translesion polymerases to the DNA. However, the control for access to the clamp-DNA is compli-

cated by the fact that on the lagging strand, DNA synthesis is discontinuous and every ~1000 base

pairs a new clamp is loaded, followed by the binding of the replicative DNA polymerase. Due to its

closed circular shape, the clamp must be loaded and unloaded onto the DNA by the dedicated

clamp loader complex (g/t-complex in bacteria, RFC in archaea and eukaryotes) (Hedglin et al.,

2013; Kelch et al., 2012). Once the clamp is loaded onto primed DNA, the replicative polymerase

associates and initiates DNA synthesis. How the repeated loading and unloading of the clamp and

replicative polymerase Pol IIIa on the lagging strand is coordinated, while simultaneously preventing

the untimely association of the translesion polymerases has not been studied so far.

Here, we use co-localization single molecule spectroscopy (CoSMoS) (Friedman et al., 2006) to

directly visualize the loading of the E. coli clamp loader (g/t-complex), the DNA sliding clamp b, the

replicative DNA polymerase Pol IIIa, the proofreading exonuclease e, as well as the exchange with

the translesion polymerases Pol II and Pol IV. The multi-color CoSMoS experiments enable us to fol-

low the binding and dissociation of multiple proteins in real-time on a single DNA molecule, which

makes it the most suitable method to discriminate between simultaneous or sequential binding of

different molecules on a DNA substrate. Our work shows that the translesion polymerases Pol II and

Pol IV do not form a stable complex with the replicative polymerase Pol IIIa on the clamp-DNA and

therefore the clamp does not function as a molecular toolbelt. Furthermore, we find that the sequen-

tial activities of the replication proteins clamp loader, clamp, and Pol IIIa are highly organized while

the exchange with the translesion polymerases Pol II and Pol IV is disordered and determined by

mass action through concentration-dependent competition for the hydrophobic groove on the sur-

face of the b-clamp. Hence, our results provide a unique insight into the temporal organization of

the events in DNA replication and translesion synthesis, and contrast the highly organized replication

events with stochastic polymerase exchange during translesion synthesis.

Results

Preparation of DNA substrates and fluorescently labeled proteins
The ring-shaped E. coli b-clamp is capable of threading and unthreading itself on free DNA ends

and therefore we attached a primer-template DNA substrate to a glass surface and blocked its free

end with monovalent streptavidin (Figure 1A). Subsequently, the binding of fluorescently labeled

proteins to DNA was followed by two- or three-color total internal reflection fluorescence micros-

copy (see Materials and methods) with a frame rate of 0.44 and 0.66 s (s), respectively, on ~800 well

separated DNA molecules per field of view (Figure 1B–C). Proteins were fluorescently labeled via
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maleimide-cysteine crosslinking or enzymatically via an N-terminal Ybbr tag (Yin et al., 2006), and

the fluorescently labeled proteins retained wild-type activity as indicated by polymerase processivity

assay (Figure 1—figure supplement 1A–C). For detection of Pol IIIcore (a, e, q), we fluorescently

labeled the a subunit. For the clamp loader complexes (g3dd’ and t3dd’), the fluorescent label was

placed on the d’ subunit. The lifetime of the each of the fluorophores was measured individually on

DNA-bound clamps (Atto 488 274.4 ± 16.5 s, Atto 565: 145.7 ± 7.5 s, Atto 647N: 93.0 ± 7.4 s) (Fig-

ure 1—figure supplement 1D–F). In most experiments, after initial detection of the DNA molecules,

the fluorophore (Atto 488) on the DNA was bleached so that the same color could be re-used on

one of the proteins. The bleaching of the DNA fluorophore has no effect on the lifetime of Pol IIIcore

on clamp-DNA (ton without bleaching 18.1 ± 1.6, ton with bleaching 16.8 ± 1.8) (Figure 1—figure

supplement 1G–H).
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Figure 1. Experimental setup. (A) Schematic representation of the experimental setup. DNA molecules are

attached to a PEGylated glass slide via a biotin-streptavidin layer, and end-blocked with monovalent streptavidin.

Fluorescently labeled proteins will be detected when bound to the DNA molecules (B) Schematic representation

of the three fluorescent channels from a single image (out of an 1000 image series) showing the presence of

different molecules. (C) Schematic representation of kymographs from single position in the image series,

revealing the binding and release of different proteins to the DNA at that position.

DOI: https://doi.org/10.7554/eLife.32177.002

The following figure supplement is available for figure 1:

Figure supplement 1. Validation of proteins, fluorophores and DNA.

DOI: https://doi.org/10.7554/eLife.32177.003
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Clamp loading and unloading are distinct processes
The isolated b-clamp shows no interaction with the end-blocked DNA (Figure 2—figure supplement

1A–B) When combined with the g clamp loader complex (g3d1d’1), frequent clamp loading events

are observed where the loader and clamp arrive at the DNA simultaneously or in two adjacent

frames (Figure 2A–B), due to the sequential data acquisition of the three laser channels (further

explained in Figure 2—figure supplement 1C–E). Therefore, the loader and clamp bind DNA as a

pre-formed complex. Shortly after DNA binding, the loader dissociates while the clamp remains

bound to the DNA for the remainder of the data acquisition (Figure 2A). As the two lifetimes of the

loader and clamp are vastly different it was not possible to accurately measure both in one experi-

ment. Therefore, for the clamp lifetime, we first loaded the clamp, washed away the loader and then

started data collection using 10 s intervals between measurements to avoid bleaching of the fluoro-

phore. The clamps remain bound for more than 23 min (ton = 1429.7 ± 177.0 s; Figure 2C), exclud-

ing the time it takes to load the clamps, wash away the loader, and start data collection (~3 min). In

contrast, the lifetime of the loader is very short lived. To accurately measure the loader lifetime, only

one fluorescent channel was used to decrease the frame rate to 0.086 s. The lifetime of the isolated

loader on DNA is 1.20 ± 0.05 s, which is shortened to 0.41 ± 0.01 s in the presence of the clamp

(Figure 2D). The rapid release of the loader from clamp-DNA is dependent on ATP hydrolysis as evi-

denced by the fact that in the presence of the poorly hydrolysable analog ATPgS, the loader and

clamp still bind to the DNA together but also release together (Figure 2E). The loader and clamp

bind to the DNA briefly (ton = 2.7 ± 0.2 s; Figure 2F), which contrasts with the long lifetimes for the

loaded clamps on DNA (Figure 2C). Taken together, our analysis is in agreement with the model

that the clamp holds the loader in a conformation that suppresses ATPase activity and subsequent

DNA binding triggers ATP hydrolysis and the release of the loader from clamp and DNA

(Hedglin et al., 2013; Kelch et al., 2012).

During DNA replication, the clamps on the lagging strand need to be unloaded and recycled to

allow for continuous DNA synthesis (Yao et al., 1996). We observe a different temporal organization

for unloading events compared to the loading events: the loader arrives at the loaded clamp,

releases the clamp within 4.1 ± 0.4 s of its arrival but remains bound for a total time of 10.8 ± 1.2 s

(Figure 2G–I). Furthermore, unlike clamp loading, the unloading of a clamp does not require ATP

hydrolysis: the nucleotide requirement of the unloading process was tested by first loading clamps

onto DNA and then washing away the ATP and free proteins. Next, the loader was re-introduced in

the absence of ATP, resulting in many unloading events with similar kinetics to those observed in the

presence of ATP (Figure 2J–L). About half (53%) of the binding events of the loader to the pre-

loaded clamp do not result in unloading of the clamp. These events last shorter (ton = 2.5 ± 0.1 s)

than the unloading events (ton = 10.8 ± 1.2 s) (Figure 2—figure supplement 1F–G). Taken together,

the data indicates that the loading and unloading of a clamp are not forward and backward reac-

tions of the same mechanism but that they are separate processes, each with a distinct organization,

possibly to prevent unwanted clamp unloading at the replication fork.

Pol IIIcore has an intrinsic lifetime on DNA that is independent of its
activity
Once the clamp is loaded onto DNA, the replicative DNA polymerase Pol IIIcore will associate with

the clamp and initiate DNA replication (Johnson and O’Donnell, 2005). Pol IIIcore is a stable tri-

meric complex containing the polymerase subunit a, the exonuclease e and the accessory subunit q

(McHenry and Crow, 1979). Using a single fluorescent channel, we find that Pol IIIcore alone binds

DNA very briefly for one image frame (0.086 s) or less, resembling more a collisions-like interaction

rather than true binding events (Figure 3A–B). These short-lived collisions are in agreement with

previous studies that show that Pol IIIa is a poor enzyme in isolation (Fay et al., 1981) that has a low

affinity for DNA (Fernandez-Leiro et al., 2015; McCauley et al., 2008). The collisions of Pol IIIcore

contrasts with the well-studied E. coli DNA polymerase I Klenow fragment, which is known to have a

high affinity for DNA (Kuchta et al., 1987) and consequently shows a lifetime of 42.2 ± 1.8 s

(Figure 3C–D).

The behavior of Pol IIIcore is dramatically altered in the presence of the clamp. Shortly after the

clamp is loaded onto DNA, Pol IIIcore associates with the clamp-DNA, producing long lasting bind-

ing events (Figure 3E–G) with a lifetime of 15.7 ± 1.1 s (Figure 3E–F). During DNA replication, the
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Figure 2. Different mechanisms for clamp loading and unloading. (A) Representative trace showing a clamp

loading event on DNA in the presence of ATP. (B) Histogram showing the simultaneous arrival of loader and

clamp on DNA (see also Figure 2—figure supplement 1C–E). (C) The distribution of lifetimes for the clamp on

DNA after removal of the clamp loader (D) Lifetime of the clamp loader on DNA in the absence (blue bars) and

Figure 2 continued on next page
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E. coli replisome synthesizes DNA with up to 100,000 base pairs per binding event (Yao et al.,

2009; Tanner et al., 2009), which contrasts with the relatively short binding times of Pol IIIcore we

measure on clamp-DNA. Therefore, we tested the effect of nucleotides on the lifetime of Pol IIIcore

on DNA, using only two of the four nucleotides to prevent the Pol IIIcore from extending the primer

strand and dissociating at the end the DNA substrate. The omission of two nucleotides is often used

in DNA replication assays to induce ’polymerase idling’ at a primer terminus as a result of opposing

polymerase and exonuclease activities. To our surprise however, addition of dATP and dTTP (0.5

mM each), has no significant effect on the lifetime of Pol IIIcore on clamp-DNA (ton = 16.1 ± 1.0 s,

Figure 3G). This is also in agreement with the observation that an actively synthesizing Pol IIIcore

has a lifetime of ~10 s in the presence of all four nucleotides on a 48.5 kb l DNA substrate

(Jergic et al., 2013; Tanner et al., 2008). Together, this shows that Pol IIIcore has a similar lifetime

on clamp-DNA regardless of whether it is stationary, idling or actively synthesizing DNA.

During DNA replication, Pol IIIcore is tethered to the rest of the replisome via the clamp loader

protein t (Studwell-Vaughan and O’Donnell, 1991). Thus far, to separate clamp loading from poly-

merase loading, we have used a clamp loader complex comprising the subunits g , d, an d’ (g3d1d’1). g

is a shorter product of t that is fully active in clamp loading, but does not interact with the polymer-

ase (Dallmann et al., 1995, 2000). To measure the effect of full length t on clamp loading and poly-

merase loading, we also measured clamp and polymerase loading with the t clamp loader complex

(t3d1d’1), in which each of the three t proteins had a Pol IIIcore complex bound (see Material and

Methods). Here, we find that clamp, loader, and Pol IIIcore arrive at the DNA together (Figure 3H).

Unlike the g clamp loader complex, the t clamp loader complex does not dissociate immediately, as

it remains bound for ~15 s and now leaves together with Pol IIIcore (ton = 14.8 ± 0.9 s, Figure 3H–I).

We believe this is a result of the t clamp loader complex and Pol IIIcore trading places on the clamp-

DNA (Figure 3J). The presence of the t, however, does not affect the lifetime of Pol IIIcore on

clamp-DNA, as the lifetime of the t clamp loader - Pol IIIcore complex is similar to that of Pol IIIcore

alone.

However, during the simultaneous synthesis of leading and lagging strand, the polymerases on

either strand are linked together by the multiple t proteins of the clamp loader complex, which pre-

vents the polymerase from diffusing away and enables it to quickly resume DNA synthesis. This may

explain the higher processivity measured for the replisome (Yao et al., 2009; Tanner et al., 2009)

compared to the bursts of activity from a single Pol IIIcore (Jergic et al., 2013; Tanner et al., 2008).

Pol IIIcore and Pol IV alternate binding to clamp-DNA
During DNA replication the replisome may encounter DNA adducts caused by diverse chemicals,

reactive oxygen species or UV-light that form barriers to the high-fidelity replicative DNA polymer-

ases. To overcome these replication blocks, the replicative DNA polymerases temporarily trade pla-

ces with the error-prone translesion DNA polymerases (Goodman and Woodgate, 2013). To study

the molecular mechanism of polymerase switching, we directly visualized the binding of Pol IIIcore

and the translesion DNA polymerase Pol IV on clamp-DNA. At equal concentration of Pol IIIcore and

Figure 2 continued

presence (grey bars) of the clamp. (E) Representative trace showing the simultaneous arrival and release of loader

and clamp on DNA in the presence of ATPgS. (F) The distribution of lifetimes for the loader and clamp on DNA in

the presence of ATPgS. (G) Representative trace showing clamp loading and unloading by the loader in the

presence of ATP. (H) The distribution of lifetimes for the loader on DNA during unloading. (I) The distribution of

lag times between the arrival of the loader and the release of the clamp. (J) Representative trace showing

unloading of a pre-loaded clamp in absence of ATP. (K) The distribution of lifetimes for the loader during clamp

unloading in the absence of ATP. The first column (in dark grey) has been excluded from the fitting. The lower

numbers in this column are possibly caused by the clamp that needs to be removed first before the loader can

release. (L) The distribution of lag times between the arrival of the loader and the release of the clamp in the

absence of ATP. All values represent mean lifetime/lag time ±s.e.m.

DOI: https://doi.org/10.7554/eLife.32177.004

The following figure supplement is available for figure 2:

Figure supplement 1. Clamp loading and clamp unloading.

DOI: https://doi.org/10.7554/eLife.32177.005
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Figure 3. Pol IIIcore binds transiently to clamp-DNA. (A) Representative trace showing Pol IIIcore collisions with

DNA in the absence of clamp. (B) The distribution of lifetimes for Pol IIIcore on DNA. (C) Representative trace

Figure 3 continued on next page
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Pol IV (30 nM each), we record a large majority of events (92%) that show alternating binding of the

two polymerases on clamp-DNA, with Pol IIIcore binding first in 70%, and Pol IV binding first in 22%,

of events (Figure 4A and C, Table 1). Similar to the lifetime of Pol IIIcore alone on clamp-DNA, this

competition is unaffected by addition of nucleotides (dATP/dTTP, 0.5 mM each) (Pol IIIcore to Pol IV

switch: 72%, Pol IV to Pol IIIcore switch 21%). In the polymerase switching events, there is a signifi-

cant lag time between the release of Pol IIIcore and Pol IV arrival that decreases with increased pro-

tein concentrations (Table 1, Figure 4—figure supplement 1A–D). The lifetime of Pol IIIcore on the

clamp-DNA remains unchanged at all protein concentrations (Table 1, Figure 4—figure supplement

1E–H), suggesting that Pol IV binding does not cause the release of Pol IIIcore and therefore the

two polymerases bind independently.

In addition to the switching events, we also observe a small number of co-localization events of

the two polymerases on clamp-DNA (9%), which become more frequent at higher protein concentra-

tions (Figure 4C, Table 1) but are unaffected by addition of nucleotides (7% with dATP/dTTP). In all

events where Pol IIIcore and Pol IV co-localize on the clamp-DNA, the polymerases arrive and leave

independently of one another (Figure 4D). This is different from the true binding partner exonucle-

ase e that arrives and leaves with Pol IIIa (Figure 4F). In addition, the co-localization time of Pol III-

core and Pol IV (tcolocalize = 8.2 ± 0.6, Figure 4E) is shorter than that of Pol IIIcore alone (ton = 15.8 ±

0.9 s, Figure 4G). This therefore shows that Pol IIIcore and Pol IV do not form a stable complex on

clamp-DNA and that the clamp does not function as a molecular toolbelt, but that the two polymer-

ases compete for the binding of the clamp-DNA in a concentration-dependent manner. This compe-

tition is strongly favored towards Pol IIIcore in the presence of the t clamp loader complex (Table 1)

as it is directly tethered to Pol IIIcore and ensures that Pol IIIcore is immediately bound upon clamp

loading (Figure 3H). The presence of the t clamp loader complex does not alter the frequency of

co-localization between Pol IIIcore and Pol IV (Table 1). This suggests that during replication, Pol IV

may be able to frequently access the clamp-DNA, especially as the estimated cellular concentration

of Pol IV is ~10 fold higher than that of Pol IIIcore (Sutton, 2010).

Finally, a second E. coli translesion polymerase, Pol II (Paz-Elizur et al., 1996) also competes with

Pol IIIcore for access to the clamp but shows no co-localization with Pol IIIcore (Figure 4H–I, Table 2),

possibly because of its large size (90 kDa vs. 40 kDa for Pol IV) that may prevent it from simultaneous

binding to the clamp with Pol IIIcore.

Polymerases compete for binding to the hydrophobic groove of the
clamp
To further investigate the competition between the different polymerases and their access to the

clamp, we created a series of polymerase mutants. Most clamp interacting proteins, including Pol III-

core, Pol IV, and Pol II, bind to a hydrophobic groove on the surface of the b-clamp using the canon-

ical sequence Qxx(L/M)xF (Dalrymple et al., 2001). The b-clamp is dimeric and thus has two binding

grooves. Interestingly, Pol IIIcore contains two b-binding sequences: one in the polymerase subunit

a (QADMF, residues 920–924) that is absolutely required for clamp binding (Dohrmann and

McHenry, 2005), and a second sequence in the exonuclease subunit e (QTSMAF, residues 182–187)

that stabilizes the Pol IIIcore complex and stimulates processive DNA synthesis and exonuclease

activity (Toste Rêgo et al., 2013; Jergic et al., 2013). To demonstrate that the e b-binding motif

also contributes to the lifetime of Pol IIIcore on the clamp, we made two variants of the exonuclease

e, one with a weakened the b-binding motif (QTSMAF to QTSAAA [Toste Rêgo et al., 2013]) and

one with an enhanced b-binding motif (QTSMAF to QTSLPL [Fernandez-Leiro et al., 2015]). Indeed,

the lifetime of Pol IIIcore is decreased ~2 fold by the weak b-binding motif, while it is increased ~2

Figure 3 continued

showing Pol I binding on DNA. (D) The distribution of lifetimes for Pol I on DNA. (E) Representative trace showing

Pol IIIcore binding to clamp-DNA shortly after the release of loader. (F) The distribution of lifetimes for Pol IIIcore

on clamp-DNA in absence of dNTPs. (G) The distribution of lifetimes for Pol IIIcore binding events on clamp-DNA

in the presence of dATP/dTTP. (H) Loading of clamp and polymerase by the t clamp loader complex. (I) Lifetime

of the t clamp loader complex and Pol IIIcore on clamp-DNA (J) Cartoon of the binding sequence of the t clamp

loader - Pol IIIcore complex on clamp-DNA. All values represent mean lifetime ±s.e.m.

DOI: https://doi.org/10.7554/eLife.32177.006
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Figure 4. The replicative and translesion polymerases compete for binding to clamp-DNA. (A) Representative

trace showing alternating binding of Pol IIIcore and Pol IV on clamp-DNA. (B) Lifetime of Pol IV on clamp-DNA. (C)

Cartoon showing the frequency of different polymerase switching events. (D) Representative trace showing the

independent arrival and release of Pol IIIcore and Pol IV on clamp-DNA during co-localization events. (E) Lifetime

Figure 4 continued on next page
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fold by the enhanced b-binding sequence (Table 2, Figure 4—figure supplement 2A–B), showing

that Pol III core occupies both binding grooves of the dimeric clamp.

In Pol IV, two b-clamp interacting motifs have been described: a canonical QLVLGL motif (resi-

dues 346–351) that binds the hydrophobic groove, and a rim binding sequence (VWP, residues 301–

304) that interacts with the side of the clamp (Becherel et al., 2002; Bunting et al., 2003;

Heltzel et al., 2009). Mutation of the groove binding motif in Pol IV was reported to inhibit clamp-

dependent DNA synthesis, while mutation of the rim contacts resulted in loss of polymerase switch-

ing (Heltzel et al., 2009). In our experiments, mutation of the groove binding sequence (QLVLGL to

QLVAGA, residues 346–351) results in a drastic reduction in the lifetime of binding to the clamp

(Table 2, Figure 4—figure supplement 2C), and consequently no co-localization between Pol IV

and Pol IIIcore are observed, even at elevated concentrations of Pol IV (Table 2). In contrast muta-

tion of the rim binding motif (VWP to AGA, residues 303–305) shows little effect on the lifetime of

Pol IV on the clamp, or on the co-localization frequency with Pol IIIcore (Table 2, Figure 4—figure

supplement 2D). Finally, also mutation of the groove binding motif in Pol II (QLGLF to QLGAA, resi-

dues 779–783) leads to a reduced lifetime of binding to the b-clamp (Table 2, Figure 4—figure sup-

plement 2E).

This therefore shows that all three polymerases compete for the same binding groove on the

clamp, and that the isolated polymerases compete with similar lifetimes on the clamp-DNA. This

equilibrium is directly influenced by the concentration of the polymerases, or by physically tethering

the polymerase to the clamp loader, as is observed for the t clamp loader complex and Pol IIIcore

(Table 1, Figure 3H–J)

Figure 4 continued

of the co-localization of Pol IIIcore on Pol IV on clamp-DNA. (F) Representative trace showing the simultaneous

arrival and release of Pol IIIcore a subunit (polymerase) and Pol IIIcore e subunit (exonuclease) on clamp-DNA. (G)

Lifetime of the co-localization of the Pol IIIcore a subunit and Pol IIIcore e subunit. (H) Representative trace

showing alternating binding of Pol IIIcore and Pol II on clamp-DNA. (I) Lifetime of Pol II on clamp-DNA. All values

represent mean lifetime ±s.e.m.

DOI: https://doi.org/10.7554/eLife.32177.007

The following figure supplements are available for figure 4:

Figure supplement 1. Concentration-dependent competition between Pol IIIcore and Pol IV.

DOI: https://doi.org/10.7554/eLife.32177.008

Figure supplement 2. Lifetimes of b-clamp binding mutants of Pol IIIcore, Pol IV and Pol II.

DOI: https://doi.org/10.7554/eLife.32177.009

Figure supplement 3. Lesions and mismatches do not affect the lifetime of Pol IIIcore on clamp-DNA.

DOI: https://doi.org/10.7554/eLife.32177.010

Table 1. Competition of Pol IIIcore and Pol IV

Concentration (nM) Polymerase exchange (%)* Lag time (s)† Lifetime (s)‡

Competition Pol IIIcore Pol IV IIIfiIV IV fiIII III + IV IIIfiIV Pol IIIcore

Pol IIIcore - Pol IV 30 6 81 12 7 32.5 ± 4.6 16.3 ± 1.0

30 30 70 22 9 20.3 ± 3.5 15.7 ± 1.1

30 150 63 20 15 5.9 ± 0.5 16.6 ± 1.7

150 150 51 24 26 3.5 ± 0.2 16.0 ± 0.9

t-complex§ - Pol IV 30# 30 95 0 5 11.3 ± 1.3 14.8 ± 0.9

*Polymerase exchange observed on clamp-DNA showing the exchange from Pol IIIcore to Pol IV (IIIfiIV), Pol IV to Pol IIIcore (IVfiIII), or co-localization of

Pol IIIcore and Pol IV (III + IV).
†Time between Pol IIIcore release and Pol IV arrival.
‡Lifetime on clamp-DNA.
§t-complex consists of t clamp loader (t3d1d’1) and three Pol IIIcore complexes (a, e, q).
#Concentration of Pol IIIcore.

DOI: https://doi.org/10.7554/eLife.32177.011

Zhao et al. eLife 2017;6:e32177. DOI: https://doi.org/10.7554/eLife.32177 10 of 19

Research article Biochemistry Biophysics and Structural Biology

https://doi.org/10.7554/eLife.32177.007
https://doi.org/10.7554/eLife.32177.008
https://doi.org/10.7554/eLife.32177.009
https://doi.org/10.7554/eLife.32177.010
https://doi.org/10.7554/eLife.32177.011
https://doi.org/10.7554/eLife.32177


DNA lesions do not affect the recruitment of translesion polymerases
The apparent lack of organization for the switching of the two polymerases raises the question of

how Pol IV is recruited to the site of a lesion. We therefore wondered whether the lifetime of Pol III-

core is affected by the nature of the DNA substrate. For this, we compared the lifetimes on three dif-

ferent DNA substrates: a matched, a mismatched, and a substrate containing a N2-furfuryl-dG lesion

(Jarosz et al., 2006). These three DNA substrates should elicit very different outcomes, i.e. exten-

sion on a matched DNA substrate, mismatch removal by the exonuclease e on a mismatched sub-

strate, or polymerase switching on a DNA lesion. Surprisingly, the lifetime of Pol IIIcore on clamp-

DNA is not altered by the presence of either a mismatch or the lesion (Table 3, Figure 4—figure

supplement 3A–C). This indicates that Pol IIIcore does not ’discriminate’ between the different DNA

substrates. This is also observed in the presence of the two nucleotides dATP and dTTP (0.5 mM

each), which give little change in the lifetime of Pol IIIcore on all three DNA substrates (Table 3, Fig-

ure 4—figure supplement 3D–F). Likewise, the exchange of Pol IIIcore to Pol IV is similar on all

three substrates, (Table 3). Hence, Pol IIIcore dissociation is unaffected by mismatches or DNA

lesions and the exchange between Pol IIIcore and Pol IV is not driven by the state of the DNA, but

instead is a direct competition between the replicative and translesion polymerases.

Table 2. Lifetime of b-clamp binding mutants of Pol IIIcore, Pol IV and Pol II

Polymerase exchange (%) *

Polymerase Mutation Lifetime (s)† IIIfiIV IV fiIII III + IV

Pol IIIcore WT 15.7 ± 1.1 70 22 9

e (b-) 7.9 ± 1.2 70 26 3

e (b+) 40.2 ± 8.7 71 24 6

Pol IV WT 14.2 ± 1.8 70 22 9

b groove‡ 2.7 ± 0.2 40 60 0

b rim 14.9 ± 1.7 66 29 5

Polymerase Mutation Lifetime (s)† IIIfiII II fiIII III + II

Pol II WT 10.4 ± 1.3 71 29 0

b groove 4.4 ± 0.8 63 37 0

*Polymerase exchange observed on clamp-DNA showing the exchange from Pol IIIcore to Pol IV or Pol II, Pol IV or

Pol II to Pol IIIcore, or co-localization of Pol IIIcore and Pol IV or Pol II.
†Lifetime on clamp-DNA.
‡The Pol IV b cleft mutant was measured at high concentrations (90nM) in an attempt to catch co-localization events.

DOI: https://doi.org/10.7554/eLife.32177.012

Table 3. DNA lesion and mismatches do not affect the lifetime of Pol IIIcore on clamp-DNA or its

competition with Pol IV

Lifetime (s) Polymerase exchange† (%)

No dNTP dATP/dTTP III fi IV IV fi III III + IV

Matched 15.7 ± 1.1 16.1 ± 1.0 73 14 13

Lesion* 17.6 ± 2.1 16.4 ± 1.4 58 24 18

Mismatched* 19.0 ± 1.4 17.5 ± 0.5 64 23 13

*Lesion DNA: N2-furfuryl-dG, mismatched DNA: G-T.
†Polymerase exchange on observed on clamp-DNA showing the exchange from Pol IIIcore to Pol IV (IIIfiIV), Pol IV

to Pol IIIcore (IVfiIII), or co-localization of Pol IIIcore and Pol IV (III + IV). Exchange rates measured in the absence of

nucleotides

DOI: https://doi.org/10.7554/eLife.32177.013
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Discussion
In this work we use co-localization single molecule studies to show that the replication proteins of

the clamp loader, clamp, and Pol IIIcore are a highly organized in their sequential actions, ensuring

that DNA replication occurs in an efficient manner (Figure 5). In contrast, the translesion polymer-

ases appear to gain access to the DNA in a more stochastic, concentration dependent manner. This

implies that the cell needs a mechanism in order to tune the outcome of this competition towards

DNA REPLICATION

Pol IIIcore rebinding

DNA replication 

resumes

Loader and clamp arrival

Loader arrival

Loader release

Clamp release

Pol IIIcore binding

Pol IIIcore 

release
Pol IIIcore binding

Pol IV binding

Pol II binding

ExtensionPol IIIcore 

release

Loader release

If lesion

OR

OR

No lesion 

bypass

TRANSLESION

SYNTHESIS

Loader Clamp Pol IIIcore Pol IV Pol II

Figure 5. A model for DNA replication and translesion synthesis. The DNA replication cycle consists of a

sequence of carefully arranged steps of clamp loading, polymerase loading, DNA synthesis, polymerase release,

and clamp unloading. In contrast, translesion DNA synthesis over DNA adducts shows no coordinated sequence

of events, but is instead a direct competition between the replicative DNA polymerase Pol IIIcore, and the

translesion DNA polymerases Pol II and Pol IV. DNA replication will resume once the lesion has been bypassed by

one of the translesion DNA polymerases.

DOI: https://doi.org/10.7554/eLife.32177.014
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the replicative polymerases during normal DNA synthesis and the translesion polymerases in the

presence of DNA damage. Indeed, during DNA synthesis, two or three Pol IIIcores are tethered to

the replisome (McInerney et al., 2007; Reyes-Lamothe et al., 2010), increasing the effective con-

centration of the replicative polymerase at the replication fork. Importantly, the Pol IIIcores are

directly tethered to the clamp loader via the flexible linker of the clamp loader protein t

(Dallmann et al., 2000; Gao and McHenry, 2001), which ensures that as soon as a clamp is loaded,

a Pol IIIcore will associate with the clamp (see Figure 3H–J). Secondly, during the SOS-response, a

bacterial reaction to DNA damage, the cellular levels of the translesion DNA polymerases Pol II, Pol

IV, and Pol V are increased (Bonner et al., 1988; Woodgate and Ennis, 1991; Kim et al., 2001),

thus shifting the equilibrium of the polymerase competition in favor the translesion polymerases. Fur-

thermore, it has been proposed that the recombinase RecA may favor the translesion polymerases

by having opposing effects on the Pol III and translesion replisomes, albeit by a yet unknown mecha-

nism (Indiani et al., 2013).

Such a concentration-dependent exchange between the replicative and translesion polymerases

is consistent with the discontinuous DNA synthesis by isolated Pol IIIcore (Jergic et al., 2013;

Tanner et al., 2008), showing that individual Pol IIIcores can exchange. Recent studies (Lewis et al.,

2017; Beattie et al., 2017) have also shown that in the context of the intact replisome, Pol IIIcore

exchanges in a concentration-dependent manner during processive DNA replication. Taken

together, these studies demonstrate that E. coli DNA synthesis is highly dynamic and utilizes a con-

centration-dependent mechanism to achieve a fine balance between stability and flexibility where

the exchange of factors is determined by their availability.

Interestingly, in higher eukaryotes the access of the eukaryotic translesion polymerases to DNA

shows a higher degree of coordination through ubiquitination of PCNA and the translesion polymer-

ases (Chun and Jin, 2010), as well as formation of polymerase bridges through Rev1

(Pustovalova et al., 2016; Sale, 2013). However, given that there are up to 15 DNA polymerases to

coordinate in eukaryotes (Plosky and Woodgate, 2004), the ubiquitination of PCNA and the inter-

actions between the polymerases may not be sufficient to coordinate the specific recruitment of indi-

vidual translesion polymerases, implying that in eukaryotes too, the translesion process may occur at

least in part by a concentration-dependent mechanism, which is supported by studies showing that

the intracellular levels of several human translesion polymerases (Pol h, Pol k, and Pol i) are

increased upon DNA damage (Zhu et al., 2010; Zhu et al., 2012; Tomicic et al., 2014).

Materials and methods

Materials
All chemicals were purchased from Sigma-Aldrich (Gillingham, United Kingdom), unless stated other-

wise. All chromatography columns were purchased from GE healthcare (Little Chalfont, United King-

dom) .

Cloning of protein expression vectors
Genes for E. coli b (dnaN), e (dnaQ), q (holE), g (dnaX) and Bacillus subtilis Sfp phosphopantetheinyl

transferase were cloned into pET28a vectors, and genes for d (holA) and single cysteine d’ (holB)

K83C/C217S/C294S(Goedken et al., 2004) were cloned into pET3d vectors. The sequence for Pol I

(polA) Klenow fragment (residues 324–928) was cloned into a pETNKI-His-3C-LIC (Luna-

Vargas et al., 2011) vector. For labeling purposes the Ybbr sequence DSLEFIASKLA (Yin et al.,

2005) was added N-terminally to the following proteins during cloning into their respective vectors:

Pol IIIa (dnaE) was cloned into a pETNKI-His-3C-LIC vector, Pol II (polB) and Pol IV (dinB) were

cloned into pET11 vectors, and the gene for e (dnaQ) was cloned into a pET28a vector. The plasmids

for streptavidin ’alive’ (biotin-binding) and streptavidin ’dead’ (not biotin-binding) (Howarth et al.,

2006) were generous gifts from M. Howarth (Univ. of Oxford).

Clamp binding mutants of e, Pol IV, and Pol II were generated through site directed mutagenesis.

The following sequences were changed: e (b-) residues 182–187: QTSMAF to QTSAAA, e (b+) resi-

dues 182–187: QTSMAF to QTSLPL, Pol IV (b groove) residues 346–351: QLVLGL to QLVAGA, Pol IV

(b rim) residues 303–305 VWP to AGA, Pol II (b groove), residues 779–783: QLGLF to QLGAA.
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Protein purification
Unless otherwise stated, protein purifications were performed with the following gradients: nickel

affinity (25–500 mM Imidazole gradient in the presence of 500 mM NaCl), ion exchange (0–1 M NaCl

gradient), hydrophobic interaction chromatography (2–0 M ammonium sulfate gradient) and gel fil-

tration (150 mM NaCl). Pol IIIa-NYbbr was purified in 20 mM Hepes pH 7.5 and 2 mM DTT by nickel

affinity, ion exchange and gel filtration. Pol I Klenow fragment was purified in 20 mM Tris pH 8.0 and

2 mM DTT by nickel affinity, anion exchange, hydrophobic interaction chromatography and and gel

filtration. Pol IV-NYbbr was purified in 20 mM Hepes pH 7.5 and 2 mM DTT by ion exchange, hydro-

phobic chromatography and gel filtration. Pol II-NYbbr was purified in 20 mM Tris pH 8.0, 0.5 mM

EDTA and 2 mM DTT by two steps of ion exchange separated by a step of hydrophobic chromatog-

raphy, followed by gel filtration. e-NYbbr was purified in 25 mM Hepes pH 8.2 and 2 mM DTT by

nickel affinity under denaturing conditions (in the presence of 6 M Urea), followed by refolding over-

night at 4˚C in 25 mM Hepes pH 8.2 and 10 mM DTT and ion exchange. b, e, q and Sfp were purified

in 20 mM Hepes pH 7.5 and 2 mM DTT by nickel affinity, ion exchange and gel filtration. d and d’

K83C/C217S/C294S were purified in 50 mM Hepes pH 7.5, 0.1 mM EDTA and 2 mM DTT by hydro-

phobic chromatography and ion exchange, and g/t was purified in the same buffer by nickel affinity

chromatography. The g3d1d’1 and t3d1d’1 complexes were assembled at a 1:2:1 ratio of g/t:d:d’ and

separated by ion exchange. To fully occupy all Pol IIIcore binding site, a 5-fold excess of Pol IIIcore

was added to the t3d1d’1 complex, and then purified by gel filtration. Streptavidin alive and dead

were purified and prepared as described (Howarth et al., 2006).

Protein labeling
Pol IIIa, Pol IV, Pol II and e exonuclease subunit were enzymatically labeled by Sfp, which conjugates

CoA-linked Atto dyes to their N-terminal Ybbr tags (Yin et al., 2006). The labeled proteins were Pol

IIIa-Atto 488, Pol IV-Atto 565, Pol II-Atto 647N, and e-Atto 565. The b clamp and Pol I Klenow frag-

ment were labeled on a single cysteine residue with maleimide-Atto647N. The g-complex (dg3d’) was

labeled at the d’ subunit with the mutations K83C/C217S/C294S (Goedken et al., 2004) with malei-

mide-Atto 565 before complex assembly. All labeled proteins were purified away from the free dye

by gel filtration. The labeling efficiencies of the proteins were determined using the protein and fluo-

rophore absorption ratios, with the free fluorophore absorption at 280 nm subtracted from the pro-

tein absorption at 280 nm. The labeling efficiency was 85% for the g- and t-complexes, 68% for the

b clamp monomer, 100% for Pol I Klenow fragment, 60% for Pol IIIa, 78% for e, 62% for Pol IV and

66% for Pol II. In addition, the labeling efficiencies for Pol IIIa and e were verified at the single mole-

cule level by measuring the co-localization frequencies between Pol IIIa and e on clamp-DNA, where

each co-localization event was scored as having labeled Pol IIIa only, labeled e only, or both labeled

proteins. This way, the labeling efficiencies were 67% for Pol IIIa and 71% for e, which are similar to

the efficiencies measured by absorption.

’X174 primer extension assays
Protein activity was tested using single stranded fX174 phage DNA (New England Biolabs, Hitchin,

United Kingdom), primed with a 5’ fluorescein labeled primer (sequence: 5’ FAM-ACCAACA

TAAACATTATTGCCCGGCGTACpG, where lowercase ’p’ indicates the non-cleavable phospho-

thioate bond). Reactions were performed in 20 mM Tris pH 7.5, 2 mM DTT, 50 mM potassium gluta-

mate, 8 mM magnesium acetate, and 0,05 mg/ml BSA. Each reaction contained 5 nM primed fX174

phage DNA, 50 nM b clamp, 10 nM g clamp loader complex (g3d1d’1), and 30 nM polymerase (Pol III-

core, Pol II, or Pol IV). Reactions were quenched at 0, 0.5, 1, 2 and 5 min with 75 mM EDTA and

0.6% (W/V) SDS and stored on ice before separated on a alkaline agarose gel (0.8% agarose, 30 mM

NaOH, 2 mM EDTA) for 15 hr at 14 V. Gels were scanned at 488 nM using a Amersham Typhoon

(GE Healthcare)

DNA substrates
All DNA oligos were ordered from IDT (Leuven, Belgium), with the exception of the furfuryl-modified

oligo that was purchased from Eurogentec (Seraing, Belgium). The following DNA substrates were

used. A 33-nt template DNA: 5’ Bio-CATAATATCCATGCTTCACC[amino-dT]TCATCCAAATCC for

the matched and mismatched substrates or 5’ Bio-CATAA[N2-furfuryl-dG]ATCCATGCTTCACC
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[amino-dT]TCATCCAAATCC for the lesion substrate. A 27-nt primer DNA: 5’ Bio-GGATTTGGA

TGAAGGTGAAGCATGGApT for the matched and lesion substrates (where lowercase ’p’ indicates

the non-cleavable phosphothioate bond) or a 25-nt 5’ Bio-GGATTTGGATGAAGGTGAAGCATGpT

for the mismatched substrate. The template DNA was labeled on the internal amino-modified thy-

mine with NHS-Atto 488 and purified away from the free dye by gel filtration. The labeled template

DNA was subsequently bound to monovalent streptavidin and purified by gel filtration, before

annealing to the primer DNA and binding to the glass cover slip for imaging. See Figure 1A for car-

toon representation of final DNA substrate.

Preparation of slides
Glass slides and cover slips were washed in 3 M NaOH and Piranha solution (3:2 concentrated sulfu-

ric acid: 30% hydrogen peroxide) and then silanized and pegylated essentially as described in

(Ha et al., 2002). The imaging chamber (15 mL) was assembled by creating a sandwich between the

cover slip and glass slide using double adhesive tape, and it was further passivated using 4 mg/ml

PLL-PEG (SuSoS, Dübendorf, Switzerland), 1% (W/V) pluronic F127 (Sigma) and 10 mg/ml BSA (New

England Biolabs). Streptavidin (1 mg/ml) (New England Biolabs) was added last to bind the biotin-

DNA.

CoSMoS microscopy
All single-molecule measurements were performed at 23 (±1) ˚C in 20 mM Tris-HCl pH 7.5, 50 mM

potassium glutamate, 8 mM MgCl2, 4% glycerol, 2 mM DTT, 0.1% Tween20 and 1 mM Trolox. The

protein concentrations used were: 15 nM b2 clamp; 15 nM g3d1d’1 complex; 30 nM or 150 nM Pol III-

core; 6 nM, 30 nM, or 150 nM Pol IV; and 30 nM Pol II. Movies were acquired using Micromanager

software on a Nikon (Kingston Upon Thames, United Kingdom) Eclipse Ti-E microscope with ApoTirf

100X/1.49 Oil, 0.13–0.20 WD 0.12 objective. The lasers used were 150 mW 488 nm, 150 mW 561

nm (both Coherent Sapphire Ely, United Kingdom) and 100 mW 638 nm (Coherent Cube) controlled

by an acousto-optic tunable filter (Gooch and Housego, Ilminster, United Kingdom). Movies were

acquired on an Andor (Belfast, United Kingdom) iXon (EM) + CCD camera at 20–40 mW laser power

and an exposure of 50 millisecond (ms) per frame for a thousand frames with rapid alternation

between the three laser channels (180 ms/change). Thus the frame rate is 660 ms for a 3-color exper-

iment, 440 ms for a 2-color experiment, and 86 ms for a single color experiment (as there is no need

to change the laser channels). The total duration of the movies for a 3-color experiment was 650–

670 s, which gives an acquisition rate of 220 milliseconds per frame when the lag in the filter wheel

was taken into consideration. Each field of view (54 mm � 54 mm, pixel size 105 � 105 nm) had an

average density of 5900 DNA molecules of which 700–900 molecules were well separated and

picked for analysis. The DNA-Atto 488 signal was bleached in order for this channel to be re-used

for Pol IIIa-Atto 488.

Data analysis
The acquired movies were fed into the Imscroll analysis GUI developed by Jeff Gelles and Larry

Friedman (Friedman and Gelles, 2015) to find the individual landing events and their dwell times.

Histograms were plotted in Igor Pro and the data was fitted with an one-parameter exponential

using a bin size ~1/2 the lifetime of the molecule. The decay constant t represents the mean dwell

time and the error in t represents the error in the mean dwell time.
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