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Abstract: Poliomavirus BK virus (BKV) is highly infective, causing asymptomatic infections during
childhood. After the initial infection, a stable state of latent infection is recognized in kidney tubular
cells and the uroepithelium with negligible clinical consequences. BKV is an important risk factor
for BKV-associated diseases, and, in particular, for BKV-associated nephropathy (BKVN) in renal
transplanted recipients (RTRs). BKVN affects up to 10% of renal transplanted recipients, and results
in graft loss in up to 50% of those affected. Unfortunately, treatments for BK virus infection are
restricted, and there is no efficient prophylaxis. In addition, consequent immunosuppressive therapy
reduction contributes to immune rejection. Increasing surveillance and early diagnosis based upon
easy and rapid analyses are resulting in more beneficial outcomes. In this report, the current status
and perspectives in the diagnosis and treatment of BKV in RTRs are reviewed.

Keywords: BK virus infection; renal transplanted recipients; BKV nephropathy; miRNA; biomarkers;
urine biomarkers; early diagnosis

1. BK Virus

BK virus (BKV) is an icosahedral virus with a double-stranded DNA genome. It is
a member of the polyomavirus (PV) family, together with John Cunningham virus (JC)
and Simian virus 40 (SV40). The BKV genome (≈5 kb) is divided into: (i) the early region
(which codes for small (t) and large T-antigen); (ii) the late region (which codes for capsid
proteins Vp1, Vp2, Vp3, agnoprotein and microRNAs) and (iii) the non-coding control
region (NCCR) (Figure 1) [1].

BKV strains are classified into six genotypes, according to polymorphisms in VP1
and NCCR [1], with genotype I frequency at around 80% and genotype IV at 15% [2].
BKV infects most of the world population in their youth, often with silent infections (i.e.,
without symptoms) [3]. After the first infection, a kind of inactive infection is established in
kidney and uroepithelium [4–6]. Generally, BKV transmission occurs through respiratory
secretions [7]. In particular, after infection, BKV is able to shape intranuclear inclusion
bodies of 40–45 nm in size in the renal tubular cells [8]. Moreover, the periodical and
transient presence of BKV in the urine of immunocompetent adults has been demonstrated
(between 5% and 27%), as a consequence of its shedding [9].
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Region: Agno (Agnoprotein), VP1–3 (viral capsid proteins).

Viral agnoprotein seems to have a key role in the infective cycle of BKV. Agnoprotein
is expressed in some polyomaviruses [10]. BK, JC and SV40 agnoproteins have a sequence
identity of up to 83%, suggesting a potential shared function. Agnoprotein is cytoplas-
mic or perinuclear during the tardive stages of the PV cycle [11]. It has recently been
demonstrated that agnoprotein co-localize with lipid droplets in BK infected primary renal
tubular epithelial cells [12]. Nevertheless, the importance of this finding is still unclear. It
was pointed out that agnoprotein is mostly found at the later stages of the polyomavirus
life cycle. Therefore, it has been proposed that agnoprotein assumes a key role in virion
assembly, morphogenesis and release. Agnoprotein is not crucial for virion infectivity or
morphogenesis, even if its absence renders viruses unable to release from host cells and
propagate. Instead, agnoprotein expression is related to the exit of BK virions from the
nucleus, increasing the speed of the viral cycle. The α-soluble, n-ethylmaleimide-sensitive
fusion (NSF) attachment protein α-SNAP is the binding moiety of agnoprotein, and is essen-
tial for BK virion release [13]. Another important function of agnoprotein is its involvement
in the induction of immunological escape, contributing to viral persistence. In fact, it was
recently reported that BK destroys mitochondrial interaction and reduces mitochondrial
membrane potential upon the expression of the 66 aa-long agnoprotein during late replica-
tion. This effect is paralleled by the impairment of IRF3 transportation in the nucleus and
of interferon-beta levels, and by the induction of p62/SQSTM1 mitophagy. These in vitro
effects were confirmed by the observation of mitochondrial degradation and by the increase
of the autophagic marker p62/SQSTM1 in allograft biopsies of kidney transplanted patients
affected by BK nephropathy [14]. Based upon the above consideration, BK persistence
in humans is allowed by complex viral mechanisms, involving multiple factors and the
host defense status. Despite the establishment of durable BK infection in most individuals,
significant consequences of BKV infection are uncommon, except for immunocompromised
and immunosuppressed patients. Indeed, when the immune system is suppressed (as
in RTRs and in transplanted individuals in general), the virus may reactivate and, as a
consequence of its replication, trigger a series of effects that begin with tubular cell lysis and
the excretion of BKV in urine. Thereafter, BKV replicates in the interstitial cells and crosses
the peritubular endothelial barrier, reaching the bloodstream and eventually the allograft,
causing different tubular and interstitial damages with consequent serious complications,
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such as BKVN [15]. BKVN can induce the degeneration of transplanted kidney and graft
failure [16], and patient outcome is determined by the severity of injury with consequent
inflammatory and fibrosis pictures. Roughly 33–34% of patients with the presence of BKV
in urine will develop BK viremia, and could advance to BKVN without intervention.

2. Kidney Transplantation

Kidney transplantation is an important epidemiological factor in the general popula-
tion. It is a lifesaving procedure, and it represents the only alternative to life-long dial-
ysis for patients at the final stage of kidney disfunction (uremia or end-stage renal dis-
ease (ESRD)). A total of 80,926 cases of kidney transplantation were reported to the Global
Database on Donation and Transplantation (GODT) (http://www.transplant-observatory.org/,
accessed on 14 April 2022) in 2020 [17]. A major problem with kidney transplantation
is that the transplanted organ may be lost, with the consequent return of patients to an
ESRD condition.

One of the main causes (though not the only one) of graft loss is immune rejection,
which can have several causes, including BK-virus-related disease. Even though the rate
of graft failure has been progressively decreasing over the years, it still represents an
important clinical problem. The 2019 Annual Data Report of the Organ Procurement
Transplant Network (OPTN)/Scientific Registry of Transplant Recipients (SRTR) reported
that 7% of patients receiving a new kidney from a dead donor experienced acute graft
rejection by one year, and 5-year graft survival ranged between 85% and 21–35% depending
on the value of the Kidney Donor Profile Index (KDPI). In young patients (35–49 years
old) transplanted with a kidney from a living donor, the 5-year graft survival is about
90%, whereas it is only 80.2% if the recipient is older than 65 years [18]. Graft failure
has large direct medical costs, which have been previously estimated around $78,100 for
a single patient, accompanied by a loss of 1.66 quality-adjusted life years (QALYs) [19].
Model extrapolation of these individual data to the total number of kidney transplantations
performed in the US in 2017 led to an estimate of costs related to kidney graft failure of
about USD 1.38 billion on an annual basis. In this perspective, efforts to improve the efficacy
of immunosuppressant pharmacological treatment with the final aim of preserving the
graft could contribute to reducing the costs related to this disease.

As mentioned, immune rejection can have various causes, including the reduction of
immunosuppressive therapy due to BK-virus-related disease. In addition, BKV induces
direct toxic effects on kidney.

3. BKV Nephropathy

BKV-associated diseases are usually found in both the donated kidneys and the
hematopoietic stem cell of the receiving patients. BKVN is the major BKV-associated dis-
ease, and it is defined as persistently viral plasma burden >10,000 copies/mL for 28 days.
BKVN manifests in up to 10% of RTR, especially in blood group-incompatible donors and
after recipients’ desensitization, with an incidence of rejection between 10% and 80% [20].
Main cause for BKV reactivation consists of therapeutic immunosuppression following
transplant [21], but whether the BKV source inducing BKVN is derived from the donor
or from recipient reactivation is unclear. From the histological point of view, it is possible
to classify BKVN into three stages according to Banff scheme: A, B and C. In stage A, a
high cytotoxic effect is followed by a sustained tubulointerstitial inflammation (stage B);
the consequences of these events are tubular atrophy and interstitial fibrosis (stage C) [22].
A review of the Banff scheme proposes that the inflammatory state (stage B) and fibrosis
(stage C) possess a great importance as prognostic markers. On the other hand, stage A
and histologic viral load do not predict an unfavorable outcome [23]. Several risk factors
are associated with BKVN development, and certainly the most prevalent is the degree
of immunosuppression. Additional identified risk factors for BKVN development are
kidneys received from BKV seropositive donors and transplanted to BKV seronegative
recipients, the age of both the donor and the recipient [24], obesity, as well as donors and
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recipients positivity in the sera of both BKV and Cytomegalovirus [25]. Moreover, degree
of HLA mismatches, ABO-discordance, and ischemia reperfusion injury are included as
risk factors [20]. It was reported recently in a single-center retrospective study the effects
of the so-called enhanced induction, (based upon the administration of thymoglobulin,
rituximab, and/or eculizumab), together with age, sex, cytomegalovirus mismatch (donor
+/recipient−) and transplant failure treatment as risk factors for developing BKVN. Results
show that male gender, but not enhanced induction, represents a hazard for developing
BKVN [15]. Moreover, in another very recent research work has been assessed the re-
lationship between laboratory data and a higher risk of BKV activation. Results clearly
demonstrate that patients with an active BKV infection have higher association with a
dead donor, reduced conjugated bilirubin levels, a higher relative percentage of serum
albumin, and decreased neutrophil count. These laboratory parameters were used to build
a nomogram for predicting BKV activation in RTRs [26]. The main risk factors related to
the onset of BKVN are reported in Table 1.

Table 1. Principal Risk Factors for the onset of BKVN.

Donors Factors Host Factors Transplant Factors

BKV Seropositive [24] Advanced Age [24] Ischemia Reperfusion [20]

Age [24]
Deceased [26]

Male Gender [15]
Obesity [25]
Diabetes [8]

Low Direct Bilirubin
High Serum Albumin [26]

Low Neutrophil Count [26]

Degree of HLA Mismatch [20]
ABO Incompatibility [20]

Bilirubin [26]

In consideration of the poor efficacy of BKV preventive or curative anti-viral drugs,
adopting a heavier immunosuppressive regimen may decrease the risk of BKVN progres-
sion. However, these measures increase the risk of transplant failure [27]. On the basis of
these considerations, increasing surveillance and early diagnosis would certainly result in
more favorable outcomes.

4. Screening Tests

The biopsy of kidney allograft is the mainstay for BKVN diagnosis, severity assessment
and for concomitant processes evaluation. However, because biopsy is invasive and
sampling error can occur, a theoretical diagnosis can be conceived based upon the presence
of significant viremia. In order to early recognize BKV infection, screening tests in urine or
plasma are recommended, thus allowing intervention and avoiding progression to BKVN
or allograft rejection.

Unfortunately, the best periodicity and screening methods are still indefinite. Guide-
lines suggest intense clinical follow-up investigation in the first year and every 6 months
afterwards [28]. Indeed, both the Kidney Diseases Improving Global Outcomes (KDIGO)
and the American Society of Transplantation (AST) guidelines suggest the screening of all
renal transplants with quantitative real-time PCR testing. Nevertheless, KDIGO recom-
mends screening tests executed on plasma, while AST does not mention which biological
matrix (urine or plasma) should be analyzed [29]. BKV DNA detection in plasma using
qPCR is the most widely used method to monitor BKV infection, since viruria quite accu-
rately correlates with BKVN. Nevertheless, many studies have emphasized the advantage
of BKV screening in urine samples for the prevention of BKVN, as viruria precedes viremia
(viremia appears several weeks later due to the tubular viral replication) [27]. A test is con-
sidered positive if the viral copies are more than 107 copies/mL in urine and 104 copies/mL
in plasma. Similar results must be obtained again within 4 weeks [30]. As mentioned above,
the detection of BKV DNA has not been fully standardized. This results in the following
several pitfalls: (i) intra- and inter-laboratory assay variability; (ii) significant changes of
virus level detection and (iii) assessment technical pitfalls. Variability in biological samples,
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the techniques for DNA extraction, the primer and probe sequences and different BK DNA
used for the construction of standard curves may impact assay results and reduce clinical
significance [28,31]. To optimize reproducibility, it is recommended to always perform tests
on a certain patient population at the same center to powerfully reduce assay variability.
Moreover, only laboratories that work according to good quality control rules and are
certified for transplant diagnostics should be considered [32]. The main problem related to
BKV DNA detection is that its presence in biological samples is not a marker of an active
viral replication. Indeed, viral DNA can also be found when defective virions are shed [27].

For this reason, increasing attention is being paid to the evaluation of certain viral
mRNAs as biomarkers for BKV active infection and the prediction of BKVN. Specifically,
BKV capsid protein 1 (VP1) mRNA from cells in urinary sediment was assessed as a BKVN
marker [33]. Over the past few years, microRNAs (miRNAs) have emerged as encouraging
diagnostic and prognostic markers for many diseases, including cancer [34] and viral
infections [35]. miRNAs belong to the group of small non-coding RNAs and are formed by
about 22 nucleotides; they are implicated in the regulation of gene expression, via either
translation inhibition of their target mRNAs or the reduction of their cytoplasmic half-life
(mRNA poly-adenylation inhibition) [36]. In detail, miRNAs are secreted by human cells
in protective delivery systems (i.e., extracellular vesicles, conjugated to HDL cholesterol
or to Ago2 proteins) that increase their circulating half-life in biological fluids, including
blood and urine. Moreover, miRNAs are easily and rapidly detectable with relatively
cheap conventional qRT-PCR techniques that are widely available in analytical laboratories.
Bkv-miR-B13p and bkv-miR-B1-5p are the two miRNAs expressed by BKV, and their roles
in the BKV infection cycle are not fully understood. Both bkv-miR-B13p and bkv-miR-B1-5p
can cleave large tumor antigen (T-Ag) mRNA, self-regulating viral replication. Moreover,
bkv-miR-B1-3p targets ULBP3, thus inducing escape from the immune response. Certainly,
bkv-miR-B13p and bkv-miR-B1-5p receiving increasing interest for the detection of BKV and
the diagnosis of active infection in RTRs [16,27]. It has also been found that BKV miRNAs
are expressed in different biological fluids such as blood, urine and cerebrospinal fluid [37].
Moreover, urine levels of BKV miRNAs correlate with BKV DNA load in RTRs [38]; for this
reason, bkv-miR-B13p and bkv-miR-B1-5p represent non-invasive diagnostic biomarkers
for BKV. Nevertheless, few results on the use of BKV miRNAs as markers of active BKV
infection are available, and they are not easy to compare. In fact, the biological samples (cell
pellets, native urine or exosomes) and standardization methods differ among laboratories.
Therefore, taking into account the potential diagnostic advantages related to urine miRNAs
as BKV infection biomarkers, it appears worthwhile to conduct studies in this field.

5. Treatments

There is currently no specific anti-viral therapy to treat BKV-associated diseases. In-
deed, the usual clinical approach consists of a gradual reduction of immunosuppression,
guided by consecutive measurements of BKV presence in plasma by qRT-PCR. However,
the main consequence of a long-term reduction of immunosuppression is an increased
number of patients suffering from chronic rejection. Despite the lack of specific anti-BKV
medications, some anti-viral drugs that are efficient in CMV disease have been employed
in BKV-related pathologies and associated with immunosuppression downmodulation.
However, most of the studies showing the application of the abovementioned anti-viral
drugs were uncontrolled retrospective observational studies. For this reason, the therapeu-
tic efficacy of anti-CMV viral agents in BKV-associated disease is not easy to confirm [8,39].
Recent guidelines suggest stepwise immunosuppression reduction for kidney transplanted
patients with BK viremia of more than 1000 copies/mL lasting for 3 weeks, or a one-shot
detection of more than 10,000 copies/mL in sera, showing a probable BKVN. The reduction
of the immunosuppressive schedules is the most important intervention for BKVN proven
in kidney tissue [40]. In cases of refractory BK nephropathy and hemorrhagic cystitis,
cidofovir has been used for treatment (IV and intra-vesicular), although efficacy has not
been clearly demonstrated [41]. Another study suggests that cidofovir could be effective for
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BKV-related hemorrhagic cystitis [42]. Nevertheless, its employment needs to be supported
by randomized controlled trials. Adoptive immune transfer of BKV-specific T cells has
been anecdotally explored to treat hemorrhagic cystitis [43].

Fluoroquinolones also show potential as anti-viral agents against BKV-associated
disease. Indeed, it was recently demonstrated that this class of antibiotics restrain BKV
replication in vitro [44]. However, data on this class of antibiotics are still inconsistent. A
phase III clinical trial involving 154 Canadian kidney transplanted patients demonstrated
that levofloxacin, and likely other fluoroquinolones, are ineffective in preventing or treating
this infection [45]. Recent guidelines state that the latter antibiotics are not recommended
for prophylaxis or therapy [40].

In conclusion, despite the virological basis, the published randomized clinical trials
are not adequate to replace the immunosuppressant therapy (tacrolimus with cyclosporine
A and mycophenolate with leflunomide or mTOR inhibitors). Moreover, they do not
legitimize the additive use of cidofovir, intravenous immunoglobulins or leflunomide [40].

Re-transplantation after allograft rejection due to BKVN may be successful if BKV
DNAemia is completely cleared, independent of failed allograft nephrectomy [40].

Other adjunctive therapies with unproven efficacy include intravenous immune glob-
ulin and leflunomide. In fact, the efficacy of these agents has not been fully established,
and the use of these therapies has not been clearly shown to be superior to reduction in
immunosuppression alone.

6. Animal Models to Study BKVN

The development of animal models to study BKV infection and associated nephropa-
thy is made difficult by the narrow host range and cell specificity of BKV and other PVs.
Despite these considerations, the main difficulties in obtaining a mouse animal model for
studying BKV infection are related to mouse-specific genetic background and the promoter
choice driving the expression of the transgene and strongly influencing disease pheno-
type [46]. One example is represented by transgenic mice containing the early region of
BKV used to study the role of T-Ag in the pathogenesis of BKVN. These transgenic mice
developed primary hepatocellular carcinomas and renal tumors, but did not develop key
features of BKVN [47]. To overcome these problems, researchers assessed mouse BKV
infection in mice bearing allogeneic kidneys to mimic BKVN. In this model, infection with
the mouse BKV resulted in a high viral replication in the allogeneic kidney graft, severe
graft injury and accelerated kidney graft failure [48]. However, results from this mouse
model were poorly associated with human RTRs. Indeed, the recipient mice were not
immunosuppressed because immuno-competent mice did not acutely reject allogeneic
kidneys. To address this issue, kidney transplantations in splenectomized and nephrec-
tomized alymphoplasia mice was performed [49]. Although high viral loads were observed
in transplanted mice, they were not associated with increased allograft injury or loss of
renal grafts, suggesting that BKVN in mice is dependent on an intact adaptative immune
response [46]. Further studies are necessary to build an appropriate animal model to
study BKVN in humans. Other strategies could be represented by xenograft or humanized
mouse models.

7. Conclusions

BKV infection is recorded in up to 90% of the general population. It can be found
as permanent and latent states of infection in renal cells and uroepithelium. BKV reac-
tivation is commonly observed in immunocompromised individuals, causing relevant
morbidity, especially BKVN, in RTRs. No specific therapeutic intervention is available,
and its treatment is generally based upon immunosuppression decrease. To date, only
increasing surveillance and early diagnosis have resulted in more favorable outcomes. The
available screening tests are based on BKV DNA detection, and give no information about
the active viral replication. On the other hand, BKV miRNAs quantification could represent
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a new effective strategy to accomplish early diagnosis, as well as better RTR surveillance
and management.
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