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Abstract: The vascular system plays a central role in the transport of cells, oxygen and nutrients
between different regions of the body, depending on the needs, as well as of metabolic waste products
for their elimination. While the structure of different components of the vascular system varies, these
structures, especially those of main arteries and arterioles, can be affected by the presence of different
cardiovascular risk factors, including obesity. This vascular remodeling is mainly characterized by a
thickening of the media layer as a consequence of changes in smooth muscle cells or excessive fibrosis
accumulation. These vascular changes associated with obesity can trigger functional alterations, with
endothelial dysfunction and vascular stiffness being especially common features of obese vessels.
These changes can also lead to impaired tissue perfusion that may affect multiple tissues and organs.
In this review, we focus on the role played by perivascular adipose tissue, the activation of the
renin-angiotensin-aldosterone system and endoplasmic reticulum stress in the vascular dysfunction
associated with obesity. In addition, the participation of oxidative stress in this vascular damage,
which can be produced in the perivascular adipose tissue as well as in other components of the
vascular wall, is updated.

Keywords: endoplasmic reticulum stress; obesity; oxidative stress; vascular damage; perivascular
adipose tissue

1. Introduction

The vascular system is comprised of a large number of different vessels that play a
central role in the movement of blood throughout the circulatory system. Its main function
is the transport of cells, oxygen (O2), nutrients and energy between different regions of
the body, depending on the needs. In addition, the transport of carbon dioxide (CO2) and
other metabolic waste products to the exterior (through the lungs and urinary system) is
also provided by the vascular system [1].

The function and structure of each component of the vascular system vary depending
on the organ it supplies. The structure of blood vessels, aside from capillaries, is composed
of three different layers [2]:

• The outer layer, or adventitia, providing structural support and shape to the vessel.
The adventitia in the large arteries also supplies oxygen and nutrients to the vascular
vessel through the vasa vasorum. This layer is composed mainly by fibroblasts, among
other cells [3,4].

• The middle layer or media composed of elastic and muscular tissue which modulates
the internal lumen of the vessel. This layer is mainly composed of vascular smooth
muscle cells [5].

• The inner layer or intima, composed of endothelial cells that surrounds the interior
of the vessel and provides an interface between the blood and vessel wall. These
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act as sensors for different stimuli, including mechanical (flow and pressure) and/or
circulating humoral and inflammatory factors [6].

The quantity of muscle and collagen fibrils within each layer varies depending on
the size and location of the vessel (Figure 1). Arteries, arterioles and capillaries are the
components of the arterial system. Arteries have an abundance of elastic tissue and less
smooth muscle due to exposure to high pressure. This high level of elastin allows them to
increase in size and modify their diameter, thus conferring to the vessels the elasticity and
compliance properties necessary for the correct functioning of the vascular system. Elastic
and muscular arteries are the two main types of arteries. The first ones, such as the aorta,
contain more elastic tissue and less smooth muscle cells than the muscular arteries. This
allows the aorta to maintain a relatively constant pressure gradient despite the constant
heart pumping action.

Figure 1. Structure of vascular system. Comparison of the walls of an elastic artery, muscular artery,
arteriole, capillary, venule, and vein is shown.

Arterioles that provide blood to the organs contain mainly smooth muscle cells and
play an important role in the systemic vascular resistance due to the lack of elastic tissue
in the walls. Arteriolar lumen controls the flow of blood into the capillaries, where the
exchange of nutrients and metabolites occurs mainly by diffusion [7].
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Venules receive blood from capillaries and they can participate in the exchange of
oxygen and nutrients [8]. They are the smaller component of venous system with very thin
walls prone to rupture with excessive volume. Venules flow into veins composed of three
layers like arteries, although less elastic and with a high capacitance that allows it to hold a
high volume of blood. They bring the blood toward the heart in a forward direction thanks
to the presence of two flap-like structures that regulate blood flow.

The aim of this review is to describe the impact of obesity in this structure and the
functional consequences. In addition, the potential mechanisms involved in this damage
will be explored with special attention to the roles of perivascular adipose tissue (PVAT),
renin-angiotensin-aldosterone system (RAAS) and endoplasmic reticulum (ER) stress.
Moreover, the involvement of oxidative stress in these alterations and mechanisms will
be discussed.

2. Vascular Remodeling in Obesity

Blood vessels respond to mechanical and hemodynamic stimuli associated to a variety
of diseases, including hypertension, diabetes and obesity, by modifying their structure,
which can result in changes in vessel lumen caliber [9]. Vascular remodeling occurs as an
adaptation response to restore wall tension and normalize wall stress in order to maintain
the appropriate lumen size for normal blood flow [10].

Vascular remodeling, in general, but specifically in the context of obesity, is an ac-
tive procedure that involves changes of cell processes at multiple levels, including cell
growth, migration, death, cytoskeletal organization, calcification, dedifferentiation of vas-
cular smooth muscle cells (VSMCs) and extracellular matrix (ECM) remodeling. These
changes can involve interactions among local growth factors, inflammatory cytokines and
vasoactive substances in which the oxidative environment can play a central role [9,11–13].
These changes can affect the different vessel layers with functional consequences [14].

Different types of arterial remodeling can be distinguished depending on the underly-
ing pathophysiology:

• Hypertrophic involves thickening of the vascular wall due to cellular hyperplasia
and/or hypertrophy or deposition of ECM, which determines an increase in wall-to-
lumen ratio. This thickening can be inward or outward.

• Eutrophic involves changes in the diameter of the vessel without changes in the
wall-to-lumen ratio.

• Hypotrophic involves thinning of wall and a reduction in wall-to-lumen ratio.

Obesity is associated with vascular remodeling, mainly characterized by media thick-
ening and arterial stiffness not only in conduit arteries such as aorta [15,16], but also in
small ones such as mesenteric, renal and coronary arteries [17–22]. This remodeling was
also observed in subcutaneous small arteries from overweight or obese hypertensive pa-
tients, which was accompanied by an increase in fibrosis or a reduction in elasticity [23,24].
This hypertrophy involved different mechanisms, including an ECM remodeling or smooth
muscle cell hyperplasia.

VSMCs play a central role in the regulation of vascular tone as well as vessel diameter
in order to maintain adequate flow to the tissues [25] thanks to its contractile phenotype,
the majority in healthy vessels [14]. However, under certain environmental stimuli or
pathological conditions, including obesity [26,27] VSMCs switch to a synthetic phenotype,
which is characterized by a high proliferation rate and synthesis of ECM, as well as
vasoactive factors [28,29]. This phenotype switching is considered to play a central role in
vascular remodeling [14]. Proliferation of VSMCs is a common characteristic reported in
the vessels in the context of obesity [18,30] which can participate in media thickening and
is facilitated by its synthetic phenotype.

Vascular fibrosis is a common feature associated with obesity [15,30–33] which results
from the accumulation of collagen type I, the main type at vascular level, since no changes
in collagen III with more flexibility [34] have been reported [15,18,32]. Fibrosis is a dynamic
process that results from the balance of ECM production and degradation. In the case of
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vascular collagen accumulation in the context of obesity, it seems to be consequence of both
processes: an increase in its production [15,18] but also a reduction in its degradation due
to an increase in its crosslinking, making it more difficult to degrade. Thus, it is supported
by the observation that the administration of an inhibitor of a lysyl oxidase (LOX) reduces
fibrosis not only at vascular level but also at the cardiac one in obese animals [35]. LOX
is an enzyme involved in the covalent cross-linking of collagen and elastin and is thus
responsible for the rigidity and elastic properties of connective tissues [36].

Elastin is an ECM protein that provides resilience and elasticity to the arteries, allowing
the aorta to reversibly expand and relax with every cardiac cycle. As opposed to what
was observed with collagen, obesity is not associated with changes in elastin levels in
the aorta [15,16,18]. The relative levels of collagen and elastin determine biomechanical
properties of vessels, and the increase in collagen/elastin ratio observed in different models
of obesity therefore leads to increased stiffness. Although no changes in elastin levels is
associated with obesity, there has been reported a reduction in fenestra number in the
internal elastic lamina in mesenteric arteries from obese mice [18]. This reduction affects
vascular mechanical properties, thereby making the vessel stiffer [37,38]. This rigidity is
further increased due to an accumulation in fibronectin levels that have also been observed
in vessels of obese animals [39,40]. Fibronectin is a major determinant of arterial stiffness
and plays a pivotal role in cell matrix interactions [41].

Arterial stiffness is not only observed in models of obesity [18,42,43] but is also a
feature found in obese patients independently of age or the presence of metabolic alter-
ations [44–47]. The increase in the pulse wave velocity (PWV) observed in obese patients
results in lower vessel distensibility and compliance. It is worth mentioning that an increase
in aortic PWV is an independent factor in predicting fatal and nonfatal cardiovascular
events [48–50].

Vascular calcification is a complex process [51] that has been considered a sign of
aging. However, it has been shown in the last years that this can be present in different
pathological situations, including obesity. Obese patients showed an upregulation of
different markers of vascular calcification, especially in the presence of diabetes, [52] which
can be ameliorated after a weight reduction via bariatric surgery [53]. Vascular calcification
has been also reported in obese mice that can be reduced with vitamin E treatment [54–56].
Indeed, vascular calcification may be relevant to explaining accelerated vascular aging in
the context of obesity and it can contribute to the increase of cardiovascular morbi-mortality
by facilitating vascular stiffness.

These vascular changes associated with obesity not only triggered functional alter-
ations but can also lead to impaired tissue perfusion that may affect multiple tissues and
organs. These changes can also be produced by capillary rarefaction observed in the obesity
that affects almost every organ [57–59].

3. Endothelial Dysfunction in Obesity

Endothelium is an extremely selective barrier for the permeability of macromolecules
while separating blood components from vessel wall matrix and tissues. It is also a highly
metabolically active organ with a vital role in the vascular homeostasis [60]. Endothelial
cells synthesizes and releases a great variety of substances, including vasoactive substances
that regulate vascular tone, blood pressure and local blood flow; substances that participate
in coagulation, fibrinolysis and inflammatory and immunological reactions; reactive oxygen
species (ROS) and also reactive nitrogen species (RNS), involved in the oxidation and
nitrosylation of proteins and lipids and growth factors disturbing cell growth, survival and
homeostasis [61,62].

Vascular homeostasis requires maintaining a highly regulated balance between a
vasodilator state, often associated with antioxidant, anti-inflammatory and antithrombotic
properties, and a vasoconstrictor state, often associated with a prooxidant, proinflamma-
tory as well as prothrombotic state [63]. The endothelium guarantees vascular homeostasis
through opposing action of substances with vasodilating properties such as nitric oxide
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(NO), prostacyclin, and hyperpolarizing factor obtained from endothelium and vasocon-
strictors such as endothelin-1, angiotensin II (Ang II) and thromboxane A2 (Table 1) [63–65].

The most important compound generated by endothelial cells and influencing vascular
homeostasis is NO in healthy conditions. It is produced by the constitutive endothelial
enzyme NO synthase (eNOS) under the influence of chemical or mechanical factors. The
most characterized among these are the activities of endothelial agonists (e.g., acetylcholine,
bradykinin) acting on specific endothelial receptors and shear stress [66]. NO plays a crucial
role in the cardiovascular system. The continued generation of NO by eNOS has been
associated with a healthy vasculature, while the decrease of NO bioavailability for a long
time, due to reduced eNOS activity or the reaction of NO with superoxide anions (O2

-),
has been linked with cardiovascular disease [67–69].

Table 1. Vasoactive factors that regulates vascular tone.

Bioactive Compounds Effect Reference

Acetylcholine Vasodilator [63,65,66,70,71]

Nitric oxide Vasodilator [63–65,70,71]

Bradykinin Vasodilator [65,66]

Prostacyclin Vasodilator [63–65]

Endothelium-Derived Hyperpolarizing Factor Vasodilator [63–65,70]

Endothelin-1 vasoconstrictor [63–65,70]

Thromboxane A2 vasoconstrictor [63]

Angiotensin II vasoconstrictor [63,64,70]

Endothelial dysfunction is the presence of an altered endothelial phenotype distin-
guished by reduced bioavailability of NO [70] or a predominant generation of vasocon-
strictor and proatherosclerotic substances, prothrombotic and proinflammatory factors,
generically called endothelium-derived contracting factors [71].

It is widely known that obesity is an independent risk factor for cardiovascular
disease and metabolic disorders. Among these, endothelial dysfunction is one of
the earliest vascular alterations observed in obesity, a condition in which endothelial
cells change to a pro-atherosclerotic phenotype [71,72]. Numerous studies have seen
endothelial dysfunction in different obesity models, both in obese animals induced
by genetic manipulation [73–76], dietary [77,78] or induction of neuroendocrine alter-
ations [79,80]. In obese patients, endothelial dysfunction has been observed along with
hyperglycemia, inflammation, and oxidative stress [81]. In a study performed by Apo-
vian et al., the authors have observed by histological examinations that macrophage
infiltration in subcutaneous adipose tissue is associated with systemic endothelial
dysfunction and insulin resistance in obese patients [82]. In agreement with this
study, there has been observed a correlation between circulating tumor necrosis fac-
tor alpha (TNFα) levels and endothelial dysfunction in obese patients, showing that
inflammation could contribute to vascular dysfunction and is an early onset of en-
dothelial damage in obese patients [83]. In addition, endothelial microparticles have
been shown to be upregulated in obesity and are independently correlated with en-
dothelial dysfunction in obese women [84]. The obesity elicits impairment in the
endothelium-dependent coronary arteriole dilations in older patients [85]. The en-
dothelial dysfunction has been demonstrated even in adolescents [86] and in children
with obesity [87,88]. This altered endothelial function affect not only conduit arteries,
such as aorta, but also small arteries including mesenteric, coronary, renal or penile
arteries [89,90]. This impaired response to endothelial-dependent vasodilators was
accompanied by a reduction in eNOS levels or activity and it was improved in response
to exercise or diet supplements [91–93]. In a recent study, endothelial dysfunction as
well as the wall thickening observed in aorta of mice fed with high-fructose were asso-
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ciated with dysbiosis mainly characterized by a reduction of gut microbiota diversity
and a reduction in the abundance of beneficial bacteria [92]. All these data support
the complexity of the mechanisms involved in the vascular functional alterations that
occur in obesity.

4. Mechanisms Involved in Vascular Alterations Associated with Obesity
4.1. Perivascular Adipose Tissue

PVAT is the adipose tissue surrounding blood vessels. Most arteries and veins in
the body are invested with a layer of PVAT, including the coronaries, aorta, and the
microvascular beds of the mesentery, muscle, and kidney [94–96].

Until recently, it was considered only to be a passive structural support for the blood
vessel [97]. However, evidence from the last decades has led to the wide acceptance of
adipose tissue as an important endocrine organ highly metabolically active and produce
large numbers of substances, called adipokines, that could affect energy metabolism,
insulin sensitivity, inflammatory response, as well as blood flow and the vascular tone in a
paracrine or/and endocrine manner [97–103].

PVAT releases different vasoactive substances, such as adipocyte-derived relaxing
factor (ADRF) and PVAT-derived relaxing factor (PDRF) [104–107], adiponectin [104,108],
angiotensin-(1–7) [109,110], hydrogen peroxide (H2O2) [111], leptin [112] and NO [113],
among others. These influence vascular function and are highly important in the
regulation of vascular physiology, including vascular tone and endothelial func-
tion [99,104,111]. The balance between adipose tissue-derived vasodilator and vasocon-
strictor mediators could be extremely important for the maintenance of an appropriate
vascular tone. In normal physiological conditions, PVAT has an anticontractile, anti-
inflammatory and antioxidant effect [114]. Obesity generates both structural and
functional alterations in PVAT [115], increasing PVAT mass [116–119] and producing
changes in the secretory profile of adipokines, resulting in a reduction of expression of
vasorelaxation factors and increases in vasoconstrictors [120] and oxidative stress [121],
further contributing to a decrease in the anticontractile effect of PVAT [122] and pro-
moting vascular dysfunction [123,124]. The dysregulation in secretion of adipokines
by the adipose tissue itself is one of the mechanisms that has linked the increasing fat
mass in obesity with cardiovascular comorbidities. This may directly affect the patho-
genesis of obesity-related sequelae such as cardiovascular disease [125]. In addition,
this PVAT remodeling associated with obesity favors infiltration of immune cells, and
upregulation of proinflammatory cytokines [115,120,126], facilitating the generation
of a proinflammatory environment. Obese mice induced by high fat diet (HFD) ex-
hibited increased mass, hypertrophied adipocytes and high levels of O2

- and H2O2
in PVAT from abdominal or thoracic aorta accompanied by a PVAT dysfunction, with
lost anticontractile effect and impaired endothelium-dependent vasodilation [109,118].
In one model of long-time HFD, mesenteric PVAT remodeling was associated with
an elevated oxidative stress due to an increase in O2

- levels associated with increased
levels of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases and re-
duced superoxide dismutase (SOD) activity [123]. H2O2 might act as a PVAT-derived
contractile factor in the setting of obesity [127], which could partly justify the reduction
of the anticontractile effect of PVAT. This increase in ROS could involve the activation
of the G protein-coupled receptor kinase 2 (GRK2), a serine/threonine kinase, since it
is able to stimulate ROS production in a NADPH oxidase-dependent manner in car-
diomyocytes [128]. Additionally, the genetic deletion of GRK2 in obese mice prevent
the altered endothelial relaxation observed in aorta surrounded by PVAT of wild obese
mice. Moreover, no differences in acetylcholine-endothelium-dependent relaxation
was observed in control or knockout mice in the absence of PVAT independently of
their being fed a control or an obesogenic diet [129].

Similarly, PVAT of gluteal subcutaneous arteries from obese subjects showed not only
an increase in depot but also in adipocyte area as compared with that of lean subjects and



Antioxidants 2021, 10, 406 7 of 24

this hypertrophy was accompanied by a reduction in the dilatory capacity of the vessels,
recruitment of macrophages and increase in oxidative stress and inflammation [117].

PVAT not only has a protective effect on vascular tone but also regulates vascular
wall structure through the release of factors with anti-inflammatory, antiproliferative and
antifibrotic factors [130]. However, PVAT dysfunction that occurs in the context of obesity
altered this production and could lead to the development of vascular remodeling. In
this line, it has been reported that infiltration of macrophages in PVAT is associated with
stenosis of coronary vessels in patients having bypass surgery [131]. In a study involving
the Framingham Heart Study Offspring cohort, the volume of the thoracic periaortic fat
depots was associated with adiposity, as well as with coronary and abdominal aortic
calcification, indicating that aortic PVAT is associated with cardiovascular risk factors [116].
Altogether, it is accepted that maladaptive PVAT remodeling has a critical role in vascular
dysfunction in the context of obesity.

4.2. Renin-Angiotenisn-Aldosterone System

The renin-angiotensin-aldosterone system (RAAS) exerts an important impact on
the cardiovascular system by participating in the pathogenesis of different pathological
scenarios, including hypertension, diabetes and obesity [132]. Obesity promotes increased
plasma renin activity plasma angiotensinogen and angiotensin-converting enzyme (ACE)
activity, promoting enhanced plasma levels of Ang II in obese patients [133]. It is well
established that Ang II is a profibrotic, proinflammatory and prooxidant factor that is also
able to induce VSMCs proliferation. Through all these actions, Ang II can participate in the
vascular remodeling and the endothelial dysfunction associated with obesity (Figure 2).
Indeed, activation of RAAS at a local level or circulating has been found in the context of
obesity [134]. Toyama et al. [135] showed a few years ago that the administration of AT1 re-
ceptor antagonist telmisartan was able to improve the impaired relaxation to acetylcholine
observed in the aorta of a genetic model of obesity in mice. This improvement was accom-
panied by the normalization of eNOS phosphorylation and a reduction of inflammatory
markers. Similar results have been reported in a model of metabolic syndrome in rats not
only in aorta but also in coronary arteries. This improvement in endothelial function was
again accompanied by amelioration of NO availability [136,137]. In hypertensive obese pa-
tients the combination of a calcium and AT1 antagonists was accompanied by improvement
of endothelial function and a reduction of inflammatory markers [138]. The reduction of
Ang II levels with ACE inhibitors has reported similar improvement in endothelial function
in different vascular vessels, including aorta, coronary and epineural arterioles in models
of obesity but also in obese patients in which the treatment with ACE inhibitors was able to
ameliorate endothelial function in coronary arterioles from obese patients undergoing heart
surgery [139–142]. In hypertensive patients with overweightness or obesity, ACE inhibitor
treatment was associated with a reduction in markers of endothelial dysfunction [143].

Regarding the role of Ang II in the vascular remodeling associated with obesity,
different studies have demonstrated similar participation to that reported in endothelial
dysfunction. The blockade of AT1 receptor was associated with a reduction of coronary
artery thickening as well as pericoronary fibrosis in genetic models of obesity [135,144].
Similarly, the inhibition of Ang II was able to reduce the remodeling observed in the
abdominal aorta in a model of diet-induced obesity [145].

This improvement was accompanied by a reduction of profibrotic mediators such as
transforming growth factor-β (TGF-β) [144]. Clinical studies have reported that inhibition
of Ang II improved vascular remodeling of small subcutaneous arteries of obese hyperten-
sive patients and this effect was not observed in those patients treated with a β-blocker
despite a similar reduction in blood pressure levels [146]. Blockage of Ang II was also
able to improve the media/lumen ratio in subcutaneous small arteries from overweight
hypertensive patients and this improvement was associated with a reduction in fibrosis, at
least in the patients who received an AT1 receptor antagonist [23]. The combination of an
ACE inhibitor with other antihypertensive drugs was able not only to reduce blood pres-



Antioxidants 2021, 10, 406 8 of 24

sure levels but also to improve the elastic properties of large arteries in obese hypertensive
patients, supporting the beneficial effect of this combined therapy on the organ protection
in this kind of patients [24].

Figure 2. Angiotensin II and aldosterone effects on vascular cells.

It is relevant to mention that clinical and experimental studies have reported that
inhibition of RAAS is accompanied by an improvement of the metabolic consequences
of obesity [147–151], which can play a relevant role in the vascular consequences in this
pathological scenario [152,153]. This beneficial effect has been associated with a reduction
in the action/levels of Ang II at vascular level [144,148]. In addition, an activation of the
peroxisome proliferator activated receptor-γ(PPAR-γ), a major transcription regulator of
multiple genes involved in glucose metabolism, and the participation of Ang (1–7) are
other potential mechanisms suggested in this improvement [135,149,151,154].

As already mentioned for Ang II, aldosterone through mineralocorticoid receptor (MR)
activation plays a relevant role in the vascular damage associated with different pathologi-
cal conditions included obesity [155–158]. In fact, an increase in aldosterone levels in the
context of obesity has been also reported [124,156,159–161] even in the presence of a high
salt-diet [159]. MR are amply found in different tissues, including vessels in which they
are expressed in both VSMCs and endothelial cells or perivascular adipocytes [155,156].
An overactivation of MR and excessive aldosterone levels are produced by perivascular
adipocytes and can participate in the modulation of vascular function [162,163]. It has been
demonstrated that aldosterone exerts prooxidant effects in endothelial cells. This effect
is accompanied by a reduction in NO bioavailability (Figure 2). These effects have been
confirmed in obesity. Obese mice showed MR activation in endothelial cells, promoting the
expression of epithelial sodium channel (ENaC) and oxidative stress along with a decrease
in NO and aortic stiffness [164]. Clinical studies have demonstrated that aldosterone
plasma levels are increased in obesity and are associated with atherosclerosis progres-
sion. Aldosterone is able to increase the expression of intercellular adhesion molecule-1
(ICAM-1) and promotes leukocyte adhesion [165,166]. Aldosterone administration in lean
mice, achieving blood aldosterone levels similar to those found in obese mice, promoted
endothelial dysfunction in an MR dependent manner. This effect was due to an increase in
oxidative stress observed in the animals [167]. It has been described that Rac1, a member
of the Rho family of GTPases, is able to increase MR activity. It is important to mention
that Rac1 levels is associated with obesity and with oxidative stress [168]. MR activation in
VSMCs promotes cell proliferation, migration and calcification, thereby promoting vascu-
lar dysfunction and stiffness [169]. The role of MR activation is not limited to VSMCs or
endothelial cells. Its activation exerts M1 polarization in resident vascular macrophages,
thus enhancing the inflammatory response observed in obesity at vascular level [170].
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The role of MR in vascular alterations has been proved by the employment of MR
antagonists. Treatment with eplerenone was able to prevent the vasoconstriction induced
by aldosterone infusion [171]. In addition, eplerenone prevented the reduced pulse pres-
sure, increased blood pressure levels and vascular stiffness in aldosterone-treated rats [172].
Different studies have shown that treatment with MR antagonists was able to improve
endothelial function in diet-induced and genetic models of obesity. In this sense, treatment
with the MR antagonism, eplerenone, showed an improvement in vascular reactivity in
response to an obesogenic diet. This improvement was accompanied by a reduction in
inflammatory cytokines in white adipose tissue, but without any changes in body weight
gain induced by the HFD [161,167]. This improvement was also observed in female obese
mice [173]. In addition, blockade of MR was accompanied by an improvement in vascular
remodeling, perivascular fibrosis, as well as vascular stiffness observed in models of obe-
sity [31,161,173]. This improvement was accompanied by a reduction in ECM components
and profibrotic mediators such as TGF-β [161]. Studies in endothelial cell-specific MR
knockout mice have reported similar results, showing that the deletion of these improved
not only endothelial function but also the vascular remodeling, fibrosis and stiffness ob-
served in obese animals. This improvement was accompanied by a normalization of eNOS
levels, reduction of ECM crosslinking and inflammation [164,174]. These observations
support the relevant role of the activation of vascular MR in the vascular alterations as-
sociated with obesity but specifically at endothelial level. The activation of ENaC in the
distal nephron mediated the antinatriuretic effects of the aldosterone [175]. At vascular
level, the activation of these channels in the endothelial cells seem to also be the possible
mechanism through which aldosterone can mediate the vascular damage in the context of
obesity, since specific deletion of endothelial ENaC prevents endothelial stiffness, impaired
eNOS activation, aortic fibrosis and remodeling in obese mice through the modulation of
vascular oxidative stress and inflammatory response [31]. Finally, it is worth mentioning
that the blockade of MR is accompanied by an improvement of the metabolic consequences
of obesity [156,176–178] and, as we have already mentioned, can participate in the vascular
damage in the context of obesity [152,153].

4.3. Endoplasmic Reticulum Stress

ER is the cell organelle in which protein synthesis, folding maturation and trafficking
take place [179–181]. The ER is also responsible for the calcium storage, it being a critical
site for the maintenance of cell homeostasis [180,182,183]. Under certain circumstances, the
ER is not able to fold the amount of new synthesized proteins, so the unfolded proteins
are accumulated in the ER lumen [182], resulting in a state denominated “ER stress”.
Under this condition, unfolded protein response (UPR) is activated to restore the ER
homeostasis [181,182]. However, a prolonged condition of ER stress leads to the induction
of inflammation that results in apoptosis of the unhealthy cells [184]. UPR is a complex
signaling network [179,180] which is activated through three different pathways: inositol-
requiring protein 1 activation (IRE-1), protein kinase RNA-like ER kinase activation (PERK)
and activating transcription factor 6 (ATF6) [179,180]. In normal conditions, these ER
membrane-associated proteins are bound by the chaperone GRP78, also called binding
immunoglobulin protein (BiP) [180], which keep ER stress sensors inactive. Upon activation
of UPR, BiP separates from the three ER proteins, activating the pathways to reestablish ER
homeostasis [182] by the degradation of irreversibly unfolded proteins [185].

ER stress is activated by multiple factors such as oxidative stress and calcium overload,
or in several pathological conditions such as obesity, diabetes mellitus and cardiovascular
disease [183]. Furthermore, ER stress has been suggested as an important mediator in
multiple diseases, including cardiovascular or metabolic ones, among others [184,186]. In
regard to cardiovascular diseases, ER stress seems to be involved in cardiac remodeling in
hypertensive animals, it being an important factor in cardiovascular homeostasis [179]; in
ischemic heart disease, lack of oxygen and nutrients due to the ischemic state could impair
ER homeostasis and activate UPR, leading to this alteration [187]; in left ventricle samples
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from autopsy of patients with dilated cardiomyopathy and in mice with hypertrophic
and failing hearts induced by transverse aortic constriction, ER stress was activated in
myocytes by induction of ER chaperones. Moreover, the administration of an AT1 receptor
antagonist reduced ER stress activation, which was accompanied by the prevention of
cardiac hypertrophy and failure, as well as a reduction of apoptosis in mice, suggesting
that ER stress may be involved in the progression of heart failure [186]. In type 2 diabetes,
ER stress also plays an important role due to the fact that a synthesis of insulin occurs in
the ER of the pancreatic islet and an increase in insulin production could place a strain on
ER function, resulting in an activation of the UPR [180].

Different studies also support the participation of ER stress in vascular pathologies
in different diseases. Choi S.K. et al., found in their studies in type 2 diabetic mice that
ER stress is responsible for coronary artery dysfunction in these animals, since its inhi-
bition was associated with an impairment of the endothelium-dependent relaxation in
coronary arteries [188]. In cardiovascular diseases, ER stress could play an important
role in endothelial dysfunction, since treatment with the pharmacological ER stress in-
hibitors, tauroursodeoxycholic acid (TUDCA) or 4-phenylbutyric acid (PBA), were able
to improve vascular reactivity in the animals [189]. Kassan et al., demonstrated in their
study that ER stress is a risk factor for vascular alterations in a hypertensive mice model
since the treatment with ER stress inhibitors reduces arterial blood pressure and improves
endothelium-dependent relaxation, cardiac damage and micro- and macrovascular en-
dothelial function [179]. In another animal model, a hyperglycemic ApoE-/- mouse model,
hyperglycemia promotes an increase in ER stress sensors in their aorta walls previous to
morphological changes in the vessel structure, showing that ER stress precedes structural
and functional alterations and suggests that ER stress possibly exerts an effect on such
alterations. [182]. These studies show ER stress as a possible therapeutic target for the
vascular alterations associated with different pathologies.

As previously mentioned, ER stress is also induced in obesity and could be a mediator
of the development of this pathological context [183,184,186]. ER stress activation has been
observed in different situations associated with obesity, such as elevated levels of free fatty
acids (FFA) and the following alteration in energy availability [190], insulin resistance and
activation of inflammatory pathways [180,181] or accumulation of lipids in ectopic tissues
and cells [191].

Some studies suggest that elevated concentrations of FFAs could reduce endothelial
NO bioavailability and eNOS activity, leading to obesity-induced endothelial dysfunc-
tion [183,190]. These elevated concentrations of FFAs, as mentioned before, could also
alter the ER of these cells [190]. ER stress seems to be linked to the activity of eNOS and
the production of NO by the endothelial vascular cells, decreasing both of these in this
situation [181]. Actually, Lu. et al., demonstrated in a study with rats treated with HFD
and fenofibric acid (FF) that HFD induce ER stress (CHOP and BiP levels were elevated)
in thoracic aorta, where p-eNOS activity was decreased. Treatment with FF could reduce
HFD-induced ER stress and improve p-eNOS activity, resulting in an improvement in NO
production. In addition, the authors demonstrated that treatment with the pharmacological
inhibitor of ER stress, 4PBA, was able to improve the deleterious effect of palmitic acid
(main saturated fatty acid of HFD) on endothelium-dependent vasodilatation, suggesting
the involvement of ER stress in the vascular damage associated with obesity [190]. Actually,
it has been demonstrated that the inhibition of ER stress in mice treated with angiotensin
Ang II was related to an improvement of the endothelium-dependent vascular relaxation
that was accompanied by an increase in eNOS activity [181]. The reduction of the activity of
eNOS was also demonstrated in coronary artery endothelial cells treated with tunicamycin,
another pharmacological ER stressor [181].

Several studies show a relationship between ER stress and oxidative stress in car-
diovascular pathologies. It has been described that ER stress induced by tunicamycin
was associated with vascular endothelial dysfunction in aorta and other arteries [179,189]
through an increase in oxidative stress mediated by NADPH oxidase activity [183]. ER
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is a site for NADPH oxidase activation, establishing an interaction between ROS and ER
stress since ROS is produced during protein folding within the ER and can also induce ER
stress [192]. NADPH oxidase is activated by released Ca2+ from ER during ER stress [183].
This Ca2+ is internalized by mitochondria to generate ROS [181], whose high levels increase
oxidative stress and leads to the activation of ER stress and apoptosis, contributing and
maintaining endothelial dysfunction [181]. In fact, it has been shown that in high glucose-
treated endothelial cells, ROS and ER stress were responsible for apoptosis induction along
with a decrease in eNOS expression [183].

The connection between ER and mitochondria is mediated by MAM, the mitochondrial-
associated ER membrane [181]. MAM allows the exchange of several compounds, such
as Ca2+, essential for controlling mitochondrial [193] and cell functions [189], as well as
adaptation to pathophysiological conditions which require an enhanced metabolism [182].
Furthermore, this energy demand is enhanced in ER stress situation to control the com-
position and functions of MAM [181]. The accumulation of Ca2+ within mitochondria as
consequence of this exchange promotes an enhancement of ROS production and apopto-
sis [193]. In obese mice fed an HFD or high sucrose diet, where ER stress was induced
by tunicamycin, MAM integrity was altered, impairing the interaction between the two
organelles. This then results in a Ca2+ overload in mitochondria, compromising OXPHOS
capacity and augmenting oxidative stress, thereby suggesting that ER stress could be
mediating this communication [182,194]. In addition, other studies have found in aorta
from mice fed an HFD, both altered MAM and mitochondria, as well as ER morphology
in endothelial cells, which were associated with increased ROS production, overexpres-
sion of ER stress markers and endothelial dysfunction [182]. The traffic of Ca2+ through
MAMs is mediated by multiple proteins, including those of BCL family, which promote an
increase of this traffic from ER to mitochondria as an adaptive response to the increase of
the bioenergetics processes [193].

Several studies suggest that insulin resistance and cardiovascular disease are linked
through ER stress in pathologies like obesity; elevated concentrations of saturated fatty
acids could impair vasodilatory action of insulin through ER stress in obese individu-
als [192]. Moreover, it has been described in obese mice that MAM plays an important role
in both development and resolution of insulin resistance in hepatocytes, coordinating and
mediating ER and mitochondria functions [189].

Thus, obesity-associated ER stress takes place in the development of endothelial dys-
function, since it could initiate and facilitate the maintenance of several pathophysiological
states [182,189], although the link to this alteration seems to be unclear.

4.4. Central Role of Oxidative Stress in Vascular Alterations Associated with Obesity

Oxidative stress is defined by an imbalance between free radical production and the
antioxidant defenses. This imbalance can play an important role in second messengers
and intracellular signaling pathways that could affect tissue function. Under this oxidant
scenario, free radicals can affect proteins, lipids and DNA, favoring cellular damage and
the subsequent tissue injury [195]. There are several sources that can produce ROS at
vascular level.

NADPH oxidase (NOX) is a family of enzymes present in the membranes of vascular
endothelial cells, VSMCs and fibroblasts [196]. At least seven members have been described
in the NOX family [197], which is involved in vascular alterations associated with differ-
ent pathologies such as atherosclerosis [198,199], Ang II-induced hypertension [200] and
diabetes [201], among others. NOX family produces ROS by transferring electrons from
NADPH to molecular oxygen [202]. At vascular level, each layer has a particular composi-
tion of NOX. Nox4 is expressed by all vascular cells while Nox2 expression predominates
in the intima and adventitia layers and Nox1 mainly in VSMCs [203]. Several compounds
have been described to activate NOX, such as Ang II via its receptor ATR1 [204], the tyro-
sine kinase receptor agonist platelet-derived growth factor (PDGF) [205] and TNFα [206].
Obesity is also associated with an activation of NOX [207,208], it being an important con-
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tributor of vascular oxidative stress and could drive insulin resistance in this context [209].
At renal level, there has been observed an increase in Nox 1 and Nox 2 in renal arteries,
contributing to increased O2

- production and endothelial dysfunction in obesity [76].
Mitochondria is another important source of free radicals. In the respiratory chain of

the mitochondria, ROS are produced and released in function of the superoxide dismutase
2 (SOD2) levels. A decrease in SOD2 levels promotes aortic stiffness by the induction
of vascular fibrosis and vascular smooth muscle cell apoptosis in an animal model of
aging [210]. Obesity promotes mitochondrial dysfunction and reduced ATP generation
in animal models and in patients [211,212]. In addition, it has been described that NOX
activation promotes mitochondrial dysfunction and ROS overproduction in an animal
model of obesity [213].

Xanthine oxidase acts as another source of free radicals since it donates electrons to
O2 producing O2

- and H2O2. It is increased in plasma of obese children and is associated
with different cardiovascular risk factors such as high-density lipoprotein cholesterol or
oxidized low-density lipoprotein [214]. It has been demonstrated that xanthine oxidase and
O2

- production are increased in rat carotid arteries from obese rats and this is associated
with alterations in NO endothelium-dependent dilation [215].

All of these sources of free radicals, generate ROS, H2O2 and RNS among others.
It has been described that ROS/RNS, especially H2O2, act as second messengers [216].
Second messengers are usually produced in cells after receptor activation; however, some
molecules can move from the cell origin acting in a paracrine manner as a second messenger
in other cells. In this sense, O2

- and H2O2 are generated upon receptor activation and are
short-lived, acting as second messengers, and can activate or inhibit signaling pathways,
including protein phosphorylation, protein tyrosine phosphatases, protein tyrosine kinases,
transcription factors, mitogen-activated protein kinases, and ion channels [217]. These alter-
ations have been proposed to play a critical role in the adipose tissue in obesity. There have
been shown the effects of ROS in the development of adipocyte-insulin resistance [218].
In situations in which oxidative stress is exacerbated, ROS are increased and promote
adipocyte and mitochondrial dysfunction [219], which could finally lead to adipocyte
insulin resistance [220]. These alterations are accompanied by changes in several kinases
activity [221], inhibit the proliferation of adipogenic progenitors disturbing adipocytes
maturity and inhibit respiration, thereby promoting lipid accumulation [219]. In 3T3-L1
preadipocytes, it has been shown that the exposure to high levels of H2O2, and in response
to glucose oxidation, disrupts the expression of GLUT transporters, leading to a decrease in
insulin-stimulated transport of glucose and lipogenesis, and thus to insulin resistance [222].
In addition, high ROS levels could promote an increase in synthesis and secretion of leptin,
MCP-1, IL-6 and TNF-α, among others [221]. In addition, ROS exacerbation is associ-
ated with lipid accumulation in adipose tissue, adipocyte hypertrophy as consequence
of mitochondria dysfunction, adiponectin reduction and the consequent loss of its ben-
eficial effects in insulin resistance, as well as in anti-atherogenic and anti-inflammatory
effects [219]. At vascular level, the effects of free radicals as second messengers have been
associated with cell growth and migration, regulation of endothelial function decreasing
NO bioavailability and the promotion of inflammation and ECM deposition [223].In an
animal model of HFD for 6 weeks, we have observed that obese rats presented aortic fibro-
sis and vascular inflammation even in absence of vascular functional alterations. These
structural alterations were accompanied by an increase in O2- levels in the aorta of the
obese rats [15]. The treatment with an inhibitor of galectin-3 activity was able to prevent all
of these alterations [224]. It is important to mention that galectin-3 exerts prooxidant effects
in cardiovascular cells despite its profibrotic actions [225]. This interaction between ECM
deposition and oxidative stress at vascular level in the context of obesity was confirmed by
the use of β-aminopropionitrile (BAPN). BAPN is an inhibitor of LOX activity, which is
an enzyme that catalyzes the covalent cross-link of collagen and elastin fibers [36]. HFD
animals treated with BAPN for 6 weeks were resistant to developing vascular fibrosis and
the increase in ECM proteins. In addition to its antifibrotic effects, the treatment with



Antioxidants 2021, 10, 406 13 of 24

BAPN was able to prevent the increase in O2
- production observed in the aorta of the

obese animals, as well as in VSMCs treated with leptin, a hormone upregulated in obesity
which is involved in the vascular fibrosis observed in obese rats [35]. Obesity induced
in young pigs showed impaired coronary endothelium-dependent vasorelaxation and
increased oxidative stress characterized by enhanced levels of O2

-, nitrotyrosine and NOX
subunits [226].

Cytosolic thioredoxin is an antioxidant which acts as a scavenger of hydroxyl radicals
and is also able to restore oxidized proteins and enzymes and induce the antioxidant
defense. The lack of thioredoxin generates weight gain in mice and adipose tissue depots
accompanied by insulin deficiency in mice. These effects were accompanied by structural
remodeling in mesenteric artery characterized by increased wall thickness, hypertrophic
remodeling and a decrease in elasticity in the mesenteric artery of the animals fed a HFD
and genetically ablation of thioredoxin. All of these alterations could be explained by
the enhanced levels of peroxynitrite levels and the subsequent endothelial dysfunction
observed in thioredoxin knockout obese mice [227] showing that oxidative stress is asso-
ciated with vascular remodeling in obesity. The beneficial effects of vascular oxidative
stress inhibition were confirmed in transgenic obese mice treated with a chemerin receptor
antagonist. This treatment was able to decrease the body weight and vascular insulin
dysfunction in mesenteric arteries of the obese animals [228]. In addition, the deletion of
MR in endothelial cells reduced oxidative stress, Nox2 expression and renal endothelial
stiffness and fibrosis in obese mice [174]. In agreement with this, treatment with a MR
antagonist was able to prevent the inward hypertrophic remodeling, the increase number
of VSMCs and the vascular stiffness, as well as the increase in Nox 1 and 4 activities and
O2

- production observed in mesenteric arteries from obese animals [229].
The role of oxidative stress in vascular damage has been confirmed by the employment

of different strategies such as antioxidants or by the inhibition of different enzymes involved
in ROS production. It has been demonstrated that the treatment with a Nox2 inhibitor
promoted a prevention of ROS production in aortic PVAT, as well as the subsequent
aortic dysfunction in obese rats [230]. As has been mentioned, obesity is associated with
alterations in PVAT. In this sense, redox imbalance plays a critical role in the anticontractile
effect of PVAT in obesity. Vascular ROS from PVAT in obesity decrease NO bioavailability, it
being one of the mechanisms involved in vascular damage in this context. Mice fed a HFD
presented an increase in PVAT accompanied by hypertrophic adipocytes in abdominal
aorta. These effects were accompanied by an increase in the formation of H2O2 and
O2

- levels and with impaired endothelium-dependent vasodilation. The presence of the
antioxidant enzyme catalase was able to improve the endothelial-dependent vasorelaxation
in the aortas in presence of PVAT [118]. In a recent study, Gonzaga N.A. et al., have
shown that treatment for two weeks with the antioxidant melatonin was able to restore the
anticontractile actions of PVAT, increasing the NO bioavailability in PVAT from rats fed a
HFD for 10 weeks. This effect was accompanied by a reduction in O2

- production in the
aorta of the obese animals treated with melatonin and with an increase in the antioxidant
defenses in the PVAT of the animals [231]. In agreement with this, another study showed
that the treatment with melatonin was also able to restore the anticontractile effects of
PVAT from genetically obese mice in mesenteric arteries. This protective effect of melatonin
was associated with an improvement in inflammatory markers and with an increase in
adipokine with beneficial effects such adiponectin [232]. Melatonin was also able to prevent
the prooxidant and profibrotic effects of leptin in the cardiovascular system in the context
of obesity [233].

Oxidative stress also mediates the vascular detrimental role of Ang II in obesity. The
treatment with tempol, a ROS scavenger, enhanced aorta function in obese mice [234]. There
has been described an antioxidant role of vitamin D. Treatment with vitamin D mesenteric
arteries from obese patients referred to abdominal surgery was able to improve vascular
relaxation capacity, as well as a reduction in ROS production [235]. The antioxidant
treatment not only involves improvements in NO bioavailability and the subsequent



Antioxidants 2021, 10, 406 14 of 24

vascular function. Reduction of oxidative stress by inhibition of xanthine oxidase improves
aortic stiffness and vasodilatory responses in obese female mice which were accompanied
by a decrease in structural alterations such as aortic fibrosis [236].

These studies show that oxidative stress modulates the endothelial function, as well
as the vascular remodeling in the context of obesity.

5. Conclusions

This review summarizes the impact of obesity on vascular structure and function
and the potential role of RAAS and ER activation or PVAT dysfunction in this damage. In
addition, oxidative stress emerges as a downstream process of these mechanisms involved
in the vascular dysfunction associated with obesity and highlight its potential benefit
as therapeutic target at vascular level (Figure 3). Moreover, a vicious circle could exist
between oxidative stress and ER stress, adipose tissue dysfunction and RAAS activation
that could be relevant to cardiac damage although less information has been reported
regarding the issue.

Figure 3. Schematic illustration showing the role of oxidative stress as well as its connection with dif-
ferent mechanisms involved in vascular alterations associated with obesity. TXA2: Thromboxane A2;
Ang II: Angiotensin II; ET1: Endothelin 1; ACh: Acetylcholine; NO: Nitric Oxide; BDK: Bradykinin;
PGI2: Prostaglandin I2; EDHF: Endothelium-Dependent Hyperpolarizing Factor.
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