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High-content imaging-based pooled CRISPR screens
in mammalian cells
Xiaowei Yan1, Nico Stuurman1, Susana A. Ribeiro1,2, Marvin E. Tanenbaum1,3, Max A. Horlbeck1,4, Christina R. Liem1,5, Marco Jost1,
Jonathan S. Weissman1,6, and Ronald D. Vale1,7

CRISPR (clustered regularly interspaced short palindromic repeats)-based gene inactivation provides a powerful means for
linking genes to particular cellular phenotypes. CRISPR-based screening typically uses large genomic pools of single guide RNAs
(sgRNAs). However, this approach is limited to phenotypes that can be enriched by chemical selection or FACS sorting. Here,
we developed a microscopy-based approach, which we name optical enrichment, to select cells displaying a particular CRISPR-
induced phenotype by automated imaging-based computation, mark them by photoactivation of an expressed photoactivatable
fluorescent protein, and then isolate the fluorescent cells using fluorescence-activated cell sorting (FACS). A plugin was
developed for the open source software μManager to automate the phenotypic identification and photoactivation of cells,
allowing∼1.5 million individual cells to be screened in 8 h. We used this approach to screen 6,092 sgRNAs targeting 544 genes
for their effects on nuclear size regulation and identified 14 bona fide hits. These results present a scalable approach to
facilitate imaging-based pooled CRISPR screens.

Introduction
High-throughput sequencing in combination with CRISPR
technology has greatly accelerated discoveries in biology
through unbiased identification of many newmolecular players
in key biological processes (Hsu et al., 2014; Barrangou and
Doudna, 2016; Kweon and Kim, 2018; Schuster et al., 2019).
Using a high-diversity sgRNA library, large numbers of genes
can be manipulated simultaneously in a pooled manner, and
sgRNA abundance differences can be determined with high-
throughput sequencing quickly, with low labor and financial
cost. Thus far, pooled CRISPR screens have been limited to
phenotypes that can be transformed into sgRNA abundance
differences, such as growth effects (Gilbert et al., 2014; Shalem
et al., 2014; Wang et al., 2014). or phenotypes that can be di-
rectly examined by flow cytometry (Parnas et al., 2015) or
single cell molecular profiling (Dixit et al., 2016; Jaitin et al.,
2016; Datlinger et al., 2017; Adamson et al., 2018 Preprint;
Wroblewska et al., 2018; Rubin et al., 2019). However, many
important cellular phenotypes can be detected only under a
microscope, which requires a robust method for transforming
optically identified phenotypes into differences in sgRNA abun-
dance. Arrayed sgRNA libraries greatly facilitate suchmicroscope-
based screens, but are not widely available. Several in situ se-
quencing (Feldman et al., 2019;Wang et al., 2019) and cell isolation

(Chien et al., 2015; Piatkevich et al., 2018; Wheeler et al., 2020)
methods have been developed that allow microscopes to be used
for screening. However, these methods contain non–high-throughput
steps that limit their scalability.

Recently, an imaging-based method named “visual cell sort-
ing” was described that uses the photoconvertible fluorescent
protein Dendra2 to enrich phenotypes optically, enabling pooled
genetic screens and transcription profiling (Hasle et al., 2020).
Here, we developed an analogous approach to execute an imaging-
based pooled CRISPR screen using optical enrichment by au-
tomated photoactivation of the photoactivatable fluorescent
protein, PA-mCherry. Similar to traditional enrichment-based
pooled CRISPR screens, cells are infected with an sgRNA li-
brary, and high-throughput sequencing is used to examine
sgRNA abundance. Instead of traditional enrichment strategies,
we use optical enrichment: cells exhibiting the desired phe-
notype are identified and photoactivated automatically under a
microscope. Photoactivated cells are then isolated using flow
cytometry and analyzed by high-throughput sequencing. We
first evaluated this approach using a synthetic fluorescent re-
porter to estimate screening accuracy and capacity. We then
applied this approach to identify genes that regulate nuclear
size. This methodology is modular, allows millions of cells to be
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screened within a few hours, and can be scaled to a genome-
wide level.

Results
An optical approach for cell enrichment by patterned
illumination followed by FACS sorting
We developed an approach, which we term optical enrichment,
to select cells of interest using a microscope and mark them by
photoactivation, enabling cell isolation using FACS (Fig. 1). To
achieve this, we engineered hTERT-RPE1 cells expressing the
photoactivatable fluorescent protein PA-mCherry and observed
them under a microscope. A photoactivatable fluorescent pro-
tein was chosen over a photoconvertible fluorescent protein
to increase the number of channels available for imaging.
PA-mCherry was chosen to leave the better-performing green
channel open for labeling of other cellular features. Moreover,
nonactivated PA-mCherry has low background fluorescence in
the mCherry channel (Fig. S1 b), and it can be activated to dif-
ferent intensities when photoactivated for various amounts of
time. Cells of interest were selected by automated image analysis
and then photoactivated with patterned illumination using a

digital micromirror device (DMD; Fig. S1 a). To avoid undesired
photoactivation of neighboring cells, we limited the activation
pattern to nuclei as identified by the H2B-mGFP signal (Fig.
S1 b). We developed a plugin for the open-source microscope
control software μManager (Edelstein et al., 2014) called Auto-
PhotoConverter that automates these steps and has a pluggable
interface for image analysis code so that it can be used for any
desired phenotype (https://github.com/nicost/mnfinder; Fig.
S1 c). After harvesting the cells, the photoactivated cells were
isolated by FACS. By varying the activation time of the PA-
mCherry, we were also able to create multiple populations of
cells with different intensities that were distinguishable by
FACS (Fig. 2, a and b), enabling analysis of multiple pheno-
types simultaneously, as discussed below.

We next tested the precision of our automated photo-
activation platform in a “mock screen” consisting of a mixture of
cells expressing the fluorescent marker monomeric infrared
fluorescent protein (mIFP) and cells not expressing mIFP (out-
lined in Fig. 2 c). In this mock screen, mIFP fluorescence was
used as a “phenotype” to indicate cells of interest (mIFP-positive
cells). The Auto-PhotoConverter plugin was used to identify and
generate an activation mask based on mIFP fluorescence to

Figure 1. Imaging-based pooled CRISPR screen. Schematic of imaging-based pooled CRISPR screen. Cells expressing PA-mCherry are infected with a pooled
sgRNA library and imaged using a microscope. Images are collected and analyzed automatically to generate an activation mask targeting cells of interest.
Exposure with blue light photoactivates cells of interest into mCherry-positive cells that are subsequently isolated by FACS. Samples are analyzed by high-
throughput sequencing for sgRNA identification.
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Figure 2. Optical enrichment enables accurate cell identification and isolation. (a and b) Cells can be activated into different fluorescent intensity levels
that are clearly distinguished by FACS. Example images of cells (hTERT-RPE1 PA-mCherry) that have undergone various photoactivation times (a) and their
corresponding FACS results (b; number of cells analyzed for each condition is ∼10,000, replicate number = 2). Scale bar: 100 µm. (c) Schematic of the ex-
periment to measure precision. mIFP-positive (hTERT-RPE1 PA-mCherry H2B-mGFPmIFP-NLS) and mIFP-negative cells (hTERT-RPE1 PA-mCherry H2B-mGFP)
were mixed and analyzed under GFP and mIFP channels separately. mIFP expression was used as a phenotype to indicate cells of interest (mIFP-positive cells).
An activation mask was generated for each mIFP-positive cell. Cells identified by FACS to be mIFP and mCherry double-positive are true positives, while
mCherry-positive cells without mIFP fluorescence result from accidental activation (false-positive cells). (d and e) Cells of interest can be identified by au-
tomated image analysis followed by photoactivation and distinguished through FACS with high accuracy. (d) Example images of image analysis (GFP channel,
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photoactivate the mIFP-expressing cells into mIFP-mCherry
double-positive cells (true-positive cells). Cells without mIFP
fluorescence might also be accidentally photoactivated, leading
to false-positive cells (mCherry single-positive cells). To evalu-
ate the precision (the fraction of called positives that are true
positives) of this assay, all cells were collected and analyzed by
FACS after image analysis and photoactivation (Fig. 2, d and e).
We calculated precision as the fraction of photoactivated cells
(mCherry-positive cells) that were true positives (mIFP-
mCherry double-positive cells; Fig. 2 f). When the initial subset
of mIFP-positive cells was 30%, the precision was 98.3% (Fig. 2
e). The precision varied with the initial percentage of mIFP-
positive cells and ranged from 80% to ∼100% (initial percentage
of mIFP-positive cells ranging between 2.3% and 43.7%; Fig. 2 f).
Precision is expected to fall <80% with an initial percentage of
mIFP positive cells <2.3%. However, these results indicate that
optical enrichment can be used to identify hits with high pre-
cision even at relatively low hit rates.

Optical enrichment enables accurate sgRNA identification
Having established that we can recover photoactivated cells with
high precision, we next tested if we can successfully identify
specific sgRNA sequences present in these cells. mIFP-negative
cells and mIFP-positive cells were separately infected with two
different CRISPRa sgRNA libraries (6,100 sgRNAs for mIFP-
negative cells; 860 sgRNAs for mIFP-positive cells) at a low
multiplicity of infection to guarantee a single sgRNA per cell.
Note that in these experiments, the sgRNAs function only as
barcodes to be read out by sequencing but do not cause pheno-
typic changes, as the cells do not express corresponding CRISPR
reagents. These two populations were then mixed at a ratio of
9:1 mIFP-negative cells to mIFP-positive cells. We again used
mIFP expression as our phenotype of interest (outlined in Fig. 3
a). Two biological replicates were performed, and 200-fold
coverage of each sgRNA library was guaranteed throughout
the screen, including library infection, puromycin selection,
imaging/photoactivation, and FACS. For each replicate, we
screened a single imaging plate. A total of 1,825,740 and
1,490,188 RPE-1 cells in the two replicates were imaged sepa-
rately using a 20× objective. Automated imaging and photo-
activation of the plate took ∼8 h. The mCherry-positive cells
were isolated by FACS, and cells passing through the sgRNA gate
without further analysis were also collected as a control (Ctrl;
unanalyzed sample; FACS gating strategies are detailed in Data
S1). These cells were separately prepared for high-throughput
sequencing for sgRNA information extraction.

For simplicity, we use the terms “mIFP sgRNAs” for the
sgRNAs used to infect mIFP-positive cells and “Ctrl sgRNAs” for
the sgRNAs used to infect mIFP-negative cells. Typically, sgRNA
libraries contain multiple sgRNAs that target a single gene,
which minimizes confounding effects that arise from differ-
ences in sgRNA efficacy. Because the mIFP positive phenotype is
not induced by our sgRNA library, we emulated genes in normal

sgRNA libraries in our analysis by grouping different numbers
of randomly selected sgRNAs.

Our results show that the sgRNA groups from mIFP-positive
cells (mIFP groups) could be well distinguished from the sgRNA
groups in mIFP-negative cells (Ctrl groups; Fig. 3 b). To further
investigate how library composition and number of replicates
influence screening results, we also analyzed the data by
grouping the sgRNAs differently (either one or two sgRNAs
were assigned to each group) and two different numbers of
replicates (phenotypic scores calculated from one replicate
versus phenotypic scores averaged between two replicates). As
shown in Fig. S2, mIFP sgRNAs could be distinguished from Ctrl
sgRNAs in a single experimental replicate (Fig. S2, top left).
Combining data from both replicates significantly improved
segregation of the mIFP and Ctrl groups (Fig. S2, top right). Not
surprisingly, the greater the number of sgRNAs assigned to a
group, the better the detection of mIFP groups (Fig. S2, bottom).
Two sgRNAs per group is sufficient for a reliable screening
result, even using a single replicate (Fig. S2 bottom left). Thus,
we demonstrate that pooled CRISPR libraries can be screened
for phenotypes under a microscope by optical enrichment.

Improved phenotype identification through multi-intensity
labeling
In most pooled CRISPR screens, only cells showing the phe-
notype of interest are selected, and the relative enrichment of
a given sgRNA is calculated based on comparison with the
whole cell population. However, this whole cell population is
usually collected separately and includes both positive and
negative cells, which reduces the perceived enrichment in the
positive population. We therefore investigated calculating the
relative enrichment of a given sgRNA by comparing with
true-negative cells. Not all mCherry-negative cells are true-
negative cells, since there are unanalyzed regions outside of
the microscope field of view (gray region in Fig. 3 c, top) and
cells that fail to pass the filters for phenotype identification
(Data S2). Thus, true-negative cells also need to be labeled
before harvesting. This task requires selecting for multiple
phenotypes simultaneously. We achieved this within the
same experiment using different photoactivation times for
true positives (2 s) and true negatives (100 ms) and separating
them by FACS (Fig. 3 c). For comparison, we also collected
cells going through the same experimental procedure that
were not analyzed during image analysis (unanalyzed cells,
mCherry-negative cells) to determine the sgRNA composition
in the total cell population. As shown in Fig. 3 d, the peaks
indicating groups of mIFP sgRNAs and Ctrl sgRNAs were
separated to a much greater extent when comparing with
true-negative cells rather than with the whole cell population
(Fig. 3 b), demonstrating that this approach can indeed im-
prove screening of pooled sgRNA libraries. Additionally, this
approach can be used to screen for multiple different phe-
notypes simultaneously.

green; mIFP channel, pink), before and after photoactivation (mCherry channel, red) are shown. Scale bar: 100 µm. (e) Example FACS data (number of cells
analyzed = 662). (f) Different ratios of mIFP-positive cells and mIFP-negative cells were mixed to measure precision at different percentages of hits.
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Pooled CRISPR screen for factors involved in nuclear
size regulation
To further test our screening method, we performed a screen for
regulators of nuclear size. We generated a CRISPRi library of

6,092 sgRNAs targeting 544 genes (10 sgRNAs/gene with 22
nontargeting sgRNAs) whose translation efficiency is up-
regulated during the G2 phase of the cell cycle. This library
includes sgRNAs targeting FBXO5, which is known to cause larger

Figure 3. Optical enrichment enables accurate sgRNA identification in a pooled CRISPR screen. (a) Schematic of mIFP proof-of-principle screen. A mixed
population of mIFP-positive and -negative cells was imaged and photoactivated as described in Fig. 2 c. mCherry-positive and unanalyzed cells were then
isolated by FACS and prepared for high-throughput sequencing to extract sgRNA information. (b) Screening result presented by distribution of phenotypic
scores of all the sgRNA groups. Red and gray, mIFP groups and Ctrl groups calculated by comparing with unanalyzed sample. (c) Schematic of dual-activation
experiment. Experiment as described in Fig. 3 a, but mIFP-negative cells were also photoactivated (100 ms). mIFP-positive cells were activated using a longer
activation time (2,000 ms) to guarantee a clear distinction by FACS. Image acquisition generally does not cover the complete imaging well, which leaves cells
not imaged and unanalyzed. Lower panel shows an example of FACS data. Cells sorted for mIFP expression (sorted mIFP-positive), cells sorted for lack of mIFP
(sorted mIFP-negative), and unanalyzed cells were separately collected and prepared for high-throughput sequencing. (d) Distribution of phenotypic scores of
all the sgRNA groups compared with the sorted mIFP-negative sample. Phenotype identification is improved by comparing with true negative cells rather than
unanalyzed cells as shown in Fig. 2 b. Red and gray, mIFP groups and Ctrl groups calculated by comparing with sorted mIFP negative sample.
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nuclei after knockdown (Machida and Dutta, 2007; Verschuren
et al., 2007) and served as the positive Ctrl. For this experiment,
hTERT-RPE1 cells were further engineered with a CRISPRi mo-
dality (dCas9-KRAB-BFP) to inhibit transcription of genes targeted
by the sgRNA library. We defined nuclear size as the 2D area in
square micrometers measured by H2B-mGFP using an epifluor-
escence microscope, as determined by automated image analysis
(Fig. 4 a and Data S2). We selected two Ctrl sgRNAs that have no
targeting sites in the human genome and, as expected, had no
discernible effect on nuclear size (Fig. S3 a). Nuclear sizes were
measured for Ctrl cells, and the value of the top 0.5% was used as
the screening threshold (1,000 µm2).

Positive cells were photoactivated and sorted together with
unanalyzed cells as a comparison. Two biological replicates were
performed containing 5,521,518 and 5,795,313 RPE-1 cells in total,
each consisting of four imaging plates. Both replicates were
completed within 2 d (each plate taking 7–10 h of imaging/
photoactivation). The four imaging plates per replicate were
performed as separate screening experiments, termed runs, and
data were combined only after sgRNA abundance determination
(Fig. 4 b). Simulated negative Ctrls were generated computa-
tionally by randomly regrouping all the sgRNAs (10 sgRNAs/
group), and a phenotypic score was calculated for each gene and
simulated negative Ctrl as described inMaterials andmethods. A
score η summarizing effects from both severity of the phenotype
(phenotypic score) as well as trustworthiness of the phenotype
[−ln(P value)] were calculated, and an empirical false discovery
rate (eFDR) = 0.1% was used to call hits for further analysis
(Fig. 4 c and Fig. S3, b and c). The two replicates correlate well
(Fig. 4 d) and combined yielded 30 hits, of which 15 genes were
found in both replicates, including the positive Ctrl FBXO5
(Fig. 4 e).

To estimate the minimum requirements for performing an
optical enrichment pooled CRISPR screen, we computationally
analyzed the effect of both library composition and number of
runs on the screening results. Using data from replicate 2, we
reran the analysis, comparing results when fewer sgRNAs per
gene and/or fewer runs were included. We binned the sgRNAs
based on three commercially available CRISPRi libraries: 10
sgRNAs/gene and the “Top5” or “Supp5” subpools of the sgRNA
library (Horlbeck et al., 2016). Top5 and Supp5 libraries were
first designed in J.S. Weissman’s laboratory by splitting their
original 10 sgRNAs/gene library based on predicted sgRNA
knockdown activity (Horlbeck et al., 2016). As expected, the
Top5 sgRNAs yielded more hits than Supp5 sgRNAs (Fig. S3 d).
In addition, the Top5 sgRNA library behaves similarly to the
original 10 sgRNAs/gene library, suggesting that five efficient
sgRNAs are sufficient for hit identification using our imaging-
based screening approach. Even in the scenario of Top5 sgRNAs
for two runs, ∼20 hits were successfully identified (Fig. S3 d).
Thus, based on factors such as the time to run a screen and
available sgRNAs, fewer sgRNAs/gene and/or fewer runs can be
used in a screen.

Because nuclear size often positively correlates with DNA
content and cell size, we also sorted cells based on H2B-mGFP
intensity (as a proxy for DNA content) or forward scattering
(FSC) signal (cell size; Figs. 4 f and S4). To compare results

directly, these two screens were performed at the same time as
our imaging-based nuclear size screen (Fig. 4 f). The top 10th
percentile of cells based on either GFP fluorescence or FSC signal
were separately sorted and prepared for high-throughput se-
quencing. In the H2B-mGFP intensity screen, two replicates
identified 11 and 16 hits, respectively, with 7 in common, while 7
and 0 were identified in the FSC screen (Fig. S4). Together, a
total of 21 genes were captured in the H2B-mGFP and FSC
screens (Fig. 4 g); 15 of these 21 genes were also identified
through the imaging-based nuclear size screen. These data
suggest that direct measurement using amicroscope can provide
different information and reveal hits that are inaccessible using
other screening approaches.

Genes involved in nuclear size regulation
We applied optical enrichment to a screen for genes involved in
nuclear size determination and identified 15 hits. To validate the
15 genes that emerged in both replicates of themicroscope-based
screen for enlarged nuclei, each gene was individually targeted
using the sgRNAs from our sgRNA library. 11 of 15 genes showed
>75% knockdown, as revealed by real-time quantitative PCR
(RT-qPCR), with most genes demonstrating almost complete
knockdown (Fig. S5). Furthermore, 14 of 15 hits were confirmed
to be real hits (Kolmogorov–Smirnov test two-tailed P < 0.01 for
at least two of three replicates; the exception was TACC3, which
could be explained by incomplete knockdown; Figs. 5 a, S5, and
S6). Among the 14 verified genes, all have known roles during
cell cycle regulation except KRI1, which is involved in cell death
regulation in Caenorhabditis elegans (Ito et al., 2010; Data S3). Six
genes are involved in spindle function and chromosome segre-
gation, which includes KIF11 (Rapley et al., 2008), NUP62
(Hashizume et al., 2013), SPDL1 (Gassmann et al., 2008), and
three core chromosomal passenger complex components IN-
CENP, AURKB, and CDCA8 (Terada, 2001; Carmena et al., 2012).
Three genes function in DNA damage and repair, namely TICRR
(Sansam et al., 2010; Yu et al., 2019), TOP2A (Bower et al., 2010;
Yoshida and Azuma, 2016), and RAD51 (Yoon et al., 2014; Sullivan
and Bernstein, 2018), while the remaining four play roles
in histone synthesis (CASP8AP2; Sokolova et al., 2017), DNA
maintenance (DNA2; Duxin et al., 2009; Pawłowska et al., 2017),
and cell cycle regulation (SKA1; Sivakumar et al., 2014, 2016; and
FBXO5; Verschuren et al., 2007; Machida and Dutta, 2007; Data
S3). Some of these functions might directly explain the larger
nuclei phenotype after knockdown. For example, the loss of
EMI1 protein (product from FBXO5) was suggested to lead to
cellular senescence, resulting in larger nuclei (Verschuren et al.,
2007). Knockdown of chromosomal passenger complex com-
ponents (product from AURKB, INCENP, and CDCA8) leads to
asymmetrical distribution of nuclear material and cytokinesis
failure, thereby generating abnormally large nuclei (Terada,
2001; Carmena et al., 2012).

To begin to understand the mechanism underlying nuclear
size regulation of our 14 hits, we investigated changes in DNA
content, measured by DRAQ5 staining, and cell size, assessed
using FSC on FACS, after knockdown. Almost all hit genes show
increases in the FSC signal (Figs. 5 b and S6). This matches with
the karyoplasmic ratio theory, which suggests that nuclear size
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Figure 4. Screens for nuclear size regulators. (a) Example images of the nuclear size screen. Cells (hTERT-RPE1 dCas9-KRAB-BFP PA-mCherry H2B-mGFP)
were transduced with a CRISPRi sgRNA library and imaged under the GFP channel. Cells with nuclei >1,000 µm2 were photoactivated, sorted, and analyzed by
deep sequencing. Example images of nuclei, (GFP channel, green), before and after photoactivation (mCherry channel, red). Note that the example images were
from experiments done with dual-activation setup as described in Fig. 3 c. Background cells with low fluorescence intensity in mCherry channel after pho-
toactivation were true negative cells that were photoactivated with a shorter exposure time (200 ms). Scale bar: 100 µm. (b)Workflow of one replicate of the
nuclear size screen. For each replicate, transduced cells were seeded into four glass-bottom imaging plates. Cells in each single imaging plate were imaged,
analyzed, photoactivated, sorted, and sequenced separately, termed as separate runs. (c) Screening result of one replicate shown in volcano plot. The
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is always related to cellular size (Webster et al., 2009; Edens
et al., 2013; Mukherjee et al., 2016; Cantwell and Nurse, 2019).
On the other hand, DRAQ5 signal was unchanged or somewhat
lower after knockdown (Figs. 5 b and S6), suggesting that these
gene knockdowns do not change cellular DNA content.

Discussion
High-throughput sequencing has transformed our ability to
perform pooled genetic screens on a broad scale. However, ap-
plying enrichment-based pooled CRISPR screens to optical-
based phenotypes has been challenging. In this study, we de-
veloped an imaging-based pooled CRISPR screening method.
Using the photoactivatable fluorescent protein PA-mCherry,
cells of interest can be labeled through photoactivation and
isolated with FACS sorting, which enables sgRNA identification
by high-throughput sequencing. We have combined this optical
enrichment strategy with pooled CRISPR-Cas9 libraries to per-
form imaging-based CRISPR screens. Independently, Kanfer
et al. (2020 Preprint) described a similar method to ours for
imaging-based pooled CRISPR screening.

Advantages and limitations of phenotypic screening by
optical enrichment
Image processing and microscope operations are the time-
limiting steps of most imaging-based genetic screens. Our op-
tical enrichment–based pooled screening method is relatively
fast and scalable. For example, the image analysis code devel-
oped for this study can be run on a millisecond time scale per
field of view, and cells can be separated from the Ctrl population
on a FACS machine with as little as 100-ms photoactivation time
(Fig. 2 b), enabling screening of large numbers of cells. In our
system, 1.5 million RPE-1 cells can be imaged and photoactivated
in 8 h with a 20× objective. This is significantly faster than
in situmethods, which process millions of cells over a period of a
few days (Feldman et al., 2019). For phenotypes as penetrant as
mIFP expression, a library of 6,092 sgRNAs with 2 sgRNAs/
group can be successfully screened with a single replicate. A
genome-scale screen of such a phenotype can be executedwithin
3 d (time of image analysis and photoactivation). Even for more
complex phenotypes, such as the nuclear size screen described
here, a genomic screen can be finished within 2 wk using the
Top5 sgRNA library and two runs. This time can be shortened
with further optimization such as the use of a microscope with a
larger field of view, a lower-magnification objective, optimiza-
tion of imaging analysis algorithms, etc.

Optical enrichment screening also is possible for phenotypic
screens with relatively low hit rates (defined as the fraction of all
genes screened that are true hits). The ability to detect hits at
low hit rates in our method depends on multiple factors, in-
cluding (a) the penetrance of the phenotype; (b) cellular fitness

effect of the phenotype; (c) detection and photoactivation ac-
curacy of the phenotype; and (d) limitations imposed by FACS
recovery and sequencing sample preparations of low cell num-
bers. The first three factors vary with the phenotype of interest.
We optimized the genomic DNA preparation protocol (Materials
and methods) and are now able to process sequencing samples
from a few thousand cells, enabling screens of low-hit-rate
phenotypes. In our nuclear size screen, >1.5 million cells were
analyzed during each run, with 2,000–4,000 cells recovered
after FACS sorting. The hit rate of this screen was 2.76%, similar
to optical CRISPR screens performed in an arrayed format (de
Groot et al., 2018), demonstrating the possibility to apply our
approach to investigate phenotypes with low hit rates.

Our optical enrichment screening approach can screen for
multiple phenotypes simultaneously by using different photo-
activation times. With PA-mCherry, we show that four distinct
phenotypes could be potentially sorted (Fig. 2 b). We demon-
strate this in practice by differential photoactivation of true-
positive and -negative cells to improve screening sensitivity.
However, differential time of photoactivation could also be ap-
plied to analyze different phenotypes. This approach can be
further developed by combining multiple photoactivatable
fluorescent proteins in each cell.

In our study, optical enrichment was used for pooled CRISPR
screens on phenotypes identifiable through microscopy. How-
ever, optical enrichment can be used for other purposes, as
demonstrated previously (Hasle et al., 2020). In a recent study
by Hasle et al. (2020), the process of separating cells by FACS
after optical enrichment was termed “visual cell sorting.” This
method was used to evaluate hundreds of nuclear localization
sequence variants in a pooled format and to identify transcrip-
tional regulatory pathways associated with paclitaxel resistance
using single-cell sequencing, demonstrating the broad applica-
bility and power of this approach beyond CRISPR screening.

Our approach has limitations. Phenotypes of interest should
be identifiable under the microscope and generally require
fluorescent labeling. Commonly used fluorescence microscopes
use four channels for fluorescent imaging, with little spectral
overlap: blue, green, red, and far red. In our study, the red
channel was occupied by cell labeling with PA-mCherry, and the
blue channel was used to estimate sgRNA transduction effi-
ciency. Because sgRNA transduction efficiency can be measured
by other approaches, the blue channel could be used together
with the remaining two channels to label cellular structures. A
combination of bright-field imaging with deep learning can
be used to reconstruct the localization of fluorescent labels
(Ounkomol et al., 2018), making it possible to use bright-
field imaging to further expand the phenotypes that can be
studied with our technique.

Another limitation is the computational cost. Phenotypes
were identified directly after imaging; thus the analysis code has

corresponding eFDR-η curve is shown in Fig. S3 b, and the other replicate is shown in Fig. S3 c. (d) Comparison between two replicates. (e) List of genes
identified from two replicates. Red, hit; gray, non-hit. (f) Workflow of three screens, namely nuclear size screen, H2B-mGFP screen, and FSC screen. After
transducing the sgRNA library, cells were split and prepared for either image analysis (nuclear size screen) or FACS sorting (H2B-mGFP screen and FSC screen).
(g) Comparison of hits identified in FSC screen, H2B-mGFP screen, and nuclear size screen.
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Figure 5. Characterization of hits identified in nuclear size screen. (a) Each hit identified in both replicates was verified under the microscope after
infecting with a mixture of three to four sgRNA constructs targeting the gene (n = 3). Cells were puromycin selected for 2 d before imaging. Example images of
four hits and their distribution of nuclear sizes from one replicate are shown in panel a; all the others are listed in Fig. S6. For each gene in each replicate, at
least 1,000 cells were analyzed using the Auto-PhotoConverter μManager plugin. The cell population is heterogeneous due to inefficient knockdown, in-
complete puromycin selection, and penetrance of the phenotype. A BFP was expressed from the same sgRNA construct. Only cells with high BFP intensity,
indicating successful sgRNA transduction, were included for data analysis as described in Materials and methods. Red, nuclear size distribution of corre-
sponding gene after knockdown; gray, nuclear size distribution of cells infected with nontargeting control sgRNAs. (b) Some cells developed a larger cellular
size while maintaining a similar DNA content level after knockdown. For DNA content measurement, cells were infected with the same three to four sgRNAs/
gene, puromycin selected for 2 d, and stained with 5 µM DRAQ5 for 1 h before imaging (1,000 cells were analyzed for each gene). For cellular size mea-
surement, cells were infected with the same three to four sgRNAs/gene and puromycin selected for 3 d before FACS analysis (at least 2,787 cells were analyzed
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to be fast and robust. In our study, the code identified pheno-
types within a few hundred milliseconds. Each phenotype re-
quired writing specific image analysis code. This requirement
can be overcome by implementing other image analysis strate-
gies, including trainable machine learning or combining with
existing image analysis software such as CellProfiler, etc., which
will benefit laboratories that do not have the expertise to de-
velop custom image-processing code. Additionally, our approach
is currently not compatible with fixed cells; thus transient
phenotypes might be difficult to capture. However, we expect
this to be solvable by further optimizing our screening pipeline
to make it possible to prepare sequencing samples after fixation.

Optical enrichment compared with other methods for
phenotypic screening
Two othermethods have recently been developed to use imaging
for both phenotypic screening and decoding to permit sgRNA
identification in individual cells in situ (Feldman et al., 2019;
Wang et al., 2019). In both methods, CRISPR sgRNA expression
constructs were modified to express both a sgRNA and a bar-
code. The barcode can be read out by either in situ sequencing
(Feldman et al., 2019) or sequential FISH (Wang et al., 2019).
Both methods require sgRNAs to be rebarcoded, necessitating de
novo design and library resynthesis and preventing reuse of
most existing sgRNA libraries. In addition, cells need to be fixed,
preventing further cell-based assays of the identified cells. Most
importantly, neither of these methods can easily scale to the
whole genome because of barcoding limitations and the long
imaging time required.

Another newly published method, similar to ours, also uses
high-throughput sequencing as an end point assay. Instead of
using FACS to enrich cells of interest, this method cultures cells
onmicrocraft arrays (magnetic polystyrene particles designed to
capture single clones) to enable cell isolation as separate clones
(CRaft-ID; Wheeler et al., 2020). This method also can use most
available sgRNA libraries and is compatible with further live-cell
studies. However, it is difficult to perform a genome-wide
screen with CRaft-ID, since it requires single-cell isolation
during cell culture and thus limits the number of cells that can
be screened (6,000 colonies/array). In addition, CRaft-ID cannot
be used to screen for phenotypes that cause defects in mono-
clonal growth, including essential genes. Our assay, on the other
hand, provides an option for genome-wide screens and allows
study of genes essential to growth.

Conclusion
In summary, our data demonstrate the power of our optical
enrichment–based, pooled CRISPR screening method to study
previously inaccessible phenotypes with high efficiency and
accuracy. This method is simple and fast, uses open-source
software, and can be applied to commercial or institutional
genome-scale CRISPR sgRNA libraries. A DMD is required, but

this can be introduced into the light path of common commercial
microscopes. This screening approach could be broadly applied
across many biological phenotypes, including morphological
changes, subcellular organization, and cellular dynamics. Plug-
gable image analysis code enables selection of any desired
morphological phenotypes as long as fast and robust detection
code can be created, which is an area suited for deep learning
approaches. We anticipate that this screening approach can be
integrated with other profiling technologies such as single-cell
sequencing, further expanding its application to other research
fields.

Materials and methods
Plasmid sequences
CRISPRi construct (85969; Addgene) and sgRNA parental con-
struct (84832; Addgene) were a kind gift from J.S. Weissman’s
laboratory. Other plasmid constructs used in this study are de-
scribed in Data S4.

Cell line generation
hTERT-RPE1 dCas9-KRAB-BFP
All the hTERT-RPE1 cells were grown in DMEM/F-12 supple-
mented with 10% FBS and penicillin/streptomycin (complete
DMEM/F-12). CRISPRi modality dCas9-KRAB-BFP construct was
stably expressed in hTERT-RPE1 cells via lentiviral infection, as
described below. BFP-positive cells were sorted after 2 d.

hTERT-RPE1 dCas9-KRAB-BFP PA-mCherry
The photoactivatable cell line was generated starting with
hTERT-RPE1 dCas9-KRAB-BFP cell line. The PA-mCherry con-
struct was stably expressed in hTERT-RPE1 dCas9-KRAB-BFP
cells via lentiviral infection as described below. Monoclonal cell
lines were grown and screened under the microscope to select
clones with successfully integrated PA-mCherry construct. A
cell line that showed high and homogeneous fluorescence after
photoactivation was chosen to use in this study.

hTERT-RPE1 dCas9-KRAB-BFP PA-mCherry H2B-mGFP and hTERT-
RPE1 dCas9-KRAB-BFP PA-mCherry H2B-mGFP mIFP-NLS
H2B-mGFP and mIFP-NLS constructs were sequentially inte-
grated into hTERT-RPE1 dCas9-KRAB-BFP PA-mCherry cells via
lentiviral infection. GFP-positive cells or GFP/mIFP double-
positive cells were selected by FACS 2 d after infection.

sgRNA sequences
The two negative Ctrl sgRNAs were used in this study and their
protospacer sequences (the part of the target sequences) are
59-GCTGCATGGGGCGCGAATCA-39 and 59-GTGCACCCGGCTAGG
ACCGG-39. sgRNA libraries used in this study were gifts from J.S.
Weissman’s laboratory. Because the cell line used (hTERT-RPE1
dCas9-KRAB-BFP PA-mCherry) for the mIFP proof-of-principle

for each gene). Example imaging analysis data and FACS data of the same four hits are shown in b, and all the others are shown in Fig. S6. Green, distribution
analysis of DRAQ5 staining intensity after knockdown of corresponding gene; blue, FACS of FSC signal after knockdown of corresponding gene; gray, dis-
tribution analysis of DRAQ5 staining intensity or FSC signal of cells infected with nontargeting control sgRNAs.
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screen has CRISPRi modality, we used two CRISPRa sgRNA li-
braries for this screen. These libraries are described in Table S1
and Table S2. The CRISPRi sgRNA library used in the nuclear
size screen is described in Table S3. sgRNAs used for hit veri-
fication are listed in Table S4.

Lentivirus preparation and transduction
For CRISPRi modality construct and sgRNA libraries, lentiviral
particles were packaged by transfecting HEK293T in a 15-cm cell
culture dish at 70% confluence with 8 µg plasmid, 1 µg PMD2.G,
8 µg dR8.91, 48 µl TransIT-LT1 transfection reagent (Mirus Bio),
and 1,300 µl serum-free Opti-MEM. Medium containing lenti-
virus was collected 72 h after transfection and concentrated 10-
fold using an Amicon Ultra Centrifugal Unit (MilliporeSigma).
For other constructs including PA-mCherry, H2B-mGFP, mIFP-
NLS, and small-scale sgRNA virus preparations, lentiviral par-
ticles were packaged by transfecting HEK293T in a six-well plate
at 70% confluence with 1 µg PA-mCherry plasmid, 0.1 µg
PMD2.G, 0.9 µg psPAX2, 10 µl TransIT-LT1 transfection reagent,
and 250 µl serum-free Opti-MEM. Medium containing lentivi-
rus was collected 72 h after transfection, and concentration was
not needed. 250 µl supernatant was used to transduce a six-well
plate of corresponding cells by spinning infection at 2,000 rpm
for 1 h. Polybrene infection reagent (Sigma-Aldrich) was used to
increase infection efficiency. Medium was replaced with com-
plete DMEM/F-12 immediately after spinning infection. Cells
were puromycin selected at 5 µg/ml to select for cells success-
fully receiving the sgRNA (sgRNA construct harbors puromycin
resistance cassette). For screening, cells were puromycin se-
lected for 3 d.

Microscopy
Cells were grown in 96-well glass bottom dishes (Matriplate;
Brooks) after puromycin selection. Images were acquired by
fluorescence imaging using a Nikon Eclipse Ti-E microscope
with a Nikon 20× 0.75-NA (Plan APO VC) objective. A DMD (DLP
LightCrafter 6500 Evaluation Model; Texas Instruments) was
positioned behind the back port of the microscope and illumi-
nated using a Sutter HPX-L5UVLambda LED light source (8 W
output centered around 405 nm) coupled through a 5-mm-di-
ameter liquid light guide. The DMD image was projected into the
sample plane using a 100-mm-focal-length achromatic doublet
lens and a 1× beam “expander” consisting of a pair of 80-mm-
focal-length achromatic lenses, followed by a 450-nm longpass
dichroic mirror positioned on top of the dichroic mirror used for
epi-illumination (Fig. S1 a). With all pixels of the DMD in the
“on” position, we measured ∼40 mW in the back focal plane of
the objective. During image acquisition, cells weremaintained in
DMEM/F-12 complete medium at a constant temperature of
36–37°C using a stagetop incubator (Tokai Hit). Fluorescence
illumination was with a liquid light guide coupled LED illumi-
nator (SpectraX; Lumencor) using a multibandpass dichroic
mirror (FF410/504/582/669-Di01-25 × 36; Semrock) in a cube
with the Semrock FF01-440/521/607/700-25 as emission filter.
Camera (Andor Zyla) exposure times were usually set to 500 ms
for GFP channel, 100 ms for mCherry channel, and 1,000 ms for
mIFP channel.

FACS
For all the screens requiring cell sorting, cells were trypsinized
and sorted using a BD FACSAria III. For hit analysis, cells were
analyzed with a BD FACSAria II after 3-d puromycin selection.
Cells were gated for single-cell population, and FSC levels were
analyzed using FlowJo v10.6.2. Detailed gating strategy is pro-
vided in Data S1.

Sequencing sample preparation
Sequencing sample was prepared using a protocol from J.S.
Weissman’s laboratory (https://weissmanlab.ucsf.edu/CRISPR/
IlluminaSequencingSamplePrep.pdf) except that genomic DNA
of samples <10,000 cells was extracted with the Arcturus Pico-
Pure DNA Extraction Kit.

mIFP proof-of-principle screen, nuclear size screen, FSC
screen, and H2B-mGFP screen
For the mIFP proof-of-principle screen, mIFP-positive cells
(hTERT-RPE1 dCas9-KRAB-BFP PA-mCherry H2B-mGFP mIFP-
NLS) and mIFP-negative cells (hTERT-RPE1 dCas9-KRAB-BFP
PA-mCherry H2B-mGFP) were stably transduced with the mIFP
sgRNA library (CRISPRa library with 860 elements, see Table S1)
and the Ctrl sgRNA library (CRISPRa library with 6,100 ele-
ments, see Table S2) separately. For the nuclear size screen, FSC
screen, and H2B-mGFP screen, cells (hTERT-RPE1 dCas9-KRAB-
BFP PA-mCherry H2B-mGFP) were stably transduced with the
nuclear size library (CRISPRi library with 6,092 elements, see
Table S3). To guarantee that cells received no more than one
sgRNA per cell, BFP was expressed on the same sgRNA construct
and cells were analyzed by FACS the day after transduction. The
experiment continued only when 10–15% of the cells were BFP
positive. These cells were further enriched by puromycin se-
lection (a puromycin resistance gene was expressed from the
sgRNA construct) for 3 d to prepare for imaging. For FSC and
H2B-mGFP screens, cells were then subjected to FACS sorting.
Cells before FACS (unsorted sample for FSC and H2B-mGFP
screens) and top 10% cells based on either FSC signal (high
FSC sample) or GFP fluorescence signal (high GFP sample) were
separately collected and prepared for high-throughput se-
quencing. For mIFP proof-of-principle screen and nuclear size
screen, cells were then seeded into 96-well glass-bottom imaging
dishes (Matriplate; Brooks) and imaged starting from the
morning of the next day (∼15 h after plating). A series of den-
sities ranging from 0.5 × 104 cells/well to 2.5 × 104 cells/well with
an interval of 0.5 × 104 cells/well were selected and seeded. The
imaging dish with cells at ∼70% confluence was selected to be
screened on the imaging day. For mIFP proof-of-principle
screen, a single imaging plate was performed for each replicate,
while four imaging plates per replicate were imaged for the
nuclear size screen. When executing multiple imaging runs, two
consecutive runs could be imaged on the same day (day run and
night run). 64 (8 × 8, day run) or 81 (9 × 9, night run) fields of
view were selected for each imaging well, and each field of view
was subjected to an individual round of imaging directly fol-
lowed by photoactivation. Approximately 200–250 cells were
present in each given field of view, and 60% to 80% surface area
of each well was covered. Either mIFP-positive cells or cells
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passing the nuclear size filter were identified and photoactivated
automatically using the Auto-PhotoConverter μManager plugin.
The total time to perform imaging and photoactivation of a single
96-well imaging dish with ∼1.5 million cells was ∼8 h. The night
run generally took longer, since more fields of view were in-
cluded than in the day run. Cells were then harvested by tryp-
sinization and pooled into a single tube for isolation by FACS.
Sorting gates were predefined using samples with different
photoactivation times (e.g. 0 s, 200 ms, and 2 s), and detailed
gating strategies are described in Data S1. Sorted samples were
used to prepare sequencing samples.

Bioinformatic analysis of the screen
Analysis was based on the ScreenProcessing pipeline developed
in J.S. Weissman’s laboratory (https://github.com/mhorlbeck/
ScreenProcessing; Horlbeck et al., 2016). The phenotypic
score (ε) of each sgRNA was quantified as previously defined
(Kampmann et al., 2013; Data S5). For the mIFP proof-of-prin-
ciple screen, the phenotypic score of each group was the average
score of two sgRNAs assigned to the group and averaged between
two replicates unless otherwise described. For the nuclear size
screen, FSC screen, and H2B-mGFP screen, genes were scored
based on the average phenotypic scores of the sgRNAs targeting
them. For the nuclear size screen, phenotypic scores were fur-
ther averaged between four runs for each replicate. For the
nuclear size screen, FSC screen, and H2B-mGFP screen, sgRNAs
were first clustered by transcription start site and scored by the
Mann–Whitney U test against 22 nontargeting Ctrl sgRNAs in-
cluded in the library. Because only 22 Ctrl sgRNAs were in-
cluded, the significance of hits was assessed by comparison with
simulated negative Ctrls that were generated by random as-
signment of all sgRNAs in the library, and phenotypic scores of
these simulated negative Ctrls were scored in the same way as
phenotypic scores for genes. A score η that includes the pheno-
typic score and its significance was calculated for each gene
and simulated negative Ctrl. The optimal cutoff for score η
was determined by calculating an eFDR at multiple values of η
as the number of simulated negative Ctrls with score η higher
than the cutoff (false positives) divided by the sum of genes
and simulated negative Ctrls with score η higher than the
cutoff (all positives). The cutoff score η resulting in an eFDR of
0.1% was used to call hits for further analysis (Data S5). An
example analysis is described in detail in Data S5, and raw
counts and phenotypic scores for all four screens are listed in
Data S6 and Data S7.

Verification of hits from nuclear size screen
For each hit in the nuclear size screen, the two sgRNAs with the
highest phenotypic score in the screen and the two sgRNAs with
the highest score predicted by the CRISPRi-v2 algorithm
(Horlbeck et al., 2016) were selected and pooled to generate a
mixed sgRNA pool of three to four sgRNAs (detailed information
in Table S4). Cells (hTERT-RPE1 dCas9-KRAB-BFP PA-mCherry
H2B-mGFP) were transduced with pooled sgRNAs targeting each
gene and puromycin selected for 2 d to prepare for imaging. Cells
were then seeded into 96-well glass-bottom imaging dishes. For
DRAQ5 staining experiment, cells were further stained with

5 µMDRAQ5 (Cell Signaling) for 1 h before imaging. Images were
collected the next day, and nuclear size and DRAQ5 staining
intensity was measured using the Auto-PhotoConverter
μManager plugin. To focus on cells with successful transduc-
tion, BFP was coexpressed on the sgRNA construct, and only cells
with BFP intensity above a threshold value were included in
nuclear size measurements. This BFP threshold was established
by comparing the average BFP intensity of cells with andwithout
sgRNA transduction (Fig. S3 a).

RNA extraction and RT-qPCR
Total RNA was extracted using Trizol reagent (Invitrogen) ac-
cording to the manufacturer’s instructions. 2 µg of total RNA
was treated with Turbo DNase I (Invitrogen), and 1 µg of treated
RNA was used for cDNA synthesis using SuperScript III First-
Strand Synthesis SuperMix for qRT-PCR (Invitrogen). For
RT-qPCR amplification of corresponding hit genes, an initial
amplification using corresponding primers (Data S8) was done
with a denaturation step at 95°C for 15 min, followed by 40
cycles of denaturation at 95°C for 30 s, primer annealing at
60°C for 30 s, and primer extension at 72°C for 30 s. RT-qPCR
was performed using SYBR Green PCR Master Mix (Applied
Biosystems) with a Bio-Rad CFX 96 Real Time System. Re-
actions were run in triplicate, and the housekeeping gene ACTB
was used as an internal Ctrl.

Data and software availability
The raw and processed data for the high-throughput sequencing
results have been deposited in NCBI GEO database with
accession no. GSE156623. The plugin Auto-PhotoConverter
developed for open-source microscope control software
μManager (Edelstein et al., 2014) has been deposited on github
(https://github.com/nicost/mnfinder).

Online supplemental material
Fig. S1 shows a diagram of microscope setup, example images of
a photoactivation experiment, and the Auto-PhotoConverter
μManager plugin. Fig. S2 shows the distribution of phenotypic
scores of all sgRNA groups from mIFP proof-of-principle screen
analyzed in four different analysis modes. Fig. S3 includes
supporting data for nuclear size screen including a control ex-
periment indicating viral infection will not affect nuclear size,
screening result of the other replicate and eFDR-η curves for two
replicates, and analysis of the minimum requirements for per-
forming such imaging-based CRISPR screens. Fig. S4 includes
screening results of FSC and H2B-mGFP screens and their cor-
responding eFDR-η curves. Fig. S5 includes knockdown effi-
ciency measurements of hits identified in both nuclear size
screen replicates. Fig. S6 includes characterization of hits
identified in both replicates of the nuclear size screen other
than the four shown in Fig. 5. Data S1 describes the FACS gating
strategy used in the screens. Data S2 describes detailed image
processing methods. Data S3 describes hits identified in both
replicates of the nuclear size screen. Data S4 includes plasmid
sequences used in this study. Data S5 shows an example of
detailed bioinformatic analysis steps for analyzing nuclear size
screen data. Data S6 and Data S7 lists raw counts and calculated
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phenotypic scores for all the screens described in this study.
Data S8 lists primers used for RT-qPCR experiments. Table S1
and Table S2 describe the sgRNA libraries used in the mIFP
proof-of-principle screen. Table S3 describes the sgRNA library
used in the nuclear size screen. Table S4 describes the sgRNAs
used for verifying hits identified from both nuclear size screen
replicates.
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Supplemental material

Figure S1. Microscope and µManager plugin for photoactivation experiments. (a) A DMD and a blue LED (centered around 405 nm) light source were
engineered on a Nikon Eclipse Ti-E microscope as shown in the figure. A computer was used to control the DMD, which reflects light into the microscope only
when pixels are in the “on” position, so displaying a mask matching the cell photoactivates that cell. (b) Example images of a photoactivation experiment. Cells
(hTERT-RPE1 PA-mCherry H2B-mGFP) are shown imaged in the GFP channel (green), during photoactivation (blue light channel, blue), and before and after
photoactivation (mCherry channel, red). Scale bar: 100 µm. (c) A μManager plugin was developed to enable automatic image acquisition, analysis, and
photoactivation. An analysis plugin defines its own set of parameters that can be manipulated by the user. Two analysis plugins were used in this study, one for
cell identification and another for nuclear size measurement.
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Figure S2. Library composition and number of replicates affect screening results. Distribution of phenotypic scores of all sgRNA groups in four different
analysis modes. Phenotypic score of a sgRNA group was calculated based on the average phenotypic scores as follows. Top left: A single sgRNA from a single
replicate. Top right: A single sgRNA averaged between two replicates. Bottom left: Two sgRNAs from a single replicate. Bottom right: Two sgRNAs averaged
between two replicates.
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Figure S3. Screens for nuclear size regulators. (a) sgRNA transduction results in cells with higher BFP intensity, and negative control sgRNAs do not affect
nuclear size after viral infection. Two negative control sgRNAs were designed to have no target sites in the human genome. Cells (hTERT-RPE1 dCas9-KRAB-
BFP PA-mCherry H2B-mGFP) underwent viral transduction and puromycin selection for 3 d before imaging. Both wild-type (WT) cells without viral trans-
duction (gray dots), and cells infected with negative control sgRNAs (red dots) were seeded into a 96-well glass-bottom imaging dish. Images were collected for
cells with/without sgRNA viral transduction, and both nuclear size and mean BFP intensity of each nucleus were analyzed using the Auto-PhotoConverter
μManager plugin (number of wild-type cells analyzed = 2,756; number of negative control sgRNA infected cells analyzed = 5,653). Besides the BFP expressed
from the dCas9 construct, another BFP was encoded on the sgRNA construct, and higher BFP intensity was used as a marker for successful infection. The
boundary measured from comparison between sgRNA-infected cells and wild-type cells: ln(mean BFP intensity) = 7.6 was also used as a threshold to determine
which cells were successfully transduced with sgRNA. Analysis from imaging data shows no correlation between nuclear size and BFP intensity. (b) eFDR-η
curve for screening result shown in Fig. 4 c. A score η summarizing effects from both severity of the phenotype (phenotypic score) as well as trustworthiness of
the phenotype [−ln(P value)] was calculated for each gene and simulated negative control. The optimal cutoff for score η (red dotted line) was determined by
calculating an eFDR at multiple values of η as the number of simulated negative controls with score η higher than the cutoff (false positives) divided by the sum
of genes and simulated negative controls with score η higher than the cutoff (all positives). The cutoff score η resulting in an eFDR of 0.1% (black dotted line)
was used to call hits for further analysis. An example analysis is described in detail in Data S5. (c) Screening result of the other replicate shown in volcano plot
and its corresponding eFDR-η curve as described in Fig. S3 b. (d) Number of hits identified using data averaging using different numbers of runs and/or
different library compositions. Error bar: SD.
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Figure S4. Screen results of FSC and H2B-mGFP screens. Cells (hTERT-RPE1 dCas9-KRAB-BFP PA-mCherry H2B-mGFP) were infected and puromycin
selected for 3 d. The top 10th percentile of cells based on either GFP fluorescence or FSC signal were separately sorted and prepared for high-throughput
sequencing. Screen results shown in volcano plot and their corresponding eFDR-η curve of two replicates as described in Fig. S3 b and Data S5.
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Figure S5. Measurement of knockdown efficiency for hit verification. (a) RT-qPCR results of all the hits identified in both replicates after knockdown. An
enlarged graph of the bottom part of the original graph is also included. Cells (hTERT-RPE1 dCas9-KRAB-BFP PA-mCherry H2B-mGFP) were infected with
corresponding sgRNAs (Table S4) and puromycin selected for 3 d before harvesting. Harvested cells were split, and one was used for RNA extraction and RT-
qPCR analysis to measure the percentage of knockdown (KD percentage), while the other half was used for FACS analysis to measure the percentage of sgRNA
infection (Infection percentage; Fig. S5 b). ACTB was used as an internal control to normalize the variability on expression levels. Error bar: SD between
triplicates. AU, arbitrary units. (b) Knockdown efficiency (KD efficiency) of all the hits identified in both replicates. Knockdown percentage (KD percentage) was
measured based on RT-qPCR results. BFP was coexpressed on the sgRNA construct, and only cells with BFP intensity above a threshold value determined by
control cells were considered successfully infected cells. Percentage of successful infection (Infection percentage) was measured by FACS and for each gene,
and KD efficiency was calculated using KD percentage divided by its corresponding infection percentage.
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Figure S6. Characterization of hits identified in both replicates of the nuclear size screens. Example images, distribution of nuclear size (at least 1,000
cells analyzed for each gene, replicate number = 3), distribution analysis data of DRAQ5 staining fluorescence (1,000 cells analyzed for each gene), and FACS of
FSC distribution of each hit (at least 2,787 cells analyzed for each gene; other than the four shown in Fig. 5) after knockdown.
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Data S1 describes the FACS gating strategy used in the screens. Data S2 describes detailed image processing methods. Data S3
describes hits identified in both replicates of the nuclear size screen. Data S4 lists plasmid sequences used in this study. Data S5
shows an example of detailed bioinformatic analysis steps for analyzing nuclear size screen data. Data S6 and Data S7 list raw
counts and calculated phenotypic scores for all the screens described in this study. Data S8 lists primers used for RT-qPCR
experiments. Table S1 and Table S2 describe the sgRNA libraries used in the mIFP proof-of-principle screen. Table S3 describes the
sgRNA library used in the nuclear size screen. Table S4 describes the sgRNAs used for verifying hits identified from both nuclear size
screen replicates.

Yan et al. Journal of Cell Biology S7

High-content imaging-based pooled CRISPR screens https://doi.org/10.1083/jcb.202008158

https://doi.org/10.1083/jcb.202008158

	High
	Introduction
	Results
	An optical approach for cell enrichment by patterned illumination followed by FACS sorting
	Optical enrichment enables accurate sgRNA identification
	Improved phenotype identification through multi
	Pooled CRISPR screen for factors involved in nuclear size regulation
	Genes involved in nuclear size regulation

	Discussion
	Advantages and limitations of phenotypic screening by optical enrichment
	Optical enrichment compared with other methods for phenotypic screening
	Conclusion

	Materials and methods
	Plasmid sequences
	Cell line generation
	hTERT
	hTERT
	hTERT

	sgRNA sequences
	Lentivirus preparation and transduction
	Microscopy
	FACS
	Sequencing sample preparation
	mIFP proof
	Bioinformatic analysis of the screen
	Verification of hits from nuclear size screen
	RNA extraction and RT
	Data and software availability
	Online supplemental material

	Acknowledgments
	References

	Outline placeholder
	Supplemental material
	Outline placeholder
	Data S1 describes the FACS gating strategy used in the screens. Data S2 describes detailed image processing methods. Data S ...




