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Abstract

Although mitochondrial and serotonergic dysfunctions have been implicated in the etiology of bipolar disorder (BD), the
relationship between these unrelated pathways has not been elucidated. A family of BD and chronic progressive external
ophthalmoplegia (CPEO) caused by a mutation of the mitochondrial adenine nucleotide translocator 1 (ANTI, SLC25A4)
implicated that ANTI mutations confer a risk of BD. Here, we sequenced ANT! in 324 probands of NIMH bipolar disorder
pedigrees and identified two BD patients carrying heterozygous loss-of-function mutations. Behavioral analysis of brain
specific Antl heterozygous conditional knockout (cKO) mice using IntelliCage showed a selective diminution in delay
discounting. Delay discounting is the choice of smaller but immediate reward than larger but delayed reward and an index of
impulsivity. Diminution of delay discounting suggests an increase in serotonergic activity. This finding was replicated by a
5-choice serial reaction time test. An anatomical screen showed accumulation of COX (cytochrome c oxidase) negative cells
in dorsal raphe. Dorsal raphe neurons in the heterozygous cKO showed hyperexcitability, along with enhanced serotonin
turnover in the nucleus accumbens and upregulation of Maob in dorsal raphe. These findings altogether suggest that
mitochondrial dysfunction as the genetic risk of BD may cause vulnerability to BD by altering serotonergic
neurotransmission.

Introduction

Bipolar disorder is a major mental disorder characterized
by mania and depression. Dysregulation in both mono-
aminergic systems [1] and mitochondrial calcium signal-
ing [2] have been proposed in the etiology of bipolar
disorder. However, the relationship between these appar-
ently unrelated metabolic signaling systems has not been
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in the mitochondrial permeability transition pore (mPTP)
has also drawn attention [10—12]. The mPTP plays a role
in regulated cell death, and transient opening of the mPTP
also regulates mitochondrial calcium signaling [13], which
is consistent with the well-known calcium dysregulation
hypothesis of bipolar disorder [14].

In this study, we searched for ANTI mutations in patients
with bipolar disorder, and identified two independent loss of
function (LOF) mutations of ANTI. We investigated the
relationship between heterozygous loss of function
of ANTI and bipolar disorder by generating a brain specific
Antl conditional knockout (cKO) mouse. By behavioral
screening, we identified that the heterozygous mice
showed diminished delay discounting, that is the
choice of smaller but immediate reward than larger but
delayed reward and an index of impulsivity [15]. Consistent
with this finding, the mice had enhanced serotoninergic
activity. These findings together shed new light on the
mechanism of how ANTI mutations may confer a risk
for BD.

Materials and methods

The study was approved by the Wako first ethics com-
mittee of RIKEN. All animal care and experimental pro-
cedure were in accordance with the guidelines for proper
conduct of animal experiments published by Science
Council of Japan and approved by RIKEN Wako Animal

Experiment Committee. Methods and materials are
described in detail in Supplemental Experimental
Procedures.
Subjects

All four exons of the SLC25A4 gene were sequenced
by PCR-direct sequencing in 324 probands of NIMH
Genetics Initiative bipolar disorder pedigrees. Their
diagnosis was bipolar I (n =304), bipolar II disorder

(n=17), or schizoaffective disorder, bipolar type
(n=73).
Animals
Floxed exon 2-3 of Slc25a4 mouse line

(Slc25a4™12EUCOMMWY a6 obtained from International

Knockout Mice Consortium (IKMC). Flp-transgenic
mouse line (B6 TeCa-FP36) o previously generated
[16]. Nestin-Cre transgenic mouse line (B6.CgleNes-cre)
KInly was obtained from Jackson laboratory. Using these
mice lines, heterozygous and homozygous cKO mice of
Sic25a4 (Slc25a4™ or Sic25a4"") (Antl cKO mice) were
generated.
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Staining

Staining methods and antibodies are described in detail
in Supplementary Methods.

Fluorescent in situ hybridization was conducted as pre-
viously described [17]. Images were captured by a confocal
microscope IX81 with FV1000 (Olympus Corporation,
Tokyo, Japan), Observer Z1 with AxioVision 4.6 (Zeiss,
Oberkochen, Germaney) or Nano Zoomer Digital Pathology
system (Nanozoomer 2.0RS, Hamamatsu Photonics,
Hamamatsu, Japan).

Mouse behavioral screening with IntelliCage

The IntelliCage apparatuses (NewBehavior AG, Zurich,
Switzerland) were used for behavioral screening as
described previously [18, 19]. Male mice including 8 het-
erozygous cKO mice (Slc25a4ﬂ/+; Nes-Cre+), 10 homo-
zygous cKO mice (Slc25a4™"; Nes-Cre+) and 6 controls
(Slc25a4"  or  Slc25a4™; Nes-Cre—), which were
20-27 week old, were used.

5-choice serial reaction time task (5-CSRTT)

The 5-CSRTT operant chamber (O’HARA & Co., Tokyo,
Japan) was used as previously described with minor mod-
ification [20]. Male mice including 8 controls (51025a4ﬂ/ *or
Slc25a4ﬂ/ﬁ; Nes-Cre—), 8 heterozygous cKO mice
(Slc25a4"+; Nes-Cre+) and 8 homozygous cKO mice
(Slc25a4™; Nes-Cre+), which were 8—13 week old at the
beginning of training, were used for the analysis.

Quantification of mtDNA deletion and mtDNA copy
number

Partially deleted mitochondrial DNA (AmtDNA) and copy
number of mtDNA was measured by quantitative PCR
methods using SYBR Premix Ex Taq Kit (Takara Bio,
Otsu, Japan) and QuantStudio 12 K Flex (Thermo Fisher
Scientific, Waltham, MA) as described [21]. For quantifi-
cation of mtDNA deletion 30-39 week old male mice were
used. For mtDNA copy number analysis, 54-56 week old
male mice were used. Control mice were Slc25a4V* or
Slc25a4™™ without Nestin-Cre.

Quantification of Ant1/Ant2 mRNAs

mRNA expression of Antl (Slc25a4) and Ant2 (Slc25a5)
were measured by quantitative PCR methods using SYBR
Premix Ex Taq Kit (Takara Bio, Kusatsu, Japan) and
QuantStudio 12K Flex (Thermo Fisher Scientific, Wal-
tham, MA). For these analysis, female 78-114 week old
mice were used (n =3 for each group).
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Fig. 1 Generation of brain-specific Ant/ conditional knockout (cKO) mice. a Structures of floxed Ant! (Slc25a4) allele and conditionally knocked out (cKO)
allele of Antl. b In situ hybridization for Antl (red) and DAPI (blue) staining in the brains of heterozygous and homozygous Ant/ cKO mice. No mRNA
expression was detected in homozygous cKO mice. ¢ Western blotting of ANT1 and TIM23 (internal control for inner mitochondrial membrane) of brain
tissues and muscle in heart or thigh from male (1, 3, 5) and female (2, 4, 6) control mice (1, 2) and heterozygous (3, 4) and homozygous (5, 6) Ant!/ cKO mice.
d, e Quantitative PCR analysis for Ant! (d) and Ant2 (Slc25a5) (e) in the brains of control mice and heterozygous and homozygous Antl cKO mice. **P <
0.005 by one way ANOVA. Post hoc test indicates significant difference of ANTI between all three groups for cortex and a significant difference between
homozygous cKO and controls for hippocampus. No significant group difference was found for ANT2. f Representative charts of the experiments to measure
calcium retention capacity (CRC). Vertical axis indicates Calcium green fluorescence intensity that reflects Ca®" concentration of extra-mitochondrial fluid.
Decay phase of each rise of extra-mitochondrial Ca®* concentration reflects the uptake of Ca>* by mitochondria. Arrow heads indicate the timing of opening
of mitochondrial permeability transition pore (mPTP). Mitochondria from homozygous Ant! ¢cKO mice showed earlier mPTP opening, indicating smaller
CRC. g Effect of loss of Antl on the mPTP opening. The vertical axis indicates the CRC. The data represents mean + SEM. *P < 0.05
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Measurement of calcium retention capacity

Brain mitochondria were isolated using a discontinuous
Percoll gradient developed by Sims [22] with minor mod-
ifications [23]. Extra-mitochondrial free Ca”* concentration
([Ca2+]exm) was monitored with 200 nM Calcium Green-5N
(Thermo Fisher Scientific, Waltham, MA) (Ex 480 nm, Em
540nm) in a 96 well plate at 30 °C in a Drug Screening
System (FDSS 3000, Hamamatsu Photonics, Hamamatsu,
Japan). To evaluate the CRC, 10 ul of Ca’>" solution was
repeatedly added at 1-min intervals. Heterozygous cKO
mice (Slc25a4"*; Nes-Cre+) (n=4), homozygous cKO
mice (Slc25a4™"; Nes-Cre+) (n=4), and control mice
(Slc25a4ﬂ/ﬂ; Nes-Cre—) (n = 3) aged 8-27 weeks were used
for this analysis.

Quantification of monoamine in tissue by HPLC

Dopamine, noradrenaline and serotonin and their meta-
bolites were measured by HPLC with an EICOMPAK
SC-50DS with electrochemical detector ECD-300
(Eicom Corporation, Kyoto, Japan). In this experiment,
control mice included Slc25a47'*; Nestin-Cre+ and
Slc25a4™"", Slc25a4"™* or Sic25a4™™ without Nestin-Cre.
For this experiment, 88—103 week old male mice were
used.

Electrophysiological analysis

Brain slices for experiments were prepared from 10-12-
week-old, male mice as described previously [24]. Whole
cell patch-clamp recordings were acquired and controlled
using the Axon 700B Multiclamp amplifer (Molecular
Devices, CA, US) and pClampll acquisition software
(Molecular Devices, CA, US). For this analysis, hetero-
zygous Antl cKO mice (Slc25a4"+; Nes-Cre+) (n = 4) and
control mice (Slc25a4ﬂ/+ without Nes-Cre) (n =3) aged
8-12 week old were used.

Statistical analysis

Data were analyzed by Prism 4 (Graphpad softoware Inc.,
San Diego, CA), IBM SPSS Statistics 20 (IBM Japan,
Tokyo, Japan), “R” (https://www.r-project.org/) or
Kyplot (Kyence, Tokyo, Japan). For genetic association
analysis, Fisher’s exact probability test was used. In the
comparison between the heterozygous or homozygous
¢KO mice and control mice, Student #-test was used. For
place learning task and delay discounting task in Intel-
liCage, repeated measures ANOVA with Bonferroni’s
post hoc test was used with main effects of genotype and
delay or day.
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Results

Identification of loss of function mutations in
bipolar patients

We sequenced the ANTI gene in 324 NIMH probands with
bipolar disorder and identified two patients carrying LOF
mutations. One patient had a stop codon mutation p.Q85X,
a substitution of C to T at Chr 4: 185,144,905 [hg38] while
the other had p.Q175RfsX38, a single nucleotide deletion at
Chr 4: 185,145,174, causing a frameshift and premature
stop codon (Supplementary Figures 1A-B), which was
reported in a pedigree of recessive cardiomyopathy with
comorbid depression and anxiety [25]. The frequency of
LOF mutations (gain of stop codon or frame shift) for ANT
in BD (2/324, 0.61%) was significantly higher than that in
the exome and genome data in the gnomAD database (10 of
128,632 [2 stop codons and 8 frameshift mutations],
0.000069%, Fisher’s exact probability test, P = 0.00040,
odds ratio=79.7 [95%CI. 8.4-374.4]). Both mutations
were on exon 3 and were thus predicted to undergo
nonsense-mediated mRNA decay. Even when cDNAs of
the predicted mutant mRNA encoding truncated proteins
were constructed, protein expression of these mutants was
markedly reduced in Neuro 2A cells (Supplementary Fig-
ure 1C). Although the two mutations did not show
complete cosegregation with BD in the two pedigrees partly
because of bilinear transmission (Supplementary Fig-
ure 1D), the significant association with high odds ratio
suggested the role of these LOF mutations as a genetic risk
factor for BD.

Generation of brain-specific Ant1 c¢KO mice

ANTI mutations are known to cause a neuromuscular dis-
order, CPEO, and thus behavioral analyses must be per-
formed using brain-specific mutant mice. We crossed floxed
Antl mice (Slc25a4"™ or Sic25a4"*) with Nestin-Cre
transgenic mice to generate a brain-specific cKO Antl/
mouse (Fig. 1a). We verified that the homozygous Ant!
cKO mice (Slc25a4ﬂ/ ﬂ; Nestin-Cre+) have no Antl mRNA
(Fig. 1b) and protein (Fig. 1c) expression in the brain, and
heterozygous Antl cKO mice (Slc25a4™"; Nestin-Cre+)
have reduced Ant/ mRNA (Fig. 1d) compared to control
mice (Slc25a4+/+; Nestin-Cre+, Slc25a4™* or Slc25a4ﬂ/ﬂ;
without Nestin-Cre). No compensatory upregulation of Ant2
mRNA was observed (Fig. le).

To examine the functional consequences of the
loss of ANTI, we isolated mitochondria from Antl
cKO mice. The mitochondrial calcium retention

capacity was significantly lower in homozygous Antl cKO
mice (P=0.02) (Figs. 1f, g) suggesting that the mito-
chondria of homozygous Antl/ cKO mice are vulnerable to
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the mPTP opening. The calcium retention capacity of het-
erozygous Ant!/ cKO mice did not significantly differ from
controls.

Because the identified patients with bipolar disorder were
heterozygous for LOF mutations in ANTI, we performed
the murine behavioral characterization in heterozygous Ant/
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Fig. 2 Behavioral analysis of Ant/ ¢cKO mice by IntelliCage and five-
choice serial reaction time test (5-CSRTT). a Schematic drawing of
delay discounting task in IntelliCage. The actions such as nose poking
and licking of mice in each corner to drink running water (cyan) or
0.5% saccharin containing water (green) can be automatically recor-
ded. b Percentages of nose poke counts for saccharin water in total
nose poke counts in each day without or with activation delay after
corner entry. Nose poke ratios for saccharin water of heterozygous (n
=8, red) and homozygous (n = 10, blue) conditional knockout mice
were higher than control mice (n = 6, black) in long delay (3 s). Each
circle represents mean and error bars indicate standard error of mean
(SEM). **P < 0.005; *P < 0.05 (Bonferroni’s post hoc test after two-
way repeated measures ANOVA). Red and blue asterisks indicate the
comparisons of control vs heterozygous cKO, or control vs homo-
zygous cKO, respectively. ¢ Schematic drawing of 5-CSRTT. A sugar
pellet was delivered to food magazine by a correct nose poke at an
illuminated hole among five holes during limited hold. LED which
was a sign for a correct hole was turned on after inter trial interval (ITI)
for the defined period in each test. Premature or mistake nose poke and
omission trial will lead to additional punishment delay in which room
light was shut down for 5s. d Number of premature nose poke in
heterozygous mutant mice was significantly decreased compared with
that in control mice in long stimulus duration test. e Accuracy (per-
centage of correct nose poke / (correct nose poke + mistake)) was
significantly higher in heterozygous Ant/ cKO mice compared with
controls in long-ITI test. f Number of preservative responses was
lower in heterozygous Ant! cKO mice compared with controls in long-
ITI test. **P < 0.005; *P < 0.05, *P = 0.05. SD stimulus duration, IT]
inter-trial interval, NP nose poke

cKO mice to model the human disorder. Homozygous cKO
mice were examined as a reference control, and Slc25a4%+
or Slc25a4™ without Nestin-Cre, or Slc25a4+/+; Nestin-
Cre+ were also examined as controls.

Behavioral phenotypes of brain-specific Ant1 cKO
mice

We performed behavioral screening using the IntelliCage
(Fig. 2a). Indices for spatial learning, reverse learning, and
attention did not differ between genotypes (Supplemen-
tary Figures 2A-E), but the heterozygous cKO mice
showed a significantly decreased delay discounting
(Fig. 2b). The preference for saccharin did not differ
between genotypes (F=1.0, P=0.36 by one way
ANOVA) (Supplementary Figure 2F), suggesting that this
finding is not due to altered reward value. Homozygous
Antl cKO mice also showed a similar behavioral pheno-
type (Fig. 2b), although more similar to controls than
heterozygous cKO mice.

To further characterize the behavioral phenotypes of
heterozygous Antl cKO mice, we performed a 5-choice
serial reaction time test (5-CSRTT), an established test to
measure impulsivity [26] as a reflection of enhanced delay
discounting (Figs. 2c—f, Supplementary Figures 2G-I). In
this test, the number of premature nose pokes during long
stimulus duration trials, which is an index of impulsivity,
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was significantly lower in heterozygous cKO mice than
control mice (Fig. 2d). A decrease of impulsivity is
equivalent to a decrease in delay discounting shown by the
IntelliCage (Fig. 2b). The heterozygous cKO mice also
showed better accuracy (Fig. 2e) and a lower number of
perseverative responses than control mice in the long inter-
trial interval trials (Fig. 2f). Homozygous cKO mice did not
show similar phenotypes in the 5-CSRTT for unknown
reasons.

Anatomical screen

We searched for brain regions with mitochondrial dys-
function due to the heterozygous knockout of Ant/ by
performing COX (cytochrome c¢ oxidase)/SDH (succinate
dehydrogenase) co-staining. COX is a mtDNA-encoded
protein whereas SDH is a nuclear-encoded mitochondrial
protein, and COX-negative cells were detected in a model
mouse of mitochondrial disease [27]. In a sagittal section of
aged homozygous Ant/ cKO mice, COX negative cells
were detected preferentially in the dorsal raphe (DR)
(Fig. 3a) and heterozygous Antl cKO mice also showed
COX negative cells in the DR (Fig. 3b). Unexpectedly,
however, a similar accumulation of COX negative cells was
also detected in the DR of wild type mice (Fig. 3b). In this
region, mtDNA deletions (AmtDNA) were not detectable
both in cKO and control mice (Fig. 3c). Thus, the DR may
have a selective vulnerability to mitochondrial dysfunction
unrelated to the accumulation of AmtDNA, and the phe-
notype of the mutant mice might be caused by an interaction
of the genotype and a general vulnerability of DR neurons
to mitochondrial dysfunction. The copy number of mtDNA
was significantly increased in DR of heterozygous cKO
mice compared with control mice (Fig. 3d).

Serotonergic dysfunction in Ant7 KO mice

The activation of serotonergic neurons reportedly attenuates
delay discounting [28], and therefore we examined serotonin
turnover in the nucleus accumbens, which is innervated by DR
serotonergic neurons and regulates impulsivity [29]. We found
that serotonin turnover was enhanced in the nucleus accum-
bens of heterozygous KO mice (Fig. 3e). There was no sig-
nificant difference of the serotonin turnover between Nestin-
Cre and wild type mice (0.55+0.07 vs 0.75+0.17, respec-
tively, P = 0.15, n = 3 for both groups). We also analyzed the
gene expression level of Maob (monoamine oxidase B) that
encodes a monoamine metabolizing enzyme on the mito-
chondrial outer membrane enriched in the DR [30]. To nor-
malize expression levels of Maob by the number of
serotonergic neurons within the sample, a serotonin neuron
specific gene, Tph2 or Slc6a4, was used for a reference. We
found that Maob mRNA was significantly increased in the DR
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of heterozygous Ant! cKO mice (P < 0.05) (Figs. 3f, g) con-
sistent with the elevated turnover of serotonin in the nucleus

accumbens.
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To test whether serotonergic neurons were activated in
the Antl cKO mice, we performed electrophysiological

recordings from midbrain slices containing the DR. As
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Fig. 3 Anatomical screen by COX/SDH immunostaining of the brain
suggested the role of dorsal raphe serotonergic neurons. a COX/SDH
staining of a sagittal section of a 34 week old male homozygous Ant/
cKO mouse. COX negative cells are seen as cells with red cytosol
(positive signal of SDH [red] and no signal of COX [green]). Images
were obtained by NDP and Axiovision. b COX/SDH staining of
homozygous Antl cKO mouse (upper), heterozygous Antl cKO mouse
(middle) and control mouse (bottom) (13 week old). Triple staining
images for COX (green), SDH (red) and TPH2 (blue) indicate that
COX negative cells are present in TPH2 positive serotonergic neurons.
Images were obtained by confocal microscopy (FV1000). ¢ Quantifi-
cation of mtDNA deletions (AmtDNAs) by quantitative PCR. The bar
indicates average. There was no significant difference of AmtDNAs
between heterozygous Ant/ cKO mice (n=8) and control mice
(n =8). The homozygous cKO mice (n = 10) also did not accumulate
mtDNA deletions. d Quantification of mtDNA copy number. A
nuclear gene RNaseP was used as a reference. Heterozygous Ant/ cKO
mice (n=3) had significantly higher levels of mtDNA than control
mice (n=3) (P <0.01). The homozygous cKO mice (n=3) also
showed a tendency of elevation of mtDNA levels (P =0.07). e The
SHIAA (5-hydroxyindole acetic acid)/5-HT (5-hydroxytryptamine,
serotonin) ratio indicating turnover of serotonin is accelerated in het-
erozygous Ant! cKO mice compared with control mice. **P < 0.005.
Homozygous Antl cKO did not significantly differ from controls
(P=0.42). f, g Maob mRNA levels in dorsal raphe of Ant/ KO mice.
Heterozygous Antl ¢cKO mice showed significantly increased Maob/
Tph2 (f) and Maob/Slc6a4 (g) ratios compared with control mice

shown in Supplementary Table 1, both basic membrane
properties and action potential properties of serotonergic
neurons at the midline of the DR did not show significant
differences between genotypes. However, the input-output
relationship curves, which show the generation of action
potentials by current injection was steeper in heterozygous
Antl cKO mice than that of controls (Fig. 4) indicating that
serotonergic neurons of heterozygous Ant/ cKO mice are
more excitable.

Discussion

In this study, we identified two patients with bipolar dis-
order carrying loss of function mutations in ANT! (Sup-
plementary Figure 1). Brain-specific heterozygous cKO
mice of Antl showed diminished delay discounting or
reduced impulsivity by two behavioral tests (Fig. 2).
Enhanced serotonin turnover (Fig. 3e) and hyperactivity of
serotonergic neurons (Fig. 4) were consistent with the
behavioral phenotype [28]. Increased mtDNA copy number
in DR (Fig. 3d) might reflect an increased energy demand in
the DR, and upregulation of Maob mRNA is considered a
compensatory upregulation associated with enhanced ser-
otonergic activity. These findings, together, suggest that the
heterozygous loss of Antl in the brain causes a hyperser-
otonergic state and associated behavioral phenotypes.

The mechanism of how the heterozygous loss of function
of Antl causes serotonergic hyperactivity is not known.
Elevated  intracellular  calcium  associated  with
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Fig. 4 DR serotonergic neurons in heterozygous Ant/ cKO mice show
increased excitability. a Representative action potentials (APs) of DR
neurons of the control and heterozygous Ant! cKO mice that were
generated by injecting currents of 20 pA (black), 60 pA (blue), 100 pA
(orange), and 140 pA (green), respectively. b Pooled data of input-
output relationship curves of DR serotonergic neurons in the control
(open circles, n =43) and Antl cKO (filled circles, n = 44). APs were
generated by injecting current steps from 0-160 pA in increments of
20 pA for 500 ms. The frequency of AP generation were plotted.
*P=0.05; *P < 0.05 by Student t-test

depolarization is sequestered by mitochondria. The accu-
mulation of intramitochondrial calcium results in a transient
opening of the mPTP [31]. Antl reportedly has a mod-
ulatory effect on the mitochondrial permeability transition
pore (mPTP) [10]. An altered mPTP function associated
with heterozygous loss of Ant/ might affect the excitability
of DR neurons.

A previous study reported exaggerated corticosterone
responses to stress in homozygous conventional Ant/ KO
mice [32]. Enhanced serotonergic function might also
underlie this finding, because serotoninergic stimulation is
known to activate the hypothalamic-pituitary-adrenal axis
[33].

Why are serotonergic neurons preferentially affected
by the heterozygous loss of Ant/? Monoamines are
metabolized by monoamine oxidases (MAOs) on the
mitochondrial outer membrane. Metabolism of mono-
amines by MAOs is accompanied by the generation of
hydrogen peroxide, a reactive oxygen species [30].
Enhanced serotonin release by 3,4-methylenediox-
ymethamphetamine (MDMA) can decrease COX protein
levels, which can be rescued by an MAO-B inhibitor [34].
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We speculate that serotonergic neurons may be intrinsi-
cally vulnerable to mitochondrial dysfunction, and the
hyperserotonergic state may further impair mitochondrial
function in a vicious cycle. The results of the COX/SDH
staining in this study support this hypothesis. The
degeneration of DR serotonergic neurons is frequently
seen in Parkinson’s disease, in which mitochondrial dys-
function is implicated, and this might at least partly
explain the non-motor symptoms of this disease [35]. In
Parkinson’s disease, 8-hydroxyguanosine is accumulated
in substantia nigra dopaminergic neurons, and this is also
true for the DR [36]. Thus, the mitochondrial dysfunction
phenotype due to the heterozygous cKO of Antl is pre-
dominantly seen in serotonergic neurons, which may have
an intrinsic vulnerability to mitochondrial dysfunction.
The mechanism of how COX immunoreactivity is reduced
in the DR is not known because the present study did not
show an increase of AmtDNA levels or a decrease of
mtDNA copy number. Reduction of COX immunor-
eactivity in DR neurons might be regulated by other types
of mtDNA abnormalities and/or at the protein level [37].

Mitochondrial dysfunction has been implicated in
bipolar disorder based on several lines of evidence [2]
including altered energy metabolism detected by magnetic
resonance spectroscopy [38], comorbidity with mito-
chondrial diseases [4, 7], and findings in postmortem
brains including an accumulation of AmtDNAs [39, 40],
altered gene expression of mitochondria-related genes
[41], altered morphology of mitochondria [42], and
decreased activity of mitochondrial complex I [43]. On the
other hand, serotonergic dysfunction in bipolar disorder
has been implicated by evidence including the mania-
inducing effect of antidepressants that inhibits the ser-
otonin transporter and thereby activates serotonin [44], the
efficacy of atypical antipsychotics that inhibits ser-
otonergic neurotransmission [45], altered mRNA expres-
sion levels of serotonergic receptors in postmortem brain
[46], altered DNA methylation of serotonin transporter
gene [47], altered serotonin transporter binding in the brain
by positron emission tomography [48], and levels of cer-
ebrospinal fluid metabolites, among others [14]. The pre-
sent findings provide a potential missing link between
these two lines of evidence. Because the two LOF muta-
tions identified in this study were not cosegregated with
bipolar disorder in the two pedigrees, they are not “cau-
sative” mutations. However, their significant association
suggests that the heterozygous LOF mutations of ANTI
confer the risk of bipolar disorder.

There are several limitations in this study. Notably, it is
unknown why homozygous Ant/ cKO mice do not show
behavioral alterations in some experiments. However, such
non-linear dynamics are inherent to complex biological
systems such as the brain. Secondly, Nestin-Cre mice

reportedly have some behavioral alterations [49], which
could in principle confound the results. However, we ver-
ified that this transgene did not affect serotonin turnover and
excitability of DR serotonergic neurons (Supplementary
Figure 3). Thirdly, behavioral analysis is confounded by
genetic background [50]. Although all the mice used were
generated and/or kept under the background of C57BL/6,
there are subtle behavioral differences even among C57BL/
6 substrains [51]. We therefore used the mice after back-
crossing with C57BL/6J, though the number of generations
might not be enough to rule out a possible effect of sub-
strains. Finally, the results in calcium retention capacity are
not consistent with previous studies that showed a loss of
Antl causing an increase in calcium retention capacity [52].
This discrepancy might be due to differences in experi-
mental conditions or mouse strains.

In summary, our current findings suggest that mito-
chondrial dysfunction caused by heterozygous loss of Antl
can cause alterations of serotonergic activity, a first step
toward understanding the complex neurobiological pro-
cesses underlying bipolar disorder subtypes.
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