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Abstract. The present study was performed to detect 
moderate or low-frequency mutated cancer driver genes 
in hepatocellular carcinoma (HCC), using OncodriveFM 
and Dendrix. Following this, integrated analyses were 
conducted on these novel cancer driver genes. A total of 
112,980 somatic mutations were retrieved from TCGA 
and classified into 11 categories based on their func-
tion. Driver genes and pathways were predicted by 
OncodriveFM and Dendrix, followed by differential 
expression, DNA-methylation, copy number variations and 
survival analyses. Overall, non-synonymous mutations 
accounted for >60% (72,149/112, 980) of total variants, 
108 and 3 driver genes were determined by OncodriveFM 
and Dendrix, respectively. Tumor protein p53, SWI/SNF 
related, matrix associated, actin dependent regulator of 
chromatin, subfamily a, member 4, smad family member 
3, RB transcriptional corepressor 1, catenin β 1, smad 
family member 4, mitogen-activated protein kinase 1 and 
TSC complex subunit 2 are at the core of the driver gene 
interaction network. Two genes, transportin 1 (TNPO1) 
and chaperonin containing TCP1 subunit 3 (CCT3), were 
hypomethylated and overexpressed, and high expression of 
TNPO1 and CCT3 indicated a poor prognosis in patients 
with HCC. β-carotene oxygenase 2 was hypermethylated, 
under-expressed and associated with favorable prognosis in 
HCC. The present study has identified a set of novel cancer 
genes and pathways, offering potential therapeutic targets 
and prognostic biomarkers for the treatment of HCC.

Introduction

Liver cancer is the fifth most prevalent type of cancer and the 
second most frequent cause of cancer-associated mortality 
in males, with an estimated 782,500 new cases and 745,500 
deaths worldwide in 2012 (1). Hepatocellular carcinoma 
(HCC) is the most common type of liver cancer (2). HCC 
is particularly prevalent in East Asia, with an incidence 
rate twice that of Africa and >4 times higher than North 
America. However, the incidence rate of HCC has increased 
in Western countries (3). The dominant etiological cofactors 
that contribute to the incidence rate of HCC vary according 
to ancestry and region, including hepatitis B virus infection 
in East Asia and Africa, hepatitis C virus infection in Japan, 
aflatoxin B1 exposure in China and Africa and alcohol intake 
in Western countries (4,5).

Mutational disruption of driver genes and pathways occurs 
constantly in cancers, enabling tumor cells to proliferate 
without constraints. A number of cancer genomics studies 
intend to prioritize driver genes based on recurrent mutation 
status across a cohort of tumor samples (6,7). For instance, 
Totoki et al (8) applied MutSigCV to 503 pairs of HCC and 
matched non‑cancerous liver tissues or blood and identified 
30 recurrently mutated driver genes in HCC, including telom-
erase reverse transcriptase (TERT), catenin β1 (CTNNB1), 
tumor protein p53 (TP53), AT-rich interaction domain 2 
(ARID2) and axin 1 (AXIN1). However, little attention has 
been paid to driver genes that are not frequently mutated, 
including genes that are enriched for mutations with high 
functional impact (FI) and genes with mutually exclusive 
mutation rates. Therefore, the development of computational 
tools that are able to detect moderate or low-frequency 
mutated driver genes is necessary to provide a more complete 
understanding of cancer genomics. Methods including 
Oncodrive-FM (9) aim to identify genes with a bias toward 
the enrichment of variants with a high FI, as measured 
by the Sorting Intolerant From Tolerant algorithm (10), 
PolyPhen2 (11) and Mutation Assessor (12). Another method, 
Dendrix (13), was constructed to uncover sets of genes 
which have at least one mutation in the majority of cancer 
samples. These bioinformatics tools, which complement 
existing methods, open novel avenues for the identification 
of potential driver genes involved in the tumorigenesis and 
progression of HCC.
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In the present study, our group assessed the moderate 
or low-frequency mutated driver genes predicted by 
Oncodrive-FM and Dendrix in HCC. In addition to the 
previously reported driver genes, our group identified novel 
cancer-driving genes and pathways, including potential 
treatment targets and prognostic biomarkers. Then, aberrant 
expression of these driver genes, DNA methylation levels, 
copy number variations (CNVs) and correlation with prog-
nosis were assessed in patients with HCC. The present study 
highlights the importance of analyzing cancer-driving genes 
in an integrated fashion, and provides insights into the carci-
nogenesis and progression of HCC.

Materials and methods

Classification of cancer mutations. A total of 112,980 somatic 
mutations, comprised of 104,595 single-nucleotide variants 
(SNVs) and 8,385 small insertions or deletions (indels), were 
generated by whole-exome sequencing of 377 tumor tissues and 
paired normal tissues, and this data was downloaded from The 
Cancer Genome Atlas (TCGA; http://cancergenome.nih.gov/, 
accessed on January 15, 2016) (14). Somatic mutations were 
classified into 11 categories based on their functional impacts 
in the coding genome using Ensembl Variant Effect Predictor 
(VEP) (15).

Prediction of driver genes and pathways. Driver genes and 
pathways were determined using OncodriveFM (https://www.
intogen.org/analysis) and Dendrix (http://compbio.cs.brown.
edu/projects/dendrix/) with default parameters following 
the criteria that genes and pathways have q values smaller 
than 0.05. To clarify the functional enrichment of driver 
genes, Gene Ontology (GO) terms (16,17) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) (18) pathway 
enrichment analyses were conducted for all the driver genes 
on the home page of STRING (http://string.embl.de/) (19). 
The GO terms and KEGG pathways were considered to be 
significantly enriched for driver genes with the cut‑off of 
a false positive rate of P<0.05. Finally, a protein-protein 
interaction network was constructed with STRING to 
prioritize the pivotal driver genes in HCC. For each driver 
gene, the overall STRING score that represents the degree 
to which the driver gene is associated with other genes was 
computed by summing up combined STRING scores of all 
its protein-protein interactions.

Gene expression, DNA methylation and principal compo-
nent analyses. The present study used expression data from 
Gao et al (20), which were generated by RNA sequencing of 
8 paired HCC and normal tissues, and deposited in the Gene 
Expression Omnibus database (21) (accession no. GSE55758). 
DNA methylation data from 340 HCC samples were obtained 
from TCGA (14), and unavailable values were replaced with 
the mean β value. Differentially expressed and dysmethylated 
genes between HCC and normal tissues were determined using 
the function of t-test in R with the cutoff value of P<0.05. Next, 
principal component analysis (PCA) was conducted using the 
princomp function in R to examine whether the differentially 
expressed genes distinguished cancer tissues from normal 
tissues.

Sources of CNV and survival analyses. CNVs in 370 HCC 
samples, detected by single nucleotide polymorphism (SNP) 
array, were acquired from the Broad Institute TCGA GDAC 
Firehose (gdac.broadinstitute.org) (14). RNA sequencing 
(RNAseq) and clinical outcome data were retrieved from 
TCGA to further evaluate whether the expression of driver 
genes was associated with prognosis in 360/377 patients with 
HCC (14). For each driver gene, the patients with HCC were 
divided into high and low expression groups. The former 
refers to 25% (n=90) of patients with the highest RNA expres-
sion levels of the driver gene, while the latter refers to the 
25% (n=90) of patients with the lowest expression levels of 
driver gene. Kaplan-Meier survival analyses were performed 
between the high and low expression groups using oncolnc 
(http://www.oncolnc.org/) (22) and the log-rank test was 
utilized to compare the difference of survival rates between 
different groups. P<0.05 was considered to indicate a statisti-
cally significant difference.

Results

Catalog of somatic mutations. A total of 112,980 somatic muta-
tions generated by the whole-exome sequencing of 377 paired 
HCC and normal samples were downloaded from TCGA. 
Among them, 104,595, 8,385 mutations were SNVs and small 
indels, respectively. T>C/A>G, C>T/G>A and C>A/G>T were 
the three most prevalent transitions in HCC, with mutation 
rates of 36.82, 23.29 and 16.13% in all variant types (Fig. 1A). 
There were 64,890 missense mutations, 2,250 nonsense 

Figure 1. Catalog of somatic mutations. (A) Mutation signatures in HCC. 
(B) The number and proportion of 11 groups of somatic mutations in HCC. 
HCC, hepatocellular carcinoma; indel, insertions or deletions.
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mutations, 34 nonstop mutations and 29,209 silent SNVs 
classified by VEP. In total, 505 deletions and 135 insertions 
caused translational frame shifts, while 5,957 deletions and 
1,302 insertions were in frame mutations. A total of 2,419 and 
155 mutations occurred in splicing sites and translation start 
sites, respectively. Over 60% (72,149/112,980) of total variants 
were non-synonymous mutations (Fig. 1B). HCC has a lower 
nonsynonymous mutation density (2.03 nonsynonymous muta-
tions per Mb per sample, on average) in comparison with other 
types of cancer, including melanoma and lung cancer (6).

Cancer driver genes and pathways in HCC. OncodriveFM 
was used to identify driver genes and pathways in HCC. In 
total, 108 driver genes were identified by OncodriveFM. 
Among them, TP53, CTNNB1, ARID2, AXIN1 and TERT 
were known driver genes, with mutation rates of 30.69, 27.11, 
11.00, 7.16 and 2.05% across all HCC samples (8). However, 
the majority of driver genes were middle or low-frequency 

mutated genes, Fig. 2 presents the mutation patterns of the 
50 most frequently mutated driver genes, however data are not 
shown for the remaining driver genes. Dendrix analysis was 
performed for sets of size ranging from 2 to 4. When k=2, the 
pair TP53 and CTNNB1 was sampled with a frequency of 24% 
(240/1,000). When k=3, the triplet [BRCA associated protein 1 
(BAP1), TP53 and CTNNB1] was sampled with a frequency of 
5.4% (54/1,000). For k=4, no gene set had a sample frequency 
>1%. The pair (TP53 and CTNNB1) and triplet (BAP1, TP53 
and CTNNB1) were the most prevalent gene sets in the mutual 
exclusivity test, further supporting the importance of TP53 
and CTNNB1 in the tumorigenesis of HCC.

The enrichment of GO terms was performed for 109 cancer 
genes on STRING, and 80 biological processes, 36 molecular 
functions and 47 cellular components were reported with statis-
tical significance. The GO terms represented a wide variety of 
functional processes, including ‘regulation of protein metabolic 
process’, ‘regulation of cellular process’, ‘regulation of gene 

Figure 2. Mutation patterns of 50 cancer driver genes across 377 hepatocellular carcinoma samples.
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expression’, ‘cell cycle’ and ‘cellular component biogenesis 
and organization’, indicating that driver gene candidates are 
actively involved in cancer-associated processes in HCC (data 
not shown). The 109 driver genes were significantly enriched 
in 58 KEGG pathways, including ‘cell cycle’, ‘p53 signaling 
pathway’, ‘mTOR signaling pathway’ and ‘PI3K-Akt signaling 
pathway’ (data not shown). In addition, Oncodrive-FM also 
identified 119 pathways with statistical FI bias in HCC, 
including ‘colorectal cancer’, ‘endometrial cancer’, ‘basal 
cell carcinoma’, ‘thyroid cancer’, ‘prostate cancer’, ‘glioma’, 
‘wnt signaling pathway’, ‘pathways in cancer’, ‘p53 signaling 
pathway’, ‘pancreatic cancer’, ‘non-small cell lung cancer’ and 
‘melanoma’ (data not shown). A total of 71.19% (42/59) of driver 
gene-enriched pathways were overlapped with driver pathways 
in HCC. Finally, a protein-protein interaction network was 
constructed with STRING to prioritize the pivotal driver genes. 
As presented in Fig. 3, TP53, SWI/SNF related, matrix asso-
ciated, actin dependent regulator of chromatin, subfamily a, 

member 4 (SMARCA4), smad family member 3, RB transcrip-
tional corepressor 1 (RB1), CTNNB1, smad family member 4 
(SMAD4), mitogen-activated protein kinase 1 (MAPK1) and 
TSC complex subunit 2 are at the core of the protein-protein 
interaction network. This suggests that they may serve key 
functions in the network, because they possessed the strongest 
protein‑protein interactions (overall STRING score >5; data 
not shown).

Expression profiling and DNA methylation analyses in HCC. 
To analyze the gene expression profile in HCC, RNA‑seq data 
from 8 paired HCC and normal tissues were obtained. Overall, 
4,665 differentially expressed genes were identified between 
the 8 paired HCC and normal samples (Fig. 4A), of which 34 
were driver gene candidates, including transportin 1 (TNPO1), 
apoptotic peptidase activating factor 1 (APAF1), AT-rich 
interaction domain 1A (ARID1A) and BAP1 (Fig. 4B). PCA 
was applied to examine whether differentially expressed genes 

Figure 3. Protein-protein interaction network. Network nodes represent proteins, edges represent protein-protein associations. Disconnected nodes were 
disabled in the network. Red nodes refer to query proteins and the first shell of interactors, white nodes are the second shell of interactors. Light blue 
lines represent known interactions from the curated Kyoto Encyclopedia of Genes and Genomes database, purple lines represent experimentally determined 
protein-protein interactions, green lines denote genes that are frequently observed in each other's genomic neighborhood, black lines stand for genes where 
expression are correlated across a large number of experiments, dark blue lines indicate gene families with similar occurrence patterns across genomes and 
light grey lines indicate proteins with amino acid sequence similarity.
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were able to discriminate cancer tissues from normal tissues. 
As presented in Fig. 4C, normal tissues were aggregated to the 
upper side of the graph, whereas cancer tissues were clustered 
to the lower side, suggesting that differentially expressed 
genes were able to separate the tissue samples into two distinct 
groups.

DNA methylation of cytosine within CpG dinucleotides 
maintains the proper regulation of gene expression and stable 
gene silencing; therefore, DNA methylation alterations make a 
substantial contribution to tumorigenesis (23). In order to char-
acterize the DNA methylation status of driver gene candidates, 
our group downloaded DNA methylation data from TCGA 
and analyzed the DNA methylation levels of the identified 
driver genes in HCC. Overall, 83 driver gene candidates had 
dysmethylation at their promoters, including 45 hypomethyl-
ated and 38 hypermethylated driver genes (Fig. 4D). These 
results suggest that the majority of driver genes may be 

implicated in HCC through modulating methylation status. 
13 driver genes are overexpressed and hypomethylated, 
including chaperonin containing TCP1 subunit 3 (CCT3), 
checkpoint kinase 2 (CHEK2), SMARCA4, MAPK1, TNPO1 
and mitochondrial translational initiation factor 2, suggesting 
they may have oncogenic functions in HCC. In contrast, 
β-carotene oxygenase 2 (BCO2) and cystathionine-β-synthase 
(CBS) exhibited hypermethylation and low expression, and 
may therefore function as tumor suppressors in HCC.

CNVs in HCC. CNVs of 370 HCC samples detected by 
SNParray were also obtained from the Broad Institute. 
Significant focal gains and deletions (q<0.25) were identified in 
360 samples (360/370, 97.30%) at 61 loci (34 amplifications and 
27 deletions). Among these, amplifications at 1q22 and 1q42.3 
and deletions at 8p23.2 and 8p12 were the most frequent CNVs 
in HCC, with occurrence rates of 76.49% (90/370), 72.97% 

Figure 4. Expression profiling and DNA methylation analyses in HCC. (A) Expression clustering of 4,665 differentially expressed genes between HCC tissues 
and normal samples. The expression of each gene was presented as reads per kilobase of transcript per million mapped reads plus 0.0001 and log scaled. Red 
and blue represent high and low expression levels of differentially expressed genes, respectively. (B) The differential expression of 34 driver gene candidates 
between HCC and normal tissues. (C) Principle component analysis of the 8 paired cancer tissues and normal tissues using 4,665 differentially expressed 
genes. Red and blue dots denote cancer and normal tissues, respectively. Each dot represents the expression values of the significant genes that were summa-
rized at the first two principal component coordinates. (D) DNA methylation profiling of 86 dysmethylated driver gene candidates. The average β value was 
calculated for each gene and patient, and undefined values were replaced with the mean. HCC, hepatocellular carcinoma. Red and blue represent high and low 
DNA methylation values of driver genes, respectively.



ZHANG et al:  CANCER GENES AND HEPATOCELLULAR CARCINOMA1508

(89/370), 66.76% (89/370) and 65.41% (90/370), respectively 
(Fig. 5). A total of 17 cancer driver genes were involved in 
CNVs, including known tumor suppressors and oncogenes, 
for example TP53 (deletion, 17p13.1), phosphatase and tensin 
homolog (deletion, 10q23.31) and RB1 (deletion 13q14.2). 
Multiple driver candidates were also implicated in the CNVs, 
including SHOC2, leucine rich repeat scaffold protein (dele-
tion, 10q25.2), transcription factor 7 like 2 (TCF7L2; deletion, 
10q25.2), SMAD4 (deletion, 18q21.2), TRPM8 channel associ-
ated factor 2 (deletion, 7q35), isocitrate dehydrogenase [NADP 
(+2)] mitochondrial (IDH2) and DNA polymerase γ, catalytic 
subunit (deletion, 15q26.1), solute carrier family 2 member 6 
(deletion, 9q34.2), outer dense fiber of sperm tails 2 and protein 
phosphatase 2 phosphatase activator (deletion, 9q34.11), 
ARID1A (deletion, 1p36.11), cut like homeobox 1 (deletion, 
7q22.1), cyclin dependent kinase inhibitor 2A (CDKN2A; dele-
tion, 9p21.3), BCO2 (deletion, 11q23.1) and EP400 N-terminal 
like (deletion, 12q24.33).

Survival analyses. TCGA RNAseq and clinical outcome data 
were acquired from TCGA to evaluate whether the expression 
of 109 driver genes is associated with survival and prognosis 
in patients with HCC. Kaplan-Meier survival analysis showed 
that the expression of 24 driver genes was significantly asso-
ciated with clinical outcomes in patients with HCC. High 
expression of 14 driver genes indicated worse survival rates 
in patients with HCC, including AXIN1, serine carboxypep-
tidase 1, APAF1, TRPM8 channel associated factor 2, actin 
related protein 2/3 complex subunit 2, autophagy related 9A, 
exportin 1 (XPO1), Basic Leucine Zipper and W2 domains 2, 
CCT3, CDKN2A, chromodomain helicase DNA binding 
protein 4, coronin 1C, RAB32, member RAS oncogene family 
and TNPO1. Fig. 6A presents the correlation between the 
expression of XPO1 and patients' clinical outcome; data are 
not shown for the remaining driver genes (Fig. 6A). In contrast, 
patients with high expression of 10 other driver genes had a 
relatively favorable prognosis, including kinesin 2, BCO2, 

cancer susceptibility 4, GTF2I repeat domain containing 2B, 
major histocompatibility complex, class I, E, IDH2, 

Figure 5. Frequencies of copy number variations in 370 hepatocellular carcinoma samples.

Figure 6. Survival analyses. (A) Patients with high expression of XPO1 (red) 
had a relatively poor survival rate compared with those with low expression of 
XPO1 (blue). (B) Patients with high expression of IDH2 (red) had an improved 
prognosis compared with those with low expression of IDH2 (blue). XPO1, 
exportin 1; IDH2, isocitrate dehydrogenase [NADP (+2)] mitochondrial.



ONCOLOGY LETTERS  15:  1503-1510,  2018 1509

La ribonucleoprotein domain family member 1B, mannosidase 
alpha class 2C member 1, zinc finger protein 521 and StAR 
related lipid transfer domain containing 5 (data not shown). 
TNPO1 and CCT3 were hypomethylated, overexpressed and 
associated with a poor prognosis in HCC. BCO2 was hyper-
methylated, under-expressed and associated with a favorable 
prognosis in HCC. These three driver genes may be potential 
targets for treatment and prognostic biomarkers for patients 
with HCC in the future.

Discussion

In the present study, our group conducted an integrated 
investigation of 109 cancer-driving genes and 119 pathways 
determined with Oncodrive-FM and Dendrix. Only a small 
fraction of these driver genes are repeatedly mutated in HCC 
samples, including TP53, CTNNB1, ARID2, AXIN1 and 
TERT (8). The P53-retinoblastoma (RB) signaling pathway 
was consistently mutated in cancer samples, including TP53 
and CHEK2 of the P53 pathway, and RB1 and CDKN2A of 
the RB pathway, reflecting the inactivation of the P53‑RB 
pathway in HCC. In addition to those identified in the P53‑RB 
pathway, inactivating mutations were frequently observed in 
WNT pathway genes, including AXIN1 and CTNNB1. Multiple 
cancer driver genes initially identified in other types of cancer 
were first identified as drivers in HCC, including BAP1 in 
renal cell carcinoma (24), IDH2 in angioimmunoblastic T-cell 
lymphoma (25), CDKN2A in melanoma (26), TCF7L2 in 
colorectal cancer (27) and SMAD4 in colorectal and pancre-
atic cancer (28). In addition, multiple novel driver candidates 
were identified by our group; for instance, LARP1 and APAF1. 
LARP1, as a conserved RNA-binding protein, interacts with 
poly-A-binding protein and modulates 5'-terminal oligopyrim-
idine tract mRNA translation. Enhanced expression of LARP1 
increases cell migration, invasion, growth and tumorigenicity 
in vivo through post-transcriptionally altering gene expression, 
including mechanistic target of rapamycin, in Hela cells (29). 
APAF1 is an important factor that regulates the mitochon-
drial apoptotic pathway, and loss of APAF1 causes cellular 
resistance against apoptotic signals. Reduced expression of 
APAF1 has been observed in colorectal adenocarcinoma and 
is associated with deeper tumor invasion, frequent lymph 
node metastasis, higher stage and poorer differentiation (30). 
In addition, APAF1 is frequently methylated in bladder and 
kidney cancer, and demethylation of APAF1 increased APAF1 
expression and inhibited the proliferation of bladder and 
kidney cancer cell lines (31).

One notable strength of OncodriveFM and Dendrix 
analysis lies in the identification of cancer‑associated genes 
and pathways which have a high FI bias towards accumulating 
high FI variants or mutational exclusivity, independent of 
cancer mutation frequency. Implementing these tools allows 
for a comprehensive exploration of cancer-driving genes and 
pathways. In addition, our group revealed 35 differentially 
expressed genes, 83 dysmethylated driver genes and 17 cancer 
driver genes involved in CNVs, suggesting these genes may 
contribute to the development and progression of HCC in 
various ways.

Of the 109 driver gene candidates, 24 genes whose expres-
sion levels were associated with HCC patient prognosis were 

identified, including XPO1 and IDH2. XPO1, also known 
as CRM1, encodes a protein which serves a critical func-
tion in the trafficking of over 230 proteins, including tumor 
suppressors (for example, p53, p73 and forkhead box O1), 
growth regulator/pro-inflammatory (for example, IκB, Rb, 
p21, p27, BRCA1, DNA repair associated and APC, WNT 
signaling pathway regulator), and anti-apoptotic proteins 
(for example, nucleophosmin 1 and AP-1) (32). XPO1 is an 
oncogenic, anti-apoptotic protein in transformed cells and 
is overexpressed in a number of types of cancer, including 
mantle cell lymphoma (33), lung adenocarcinoma (34) and 
gastric cancer (35). Similar to the results of the present study, 
high expression of XPO1 is an independent poor prognostic 
factor in gastric carcinoma (35), acute myeloid leukemia (36), 
pancreatic cancer (37) and lung adenocarcinoma (34). 
Another gene, IDH2, is frequently mutated in multiple types 
of cancer, including T-cell lymphoma (38), glioma (39) and 
acute myeloid leukemia (40). In line with the results of the 
present study, Liu et al (41) reported that decreased expression 
of IDH2 was associated with lower overall survival rates in 
HCC. Furthermore, mutated IDH2 was an independent prog-
nostic factor for improved overall survival in acute myeloid 
leukemia (40) and glioma (42). Therefore, these genes may 
be ideal candidates for the development of HCC prognostic 
indicators in future studies.

In summary, our group have successfully compiled a 
list of cancer driver genes and pathways in HCC, enhancing 
our understanding of pathogenesis and progression of HCC. 
Furthermore, the novel driver genes and pathways identified 
by the present study pave the way for the development of 
therapies targeting driver genes and prognostic biomarkers 
in HCC.
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