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Assessing biophysical 
and socio‑economic impacts 
of climate change on regional avian 
biodiversity
Simon Kapitza1*, Pham Van Ha2, Tom Kompas2,3, Nick Golding1, Natasha C. R. Cadenhead1,4, 
Payal Bal1 & Brendan A. Wintle1,4

Climate change threatens biodiversity directly by influencing biophysical variables that drive species’ 
geographic distributions and indirectly through socio-economic changes that influence land use 
patterns, driven by global consumption, production and climate. To date, no detailed analyses have 
been produced that assess the relative importance of, or interaction between, these direct and indirect 
climate change impacts on biodiversity at large scales. Here, we apply a new integrated modelling 
framework to quantify the relative influence of biophysical and socio-economically mediated impacts 
on avian species in Vietnam and Australia and we find that socio-economically mediated impacts on 
suitable ranges are largely outweighed by biophysical impacts. However, by translating economic 
futures and shocks into spatially explicit predictions of biodiversity change, we now have the power 
to analyse in a consistent way outcomes for nature and people of any change to policy, regulation, 
trading conditions or consumption trend at any scale from sub-national to global.

Climate change affects biodiversity through a multitude of pathways. There is pervasive evidence that climate 
change directly affects environmental conditions that are related to the climatic niches of many taxa, with the 
potential of significant shifts in their distributional ranges or even the total extinction of species1,2. However, 
climate change also affects biodiversity through indirect human-mediated impacts: it drives the loss of livelihoods 
and displacement3 and affects food and commodity production systems through its impacts on land productivity 
and human health4,5 and environmental suitability for different land uses6,7. Resulting global transitions of land 
use patterns are set to drive habitat conversion and may have dramatic impacts on biodiversity8–10. While there 
are some examples of studies examining synergistic effects of land use and climate change on species 11,12, large-
scale assessments of biodiversity change in response to climate change have tended to look only at direct impacts 
of climate change on biophysical conditions or habitat loss and fragmentation alone8. Analyses that couple direct 
biophysical impacts on species with indirect socio-economic impacts via consumption, commodity, and land use 
change are sorely needed to fill important gaps in our knowledge of interactions between land use and climate 
change10, to foster a more holistic understanding of the impacts of climate change, and to support the design of 
cross-sectoral adaptation and mitigation strategies13.

No single model of drivers of change in biodiversity and ecosystem services can capture all relevant dynam-
ics at a high level of detail and there is an increasing awareness of the urgency to consider interactions between 
direct and indirect drivers of change under future scenarios to characterise prospects and management options 
for biodiversity and ecosystem services13. Coupling demographic, economic and biophysical models has the 
potential to advance understanding and improve representation of synergies between direct and indirect driv-
ers in biodiversity modelling, and to discover non-linear system behaviours that may not be apparent when 
considering drivers in isolation13.

Here, we contribute to the recent advances in integrated assessment modelling14–17 by applying an integrated 
modelling framework to compare the relative influence of direct biophysical and indirect socio-economic climate 
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change impacts on the distribution and extent of suitable ranges for avian species in Vietnam and Australia 
(Fig. 1).

Recent advances in computable general equilibrium (CGE) modelling18,19 bring unprecedented power to 
parametrise the impacts of climate change on commodity consumption and production patterns at very high 
commodity and temporal resolution across the global economy. We combine this economic modelling power 
with state-of-the-art land use change modelling to spatially downscale commodity demand changes caused by 
climate change4 into changes of land use patterns. In order to isolate net climate change impacts on the economy, 
we parametrize only climate change damages in the CGE model, keeping all other economic parameters constant 
at current baseline values. The spatial realisation of changing land use patterns varies with changes in the suit-
ability of land for particular uses and is thereby also driven by climate change7,20. Commodity demand changes 
are projected annually and land use predicted in 10-year time steps, producing decadal time-series maps of land 
use. Maps are integrated with climate change predictions into a biodiversity impact assessment using species 
distribution models (SDMs)21–24. SDMs, fitted to current climate, land use, and other environmental variables 
(Supplementary Table 1) are extrapolated to conditions in 2070 under a range of climate and land use scenarios. 
Predictions of relative likelihood of occurrence are thresholded to examine changes in the ecologically suitable 
ranges for 1282 bird species in Vietnam and Australia21–24.

Results
Direct biophysical impacts dominate changing range sizes.  For birds in both regions, we forecast 
major declines in ecologically suitable ranges, with severity of loss scaling with the severity of climate change 
(Fig. 2). Under RCP 8.5, a much higher number of species would be expected to experience decreases of more 
than half of their present ecologically suitable range compared with RCP 2.6, although variation in responses is 
also greater, indicated by the much wider spread of points (Fig. 2a,b). In Australia, mean suitable range decline 
under both pathways is not predicted to be as severe as in Vietnam and a smaller number of species is predicted 
to lose more than half of their suitable range. For both Vietnamese and Australian birds, predicting only under 
the indirect (land use change) effects of climate change results in little change to mean predicted outcomes for 
species (Fig. 2a,b), though some threatened species are predicted to lose significant suitable range within their 
current range due to indirect climate change impacts (see below). However, our analysis focuses on net climate 
change impacts on the economy; species ranges are likely to be affected more severely when also parametrizing 
other economic parameters to reflect future economic change. Mean predictions under combined direct and 
indirect effects do not differ to any notable degree from those made under direct biophysical effects only. Predic-
tions under the first and third quartiles of bioclimatic variables across 15 Global Circulation Models (GCMs) 
show the same trends identified in the main results (Supplementary Figure 1).

SDMs for 1436 bird species were used in the analysis of the direct and indirect impacts of climate change on 
biodiversity. Discriminatory performance of the SDMs was assessed using cross-validated AUCs which varied 
between 0.7 and 1.0 with a mean of 0.90 in Vietnam and 0.87 in Australia (Fig. 2c), indicating very high dis-
criminatory performance. We discarded models for 179 species with AUC < 0.7 (see “Methods” section). The 
predictor variables retained in the highest fraction of models were distance to lakes (dist lakes) in Australia and 
annual temperature range (bio7) in Vietnam. These are followed by dist lakes and precipitation of warmest quarter 
(bio18) in Vietnam, and by minimum temperature of the coldest week (bio6) and mean diurnal temperature 
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Figure 1.   Overview of the modelling framework to capture interactions between direct and indirect drivers of 
biodiversity change under climate change scenarios. We included two Representative Concentration Pathways 
RCP2.6 and RCP8.5 to characterize the plausible extremes of climate change. Dark green arrows represent the 
indirect pathway of climate change impacts on suitable ranges. Light green arrows indicate the direct pathway of 
climate change impacts on ecological suitability. Icons from thenounproject.com.
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range (bio2) in Australia. In Australia, land use was retained in about half the models. The very minor indirect 
(via land use) impact predictions arise because the changes in commodity demand predicted by the CGE model 
did not result in significant changes to land use in both regions (see below).

Land use changes in response to climate change vary by region.  The total output of most agricul-
tural crop sectors in both regions was predicted to decrease more with increasing climate change. In particular, 
in Vietnam, sectors such as oil seeds and plant-based fibres shrink by up to 20% under RCP 8.5 (Fig. 3a). The 
land requirements for each sector generally increase in proportion to the overall output of each sector. This is 
due to climate change impacts on crop yields as parametrised in the CGE-model: reductions in land productiv-
ity mean that more land is required to maintain sector outputs. Accordingly, in both countries, even while total 
outputs tend to decrease, land requirements of agricultural sectors remain approximately the same, or increase 
slightly (Fig. 3a).

The changes in land requirements for crop lead to an increase in cropland of < 0.5% of the total land area in 
both regions under RCP 8.5 and a very slight decrease in Australia under RCP 2.6 (Fig. 3b). Increases in urban 
land in both countries were modelled on FAOSTAT estimates of urban population growth28. In Australia, land 
use changes occur locally and are concentrated in coastal areas along the north-east, south and west of the con-
tinent, although some changes also occur further inland (Fig. 3c). In Vietnam, land use change is higher overall, 
with a particular concentration of change in the central-southern and northern coastal areas of the country, that 
also approximately coincide with the country’s major river deltas (Fig. 3d). Given that the distributions of most 
species are constrained, aggregated, and not random, small percentage changes in land use at the national scale 
still have significant impacts on some species locally (Fig. 4a,c). For example, species losing more than 10% of 
their currently suitable range under indirect impacts of RCP 8.5 in Vietnam include the vulnerable chestnut-
necklaced partridge (Arborophila charltonii) and the near-threatened yellow-billed nuthatch (Sitta solangiae). 
These declines are highly localised and predominantly occur in the centre-south of the country (Fig. 4c). Direct 
climate change impacts are more severe: 324 and 362 species lose at least 10% of their suitable ranges under 
direct impacts of RCP 2.6 and RCP 8.5 respectively, with areas particularly affected across taxa under RCP 8.5 
in the northern highlands and the central eastern parts of the country (Fig. 4d). Among the species losing more 
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Figure 2.   Predicted changes in species’ ecologically suitable ranges. (a, b) Illustration of multiplicative changes 
in species’ ecologically suitable ranges between present (2018) and 2070 for Australia and Vietnam respectively, 
under three treatments (1) “indirect + direct” (combined biophysical and socio-economic impacts of climate 
change), (2) “indirect” (net socio-economic impacts) and (3) “direct” (net biophysical impacts). Each point 
corresponds to a species, black bars are means of ecologically suitable range changes across all species. (c) A 
summary of cross-validated test Area Under the Receiver Operating Characteristics Curve values (AUCs)25 of 
models in the two regions as well as the respective number of models (n) retained (AUC > 0.7)26. AUC provides 
a measure of a model’s discriminatory performance in terms of how well test predictions discriminate between 
occupied and unoccupied locations25,26. (d,e) Fractions of models in which a predictor was used. Full names and 
definitions of all predictors can be found in Supplementary Table 1. Figure created in R version 3.5.127 (https​://
www.R-proje​ct.org/).
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than 95% of their current suitable range under the direct impacts of RCP 8.5 are the Chinese thrush (Turdus 
mupinensis) and the critically endangered white-rumped vulture (Gyps bengalensis) (Fig. 4c,d).

In Australia, no species was found to lose more than 10% of its currently suitable range under indirect climate 
change impacts, although the black-throated whipbird (Psophodes nigrogularis) loses more than 5%. A higher 
number of species are affected by the direct impacts of climate change, with areas predicted to suffer particu-
larly high suitable range declines along the southern and eastern coasts, the southwest and the southeast of the 
continent. In Australia, 188 and 230 species are expected to lose more than 10% of their suitable range under 
RCP 2.5 and RCP 8.5 respectively.

Amongst the Australian species losing more than 95% of their suitable range under the direct impacts of 
RCP 8.5 are the kalkadoon grasswren (Amytornis ballarae) and the Australasian pitpit (Anthus Australis) and a 
number of other species now categorised as of least concern (Fig. 4b). This highlights the potential dangers of 
climate change to species that we do not yet consider under threat, but for which extinction debts are accruing30.

The expected direct impacts of climate change impacts on many taxa are well researched and documented (i.e. 
increased extinction risks across taxa with accelerated climate change31, northward shifts of bird distributions in 
Great Britain under climate change32 and responses of bird abundance to climate change in the United States and 
Europe33). Our findings largely agree with these trends. In both Australia and Vietnam, climate change is likely 
to have extensive detrimental impacts on the climatically suitable ranges of birds. For many species, suitable 
ranges decline with increasing severity of climate change (Fig. 2) and under RCP 8.5, 24% of species analysed 
(in Vietnam) show likely declines in suitable ranges of greater than 50%, increasing their extinction risk in the 
country severely. Our analysis shows that subject to the assumptions of this work, the relative contribution of 
direct, biophysical impacts of climate change on biophysical suitability in our study area outweighs the contribu-
tion of indirect socio-economic impacts on habitat suitability via global commodity markets and resulting land 
use change, also taking into account the fact that climate change impacts on the suitability of land for particular 
uses. In Vietnam and Australia, bird species appear to be more severely impacted by the direct influence of 
changing climates than by its indirect impacts via commodity demand and land use.

Figure 3.   CGE and land use model results. (a) Future projections of commodity sector output and sector land 
endowments (the area required to produce output of a sector) from CGE model under RCP 2.6 and RCP 8.5. 
(b) Illustration of the percentage change of each land use in response to GTAP projections of crop sectors in (a) 
and FAO urban population projections, grouped by country and RCP, relative to the whole country size. (c,d), 
Intensity of predicted land use changes under indirect effects of RCP 8.5 in (c) Australia and (d) Vietnam. These 
maps are derived by aggregating predicted land use changes between any two classes under the indirect impacts 
of RCP 8.5 by factor 3. Figure created in R version 3.5.127 (https​://www.R-proje​ct.org/).

https://www.R-project.org/
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Discussion
Better understanding of climate change impacts on commodity demand and supply, and how those changes 
impact biodiversity should remain a research priority.

We predict economic change under two climate change scenarios, keeping all other aspects of the global 
economy at current baseline values. This way, we capture and isolate the effect of climate change on the economy. 
However, this approach omits other socio-economic processes that could affect supply and demand, such as 
population growth, changes to economic growth, energy efficiency, and shifts in social demands. These other 
factors may impact habitat and biodiversity through agricultural expansion, deforestation or urbanisation. While 
this study was designed to assess the net effects of direct and indirect climate change impacts on species as a first 
case study introducing our integrated assessment framework, these factors will be incorporated in future itera-
tions that include an even more comprehensive CGE parametrization (i.e. full CGE baseline scenarios with socio-
economic pathway narratives34 and integration of climate models in CGE analysis) and through improvements 
to current CGE methods by including, for example, stochastic effects of natural disasters in the CGE modelling.

Our results are valid for avian taxa in Australia and Vietnam under a number of assumptions about how com-
modity demand and supply, land use and biodiversity interact to deliver outcomes predicted by our integrated 
model. In our assessment framework, we follow a top-down modelling approach; within the architecture of our 
CGE model, climate change affects global demand and supply of many land-based commodities, requiring sector 
outputs as well as requirements of land to each sector to increase or decrease. However, mapped land use changes 
corresponding to changes in land endowments to different commodity sectors do not feed back into the CGE 
model. The inclusion of such feedbacks would increase the realism of both CGE and land use predictions, but 
detailed knowledge of local production systems and commodity markets are required to accurately parametrise 
such a model, and such models are computationally expensive35.

We chose not to produce SDMs for species with less than 20 occurrence records, to avoid the inflation of 
AUC for range-restricted species and species with very low prevalence36 and to assure sufficient discrimination 
between presences and background points37,38. Rare or spatially restricted species can be more vulnerable to 
localised impacts such as habitat loss39, but these effects are difficult to capture when biodiversity data are poor. 
We assumed unlimited dispersal ability in Vietnam and dispersal ability constrained to bioregions adjacent to 
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those containing observation records in Australia. Disconnected patches of potential habitat outside of observed 
ranges (but within adjacent bioregions in Australia) were counted in future predictions, regardless of whether 
those areas were functionally linked (by suitable or traversable habitats) to the observed range and thus within 
the dispersal range of species. This may lead to an over-estimation of habitat utilisation and a commensurate 
underestimation of both direct and indirect impacts of climate change, particularly for taxa with a low dispersal 
ability that rely on small pockets of habitat within their range and are unable to reach disconnected patches of 
potential habitat. The importance of connectivity as a key component of habitat structure is well known40 and 
crucial for population viability in many species with low dispersal ability41,42. The parametrization of species’ 
dispersal ability and explicit modelling of landscape structure in response to land use change would allow for the 
inclusion of these fragmentation effects. This may be particularly important when our framework is extended 
to non-avian species.

While we found that total agricultural sector outputs decrease in both Vietnam and Australia, decreases 
in land productivity mean that land use in production for some agricultural commodities were predicted to 
increase slightly. We assumed a global economic equilibrium in which commodities can be substituted through 
trade between regions, thus implying that global demand for land-based commodities is serviced by regions that 
benefit from a comparative advantage under climate change. Where comparative advantage is due to increases 
in land productivity (land use efficiency), additional land may not be required to increase outputs. However, 
where this advantage is due to other economic mechanisms and not driven by the cost of converting additional 
land for production, more land may be allocated to agricultural or other commodity production, increasing 
habitat loss. For example, in Canada, our CGE model predicted an increase of wheat sector output by over 37% 
under RCP 8.5, while land endowments increase by only 14% due to increases in land use efficiency. In India, 
wheat output is estimated to increase by 8% under RCP 8.5, while land endowments to the wheat sector increase 
by 6%, suggesting much lower land use efficiency in India than in Canada (see Supplementary Figure 2 for a 
global, country-wise mapping of projected changes in sector outputs and land endowments of the wheat sector). 
Despite lower land use efficiency, wheat production in India still grows, because growth is economically feasible 
as long as it is not limited by factors arising from the sector’s context in domestic and international markets. In 
both countries, increases in land use lead to agricultural expansion, but in Canada more wheat can be produced 
per unit land and areas lost to wheat farming are likely to be much smaller per produced unit than in India. 
Nonetheless, if wheat production occurs in parts of Canada that were previously in, for example, natural prairie, 
then significant biodiversity losses may occur. Our framework provides in-depth insight into the links between 
sectors and regions and allows for a better understanding of global shifts in land requirements, enabling the 
fine-scale identification of hotspots for production, agricultural expansion and ultimately habitat destruction 
under consideration of the global economic processes.

In this first implementation of our framework we could capture and quantify principal relationships between 
climate change, the global economy, land use and avian habitat. Future uses of our approach could include 
regional and global biodiversity assessments following individual policy shocks, such as the introduction or 
abolishment of taxes or international trade deals, or could seek to capitalize on existing narratives of socio-
economic futures and climate change pathways (so-called Shared Socio-economic Pathways)34 to parametrise 
climate adaptation policies, sustainable development goals and other aspects of socio-political transitions within 
the CGE modelling. Expanding consideration of biodiversity to include non-avian taxa and explicitly dealing with 
the role of connectivity and dispersal will enable a more comprehensive assessment of biodiversity impacts under 
socio-economic change. A key feature of our approach is that it provides opportunity to downscale country-level 
commodity demands to spatial explicit land use changes and biodiversity impacts, enabling a more meaningful 
analysis of the habitat and biodiversity implications of economic shocks or the implications of trade than have 
previously been possible.

Better integration of models and scenarios of biodiversity is required to guide evidence-based climate adapta-
tion strategies and to chart progress toward sustainable development goals43. Our approach to integrating eco-
nomic, land use and biodiversity values into a single model capable of high resolution, spatially-explicit predic-
tions of land use and biodiversity outcomes provides information in a form that can be used directly by planners 
and managers. While spatial predictions of biodiversity and land use change have been available for decades, 
being able to place these predictions coherently in a global economic context is a new and exciting development 
that will bring a new level of relevance and realism to predictions in the eyes of policy and decision makers.

Methods
Study area.  We focussed our analysis on Vietnam and Australia because the countries provide unique 
socio-economic contexts, while hosting a similar number of bird species that are vulnerable, endangered or 
critically endangered44,45. SDMs for Vietnam were built using data from a 30° × 30° tile that comprises large 
parts of Southeast Asia. This enabled us to capture the occurrence of bird species present in Vietnam on larger 
environmental gradients.

Climate change.  We chose Representative Concentration Pathways RCP2.6 and RCP8.546 to include two 
extremes of the expected radiative forcing levels. For each pathway, we acquired the 2070 predictions of 19 bio-
climatic variables47 from 15 GCM of Coupled Model Intercomparison Phase 5 (CMIP5)48. To capture variation 
between GCM predictions, we determined the cell-wise first, second and third quartiles each of the 19 variables 
across the 15 GCM (Supplementary Table 2).

Main results were derived by predicting land use and species distributions under the medians of these vari-
ables. We predicted both land use and species distributions under the first and third quartiles to approximate 
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the range of outcomes for species across all 15 GCM (Supplementary Figure 1). In CGE models, we included 
the parametrization of both climate change pathways proposed by Roson & Satori4.

CGE models.  We developed an inter-temporal Global Trade and Analysis Project (GTAP) model49 to sim-
ulate changes in production under different climate change scenarios. CGE models use input–output-tables 
derived from national economic census data. These tables represent the inputs required in each economic sec-
tor to produce outputs and meet household and government demands (both nationally and internationally), 
which in turn are affected by prices and thus supply. Sectors are linked within each national economy, but also 
between economies. Producers in each country can produce various commodities to sell to domestic or foreign 
households and governments. Households and governments generate their income from selling (to producers) 
productive input factors (land, capital, labour, etc.) and through taxes. In our version of GTAP, the total land area 
(land endowment) from which allocations are made to crop sectors (land requirements) can be changed in the 
baseline. Therefore, land supply is not necessarily fixed, as is the case in most other GTAP models.

Estimations within GTAP are carried out relative to this baseline supply and we convert relative changes in 
agricultural land requirements to absolute changes in cropland by using their respective shares in the total har-
vested area for a by-sector-weighting of the average relative change of all classes (Supplementary Table 3). This 
weighted average change is applied on the current area under cropland to derive a future value. Accordingly, there 
is a direct proportional link between changes in land requirements and changes in the total area of agricultural 
land and the total area under agricultural land can change at the expense, or to the benefit, of other classes.

Since our GTAP model is a general equilibrium model, any shock to productivity will affect both the demand 
and supply of an agricultural commodity. The marginal cost of production generally increases (with the loss 
of productivity). At the same time, the income of households in the model will also be affected by the change 
in productivity as incomes are derived from selling (or renting) productive factors (land, capital, labour, and 
natural resources). As a result, prices change to equalize demand and supply and a substitution effect between 
agricultural commodities and between agricultural and other commodities takes place. As a result, demand does 
not stay constant. The contraction or expansion of the production of a particular crop is a result of interaction 
between demand and supply for that crop (both domestically and internationally).

Our inter-temporal GTAP model uses the GTAP 9 database50, which is subdivided into 139 regions and 57 
commodity sectors50 and extends the GTAP model by replacing the recursive dynamic module of the current 
GTAP model with a forward-looking dynamic (or inter-temporal) module, where the producer can optimise 
profits overtime51,52. The inter-temporal GTAP model allows optimal investment behaviours, in which producers 
in each country can adjust their decisions based on the impacts from both past and foreseeable future events. 
Agents in the model can react to future threats long before their full realisation52. This makes the model a perfect 
tool for the simulation of future phenomena like climate change.

Following Roson & Satori4, climate change impacts in our GTAP model are realised as shocks to land supply 
and agricultural and labour productivity. The reduction in endowments of productive land and productivity 
negatively affect the production of commodities. Agricultural commodities are expected to be the most affected. 
With production shrinking more in some commodities than others, the price will adjust to balance the demand 
and supply of commodities. As a result, there is a substitution effect between domestically produced products 
and their competitive imports along with a substitution effect in factors of production (such as land), balancing 
demands between sectors.

Unlike the Kompas et al.52 approach, which relied on a one-step simulation approach, here we apply a multi-
step simulation approach allowing the shocks to be applied into smaller successive intervals combined with 
extrapolation techniques to further enhance the simulation accuracy (see Horridge et al.53 and Pearson54 for 
details on multi-steps CGE solution methods). The solution of the inter-temporal GTAP model in this paper 
has been carried out within a parallel computing platform19,55 with the use of PETSC56–58 and HSL59 libraries.

Land use models.  We reclassified a global land use map to 8 land use classes (urban, cropland, herbaceous 
ground vegetation, shrubland, open canopy forest, closed canopy forest and wetlands and barren land) (Sup-
plementary Table 1 for full list of data sources). Changes in urban land were estimated using estimates of urban 
population changes60 and adjusting the amount of land under this class, assuming that urban population den-
sity remains steady through time. Future applications of this work will establish links between land use classes 
related to forestry and livestock-raising, as has been demonstrated recently17.

We predicted land use maps under both pathways in 10-year time steps, using an R implementation (R pack-
age ‘lulcc’61) of the Conversion of Land Use and its Effects at Small regional extents (CLUE-S) model by Verburg 
et al.62. First, we determined the local suitability for different land uses through logistic regression of land use 
against the linear combination of a range of biophysical and socio-economic drivers in Generalised Linear Models 
(GLMs), from 15,000 randomly sampled pixels in each region (Supplementary Table 1 for a detailed list of data, 
Supplementary Figure 3 for effect sizes of predictors in each GLM). The selection of variables for land use suit-
ability models was based on work by Verburg et al.63). Correlation analysis eliminated highly correlated predictor 
pairs (Spearmen’s rank correlation coefficient ≥ 0.7), always keeping the predictor whose highest correlation 
with any other remaining predictor was smaller, to maximise independent information retained in the final set. 
The final predictor sets were checked against literature64,65. We discarded a small number of predictors using 
cross-validated Lasso penalisation in the ‘glmnet’ R-package66 and used the reduced predictor sets to build GLM 
and predict to future timesteps by interpolating GCM-predicted WorldClim variables (Supplementary Table 2 
for used GCM). GLM predictions produced maps of the landscape’s potential suitability for each land use class. 
Transitions between classes were constrained through a matrix detailing possible transitions (Supplementary 
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Table 4). We specified conversion elasticities of each class (total possible turn-over within each class) based on 
literature61,62.

Projected demand changes were allocated iteratively until estimated land area demands were met20. Competi-
tion between land uses is handled in CLUE-S by allocating the land use with the highest predicted suitability in 
a given cell, accounting for conversion elasticity and allowed transitions. We masked category I and II protected 
areas7, precluding these areas from land use changes. Since there was no CGE-modelled future demand for her-
baceous ground vegetation and shrubland, as well as the forest classes, the overall amount of area allocated to 
those land uses was what was not allocated to satisfy projected agricultural and urban demands. The proportional 
allocation between each of these residual classes was determined based on their mean predicted suitability in 
the landscape.

Species distribution models.  Correlative species distribution models (SDM) can predict responses of 
species to changing environmental conditions by extrapolating from the covariate space in which they were 
observed21–24. The MaxEnt software package67 (ver. 3.3.3 k) was used to fit SDMs for 656 bird species in Australia 
and 739 bird species in Vietnam, using presence-only data from the Global Biodiversity Information Facility 
(GBIF)68. We filtered records to retain observations from 1950 to 2018 with more than or equal to 20 occurrence 
points. We included a range of biophysical, topographic and socio-economic predictors as well as land use (Sup-
plementary Table 1). Correlation analysis eliminated highly correlated predictors (see above). Literature review 
ensured that final predictor sets were ecologically meaningful to avian species across taxa32,69–71 at our aspired 
scale. We kept 9 predictors for Australia and 10 predictors for Vietnam, including 5 and 6 climate predictors 
respectively.

Sampling bias is a pervasive issue particularly affecting presence-only data that is often sampled opportunisti-
cally. We estimated sampling effort in response to demographic and topographic predictors72 (Supplementary 
Table 1). By selecting background points proportional to sampling effort, the its effect on the location of presence 
records is largely eliminated as a form of bias73.

Predictions were made using the estimated quartiles and medians of bioclimatic variables and the accord-
ing land use maps that were also predicted under quartiles and medians. We controlled overfitting by dropping 
predictors with a permutation importance < 1%. Test AUC were estimated via fivefold cross-validation of each 
model and final models built on all available records. Species for which only uninformative models were fitted 
(AUC < 0.7) were excluded26.

We recorded the log ratio of the respective number of cells with relative likelihoods predicted above MaxEnt’s 
MaxSSS threshold74 (where the sum of model sensitivity and specificity is maximised) between the present (2018) 
and the future time step (2070) as a measure of change. In Australia, we constrained this change estimation for 
each species to bioregions containing records of the species, and adjacent bioregions75.

Software and data.  All data preparation and modelling for land use and SDMs was conducted in R (ver-
sion 3.5.1)27, using packages ‘lulcc’61 for land use simulations and ‘dismo’76 for MaxEnt67 models. All analyses and 
spatial predictions of the land use model and SDM were performed at 0.5 arc-minute resolution; approximately 
1 km at the equator. SDM building and predictions were computationally expensive and required up to 50 GB of 
working memory on 12 parallel cores.

Data availability
Sources for data used in land use and species distribution modelling are listed in Supplementary Information. 
Direct download links to these data sets are available in the code repository accompanying this study (see 
below). We provide outputs of the CGE, land-use and species distribution models in a data repository (https​://
doi.org/10.26188​/5ce25​391e5​b60). The GTAP database that underpins GGE modelling is available from GTAP 
under license. A link to a repository with the CGE modelling code that contains details of parameters settings 
for global economic models and detailed commodity demand output tables for each of the scenarios modelled 
is published with the code repository accompanying this study. All R-code for land use and species distribution 
modelling is available online (https​://doi.org/10.5281/zenod​o.44611​05).
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