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signature of homologous recombination
defectiveness for prostate cancer
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SUMMARY

The discovery of homologous recombination deficiency (HRD) biomarkers in
prostate cancer is important for patients who will benefit from poly ADP-ribose
polymerase inhibitor (PARPi). Here, we developed a transcriptional homologous
recombination defectiveness (HRDness) signature, comprising 16 gene pairs
(16-GPS), for prostate cancer by a relative expression ordering (REO)-based dis-
covery procedure. Subsequently, two newly subtypes classified by 16-GPS
showed a higher significance level in various clinicopathological andHRD features
than subtypes obtained by other methods, such as HRDetect. HRDness subtype
also displayed more aggressive features and higher genomics scores than non-
HRDness in three independent datasets. HRDness prostate cancer cells were
more sensitive to PARPi than non-HRDness. Moreover, the HRDness samples
showed distinct multi-omics characteristics related to homologous recombina-
tion repair function loss. Overall, the newly proposed qualitative signature can
robustly determine the HRD status for prostate cancer at the personalized level,
and especially be an auxiliary tool for PARPi treatment strategy.
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INTRODUCTION

Prostate cancer is the second most common solid tumor in males (Siegel et al., 2020). Approximately

20–30% of patients suffer from disease recurrence after receiving radical resection, radiation, or

androgen deprivation therapy (ADT), leading to a progression of the disease to metastatic castration-

resistant prostate cancer (mCRPC), and finally, 90% of patients succumb to the disease without effective

treatments (Kodama et al., 2020; Lalonde et al., 2014). Recently, based on the synthetic lethal

effect, poly ADP-ribose polymerase inhibitor (PARPi) has been approved by the Food and Drug Admin-

istration for the treatment of mCRPC with BRCA1/2 or other homologous recombination repair (HRR)

gene mutations (Rescigno et al., 2018). Importantly, patients with HRR gene alterations also carried a

higher Gleason score and prostate specific antigen (PSA) level, and a worse prognosis similar to

BRCA alteration, indicating a homologous recombination defectiveness (HRDness) phenotype beyond

narrow BRCA-related way (Evans et al., 2016; Marshall et al., 2019a; Pilie et al., 2019). Thus, there is an

urgent need to identify the homologous recombination deficiency (HRD) phenotype to extend the utili-

zation of PARPi for tumors with BRCA-deficiency as well as HR-deficiency, thereby expanding the demo-

graphic of patients who may benefit from PARPi treatment (Weston et al., 2010; Mendes-Pereira et al.,

2009).

Approximately 20–25% mCRPC and 5–10% of primary prostate cancer cases exhibited mutations in the

HRR genes (Criscuolo et al., 2019; Handy et al., 2018). Owing to fewer hotspot mutations and the require-

ment of high tumor purity, detection of genomic variations presents a high false-negative rate. Besides,

several presently popular BRCAness and HR-deficiency signatures, named HRD score and HRDetect score,

have been developed based on the genomic scars and applied in prostate, breast, and ovarian cancers with

the same threshold (Sztupinszki et al., 2020; Telli et al., 2016; Davies et al., 2017). However, it is irrational to

use the same threshold for classifying different tumor types, considering the tissue-specific background for

HRD signature (Jonsson et al., 2019). Thus, in view of the aforementioned limitations, our study aims to

discover a robust HRDness classification signature for prostate cancer.
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Figure 1. Workflow of this study

(A) Identifying HRDetect score-related genes and then HRDness-like subgroups (C1) was defined by these genes through consensus clustering method.

(B) based on gene pairs with stable REO patterns in C1 and significantly reverse in non-C1, a qualitative signature consisting of 16 gene pairs (16-GPS) was

developed by performing a forward selection approach.

(C) Validation of 16-GPS in independent datasets.
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HRD is a genomic event. Changes in the genome can affect gene expression through transcription factor

dependent and independent transcriptomic regulation (Ladan et al., 2021; Peng et al., 2014). However,

transcriptome signature for HRD in prostate cancer has rarely been investigated. Regular transcriptional

signatures based on the quantitative expression measurements of multiple key genes lack robustness

because of the marked variation in expression levels of the same gene across samples, and this variation

is inevitably induced by different experimental conditions (Guan et al., 2018). Thus, we initiated a relative

expression ordering (REO)-based discovery frame to overcome these limitations. The advantage of REOs is

that individual patients can be classified by the within-sample REOs of genes without a complex scoring

process. The REO-based biomarkers are relatively robust against batch or normalization effects with

different technical sources and poor sample preparation or quality, which are likely responsible for most

of the false-negative results in detecting gene mutations, and could be applied in individual cancer

samples (Qi et al., 2016; Guo et al., 2018).

In the present study, using transcriptomic quantitative measurement of prostate cancer from The Cancer

Genome Atlas (TCGA) database, we developed a qualitative REO-based HRDness classification signature

composed of 16 gene pairs (16-GPS) for prostate cancer.

RESULTS

Identifying HRDness signature by a REO-based discovering workflow

Briefly, the procedure of identifying HRDness signature is shown in the flow chart (Figures 1A–1C). Firstly,

we identified 384 genes whose expression levels were significantly correlated with the HRDetect score in

the PRCA495 dataset (spearman’s rank correlation, |r| > 0.2, FDR < 0.05). Then, consensus clustering
2 iScience 24, 103135, October 22, 2021



A B

C D

E

Figure 2. HRD-related clusters of prostate cancer

(A) Biochemical recurrence survival for subjects according to molecular clusters. p values were determined by log-rank test.

(B–E) Violin plots illustrate the distribution of pathological malignant features and genomic signature scores, including Gleason score (B), PSA level (C),

HRDetect score (D), signature 3, signature 5, and HRD score (E) among the six clusters. Each dot represents an individual sample. Horizontal lines represent

the median. p values were determined by a one-sided Wilcoxon rank-sum test.
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divided the PRCA495 samples into six clusters (k = 6, Figure 1A). A total of 111 samples from the cluster 1

(C1) group had a significantly poorer biochemical recurrence-free survival (BFS) than the 316 samples from

the non-C1 group (p = 4.19 3 10�4; hazard ratio, HR = 2.47; 95% confidence interval, CI: 1.47–4.14; Fig-

ure 2A). In addition, within the samples in clusters C1–C6 (132, 122, 79, 48, 93, and 21 samples, respectively),

C1 carried the most aggressive pathological features, including Gleason score (Figure 2B) and PSA level

(Figure 2C). More importantly, the C1 cluster maintained the highest HRD-related scores, including
iScience 24, 103135, October 22, 2021 3
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HRDetect score (Figure 2D), signature 3 (Figure 2E), signature 5 (Figure 2E), and HRD score (Figure 2E),

among the six clusters. Therefore, based on an appropriate proportion of sample size, i.e., 26.67% (132/

495), and distinct HRDness information, the C1 subtype was used as the HRDness-like subtype for training

the transcriptional qualitative signature.

The quantitative gene expression values of pairwise genes were transformed to binary values for discov-

ering qualitative HRDness signature (Figure 1B). First, we identified 256,099,836 highly stable gene pairs

in 132 samples from C1 (see Method details) and 306,023,521 significantly stable gene pairs in 363

non-C1 samples (binomial distribution test, FDR < 0.01), wherein REOs of 1,100 candidate gene pairs

were stable in C1, but reversed in non-C1 samples. Then, for each candidate gene pair, we calculated

the F-score to evaluate the prediction power of the gene pair. Next, using the gene pair ATP6V1C1-

NUDT15, with themax F-score 0.71 as the seed, we finally obtained a set of 16-GPS that reached the highest

F-score (0.92) and the largest Area Under Curve (AUC, 95.50%), with the threshold of 11.5, by performing

forward selection and AUC of the receiver operating characteristic (AUC-ROC) analysis (Figure 3A). A

sample was classified into the HRDness subtype if at least 12 gene pairs voted for HRDness; else, the

sample was classified into the non-HRDness subtype.

16-GPS displaying improved performance than HRDetect score and HRD score

Comparative analysis with a one-sided Wilcoxon rank-sum test suggested that HRDness subtype from

PRCA495, classified by 16-GPS, showed a significantly higher level of HRDness genomic and clinical fea-

tures, including signature 3 (p = 8.22 3 10�6, Figure 3B), signature 5 (p = 2.00 3 10�4, Figure 3B), HRD

score (p < 2.20 3 10�16, Figure 3B), HRDetect score (p = 7.92 3 10�14, Figure 3C), Gleason score (p =

6.00 3 10�16, Figure 3D), and PSA value (p = 3.51 3 10�7, Figure 3E), than the non-HRDness subtype.

Particularly, significance of the difference between HRDness and non-HRDness was increased upon

comparing the difference between C1 and non-C1 at the levels of signature 3 (p = 8.22 3 10�6 vs.

p = 1.87 3 10�4, Figure 3B), HRDetect score (p = 7.92 3 10�14 vs. p = 2.61 3 10�13, Figure 3C), Gleason

score (p = 6.00 3 10�16 vs. p = 2.88 3 10�13, Figure 3D), and PSA (p = 3.51 3 10�7 vs. p = 3.90 3 10�4,

Figure 3E). Similarly, the difference in BFS between subtypes classified by 16-GPS (p = 7.06 3 10�8,

HR = 3.88, 95% CI: 2.28–6.59, Figure 3F) was greater than that in consensus clustering subtypes (p =

4.19 3 10�4, Figure 2A).

A total of 41 patients in the non-C1 cluster were classified into the HRDness group by 16-GPS, which

were termed as HRDness & non-C1 patients. Further, eight patients in C1 were classified into the

non-HRDness group, and were termed as non-HRDness & C1. The 35 patients with PSA information in

the HRDness & non-C1 group showed greater PSA levels than the eight patients in the non-HRDness

& C1 group (p = 0.07, Figure S2A). No significant results were observed when comparing with other fea-

tures (Figures S2B–S2D), which was mainly because of the small size of the non-HRDness & C1 group.

Notably, although we obtained no significant results with a huge HR value (p = 0.12, HR = 26.52 3

107, 95% CI: 0-Inf, Figure 3G), seven out of eight patients (one without BFS record) had no disease

relapse with intact BRCA. In contrast, when comparing the HRDness & non-C1 group with the non-

HRDness subtype with a greater patient pool defined by 16-GPS, we found that the HRDness and

non-C1 group showed a higher level of HRDness features, such as PSA level (p = 2.46 3 10�4, Fig-

ure S2A), HRDetect score (p = 8.17 3 10�3, Figure S2B), Gleason score (p = 6.92 3 10�5, Figure S2C),

signature 3 (p = 0.03, Figure S2D), signature 5 (p = 0.17, Figure S2D), and HRD score (p = 4.83 3

10�5, Figure S2D), than the non-HRDness group. Moreover, these HRDness & non-C1 patients had

poorer BFS than the non-HRDness patients (p = 4.31 3 10�6, HR = 4.87, 95% CI: 2.31–10.29, Figure 3H).

Directly, when applying other genomic signatures, HRD score (cutoff = 42) and HRDetect score (cutoff =

0.70), into the dataset PRCA495, the predicted HRDpos and HRDneg had no BFS difference (HRD score,

p = 0.59, HR = 1.72, 95% CI: 0.24–12.45; HRDetect score, p = 0.10, HR = 1.68, 95% CI: 0.90–3.11, Figures

3I and 3J). These results suggest that 16-GPS displays better performance compared with HRD score,

HRDetect score, and even HRDetect score-based consensus clustering.

16-GPS showing robust classification in independent datasets

In the independent validation dataset of PRCA213, 12 and 54 patients with HRD feature information were

respectively divided into the HRDness and non-HRDness subtypes by 16-GPS. Patients in the HRDness

group showed higher levels of HRD score (p = 0.01, Figure 4A) and HRDetect score (p = 0.16, Figure 4B)

than the patients in the non-HRDness group. In the testing dataset PRCA281, a classification rule of ‘‘winner
4 iScience 24, 103135, October 22, 2021
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Figure 3. Performance of 16-GPS in the PRCA495 dataset

(A) The area under receiver characteristic operating curves for confirming signature and threshold. AUC was highest at a threshold of 11.5, and the signature

was marked as 16-GPS.

(B–E) The distribution of pathological malignant features and genomic signature scores among the C1, non-C1, HRDness, and non-HRDness subgroups in

the PRCA495 dataset, including signature 3, signature 5, and HRD score (B), HRDetect score (C), Gleason score (D), and PSA level (E). p values were

determined by a one-sided Wilcoxon rank-sum test.

(F) Kaplan–Meier survival analysis of HRDness and non-HRDness patients in the PRCA495 dataset.

(G) Kaplan–Meier survival analysis of HRDness & non-C1 and non-HRDness & C1 patients in the PRCA495 dataset.

(H) Kaplan–Meier survival analysis of HRDness & non-C1 and non-HRDness patients in the PRCA495 dataset.

(I) Kaplan–Meier survival analysis of HRDpos and HRDneg patients classified by HRD score in the PRCA495 dataset.

(J) Kaplan–Meier survival analysis of HRDpos and HRDneg patients classified by HRDetect score in the PRCA495 dataset. p values marked in (F-G) were

determined by log-rank test.
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Figure 4. Performance of 16-GPS in validation datasets

(A and B) HRD and HRDetect scores in different groups classified by 16-GPS from the PRCA213 dataset. p values were determined by a one-sided Wilcoxon

rank-sum test.

(C) Kaplan–Meier survival analysis of groups classified by 16-GPS in the PRCA281 dataset. p value were determined by log-rank test.

(D) Gleason score in groups classified by 16-GPS in the PRCA281 dataset. p value were determined by a one-sided Wilcoxon rank-sum test.

(E) Kaplan–Meier survival analysis of groups classified by 16-GPS in the PRCA131 dataset. p value were determined by log-rank test.

(F and G) Gleason score and PSA level in groups classified by 16-GPS from the PRCA131 dataset. p values were determined by a one-sided Wilcoxon rank-

sum test.

(H–J) Kaplan–Meier survival analysis of PARPneg and PARPpos samples in HRDness group from the PRCA495, PRCA281, and PRCA131 datasets. p values were

determined by log-rank test.

(K) LN_IC50 and AUDIC in cells classified by 16-GPS. p values were determined by a one-sided Wilcoxon rank-sum test.
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takes all’’ was applied, as only one gene pair overlapped with 16-GPS. A total of 157 patients in the

HRDness group showed poorer BFS compared with that in the non-HRDness counterparts (p = 2.52 3

10�3, HR = 1.54, 95% CI: 1.16–2.04, Figure 4C), and the former showed a significantly higher Gleason score

(one-sided Wilcoxon rank-sum test, p = 1.81 3 10�3, Figure 4D). Similarly, for the 131 samples from the

PRCA131 dataset, 29 patients classified into the HRDness group by 16-GPS had a significantly lower BFS

than 102 patients classified into the non-HRDness group (p = 3.13 3 10�3, HR = 3.02, 95% CI: 1.40–6.53,

Figure 4E), and the HRDness patients displayed higher Gleason scores (p = 0.10, Figure 4F) and PSA levels

(p = 0.06, Figure 4G) through a one-sided Wilcoxon rank-sum test.

On the other hand, patients were classified into the PARPneg and PARPpos (high PARP expression) sub-

groups by the StepMiner algorithm (see Method details). As expected, for the 139 HRDness patients

from the PRCA495 dataset with expression profile, 84 PARPneg tumors showed greater BFS than 55 PARPpos
tumors (p = 0.04, HR = 1.96, 95% CI: 1.01–3.80, Figure 4H). A similar tendency was observed when analyzing
6 iScience 24, 103135, October 22, 2021
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the 157 HRDness patients from PRCA281 (p = 0.24, HR = 1.28, 95% CI: 0.85–1.94, Figure 4I). Unfortunately,

we obtained an opposite result in PRCA131, where 15 PARPneg patients had a poor BFS than 14 PARPpos
patients (p = 0.15, HR = 0.41, 95% CI: 0.11–1.45, Figure 4J).

Further, using the gene expression profiles of prostate cancer cell lines treated by five PARPi types from the

Genomics of Drug Sensitivity in Cancer (GDSC), three and four cell lines were stratified by 16-GPS into the

HRDness and non-HRDness groups, respectively. The HRDness cells tended to be sensitive to veliparib by

comparing the natural log of the fitted half maximal inhibitory concentration (LN_IC50, p = 4.80 3 10�2,

Figure 4K) and area under the drug inhibition curve (AUDIC, p = 0.05, Figure 4K) using one-sidedWilcoxon

rank-sum test. HRDness cells also displayed the same tendency of sensitivity for the drugs, including

olaparib, rucaparib, and talazoparib, when comparing the LN_IC50 (Figure S3A) and AUDIC (Figure S3B)

with non-HRDness cells.

Robustness of 16-GPS against different tumor sampling sites and partial RNA degradation

Here, we proved that REO-based qualitative 16-GPS was not susceptible to different tumor sampling

positions or RNA degradation in prostate cancer. 16-GPS was applied to classify six paired pre-ADT and

post-ADT samples from the PRCA12-ADT dataset, and all samples were classified into the non-HRDness

group. Although the quantitative expression values of 26 genes in 16-GPS varied considerably between

paired samples, the REOs in 16-GPS were stable enough to stratify paired patients into the same group

(Figure S4). Similarly, the signature resulted in a classification where six paired fresh-frozen/formalin-fixed

paraffin-embedded (FF/FFPE) samples from PRCA12-FF were assorted into the non-HRDness group.

Relative expression ranks of 16-GPS were highly robust against partial RNA degradation in FFPE subjects,

and consistent between pairwise samples (Figure S5).

16-GPS characterizing distinct multi-omics features in HRDness prostate cancer

Multi-omics analysis was conducted in the PRCA495 dataset. A total of 61 genes showed significantly

different mutation frequencies between the HRDness and non-HRDness groups after filtering the mutation

type of silent mutation (Fisher’s exact test, p < 0.05, Figure 5A), and the HRDness samples showed

significantly higher tumor mutational burden (TMB) than the non-HRDness samples (one-sided Wilcoxon

rank-sum test, p < 2.20 3 10�16, Figure 5B). Further, the histogram showed a high frequency of copy num-

ber aberrations (CNA) in the HRDness samples (Figure 5C). Specifically, focusing on the genomic region,

613 lesions were identified with significantly different CNA frequencies between these two groups (Fisher’s

exact test, p < 0.05), of which, 612 of 613 genomic lesions had significantly higher frequencies of copy

number gain or loss in the HRDness group, which was coincidentally higher than expected (binomial dis-

tribution test, p < 2.20 3 10�16).

We identified 2,281, 4,641, and 10,185 differentially expressed genes (DEGs) between HRDness and non-

HRDness samples from the PRCA131, PRCA213, and PRCA495 datasets, respectively (Wilcoxon rank-sum

test, FDR <0.01). Only 15 DEGs were identified between the HRDness and non-HRDness groups from the

PRCA281 dataset because of the small detected gene scale (Wilcoxon rank-sum test, FDR <0.01).

Concordance analysis for DEGs showed that the consistency of HRDness-relatedDEGs between both data-

sets, excluding the PRCA281 dataset, was over or equal to 92.23% (Figure 5D), indicating significantly

reproducible and consistent transcriptional differences between these two groups.

By comparing the methylation profiles between HRDness and non-HRDness samples in PRCA495, we de-

tected 2,800 differentially hypermethylated and 2,552 hypomethylated genes (Wilcoxon rank-sum test,

FDR <0.01). As shown in Figure 5D, 104 of the 2,800 hypermethylated genes and 196 of the 2,552 hypome-

thylated genes overlapped with 831 unique and consistent deregulation direction DEGs, respectively,

which were obtained by overlapping the identified DEGs in the three datasets. Further, 98.08%

(102/104) hypermethylated genes were concordantly under-expressed in the HRDness group. Similarly,

98.98% (194/196) hypomethylated genes were concordantly overexpressed in the HRDness group, which

could not be coincidental (binomial distribution test, p < 2.20 3 10�16).

Further, we also identified 24 differentially expressed proteins by comparing the proteomic data of these

two groups (Wilcoxon rank-sum test, FDR <0.01). These genes were enriched in some HRD- and/or im-

mune-related pathways (hypergeometric distribution model, p < 0.05, Table S1). Importantly, two key pro-

teins, BRCA2 and MRE11A, which are essential for HR (Li et al., 2019; D’Andrea and Grompe, 2003), were
iScience 24, 103135, October 22, 2021 7
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Figure 5. The distinct multi-omics characteristics of the HRDness and non-HRDness samples

(A) Oncoplot showing 61 genes with significantly different mutation frequencies (rows) across subjects (columns) split by 16-GPS. The left shows themutation

percentage, and the top shows the overall number of mutations. Molecular subgroups divided by BRCA mutation, signature 5, signature 3, HRD score, and

HRDetect score across subjects are shown at the top. Demographic and clinical annotations are provided at the bottom.

(B) TMB levels between groups classified by 16-GPS. p value were determined by a one-sided Wilcoxon rank-sum test.

(C) Percentage of samples (Y axis) with CNA (amplification or deletion) along the exome, separately shown for the HRDness and non-HRDness subtypes.

(D) Concordance between DEGs detected from the different datasets (upper half), and the Venn diagram displaying the overlap between the consensus

DEGs in the three datasets and differentially methylated genes (DMGs) detected from the PRCA495 dataset.

(E) Protein expression levels of two HRR genes between the HRDness and non-HRDness samples. p values were determined by a one-sided Wilcoxon rank-

sum test.
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significantly under-expressed in HRDness compared with that in the non-HRDness group (one-sided

Wilcoxon rank-sum test, BRCA2: p = 8.87 3 10�5; MRE11A: p = 0.03, Figure 5E). Besides, the HRDness

group suffered genomic instability and epigenomic alterations, including ATM mutation, POLD4 and

NBN copy number gain, DEPDC1B and H2AFX loss, UBR5 hypomethylation, and FANCE hypermethyla-

tion, which were enriched in HRR genes.

HRDness prostate cancer presenting elevated immune infiltration

The 296 consensus genes, which represent consistent alterations in the transcriptome and epigenome levels

caused by HRDness, not only participated in the HR-related pathways, but also some typically immune-related

pathways, such as ‘‘Endocytosis’’, ‘‘Autophagy,’’ and ‘‘Hippo signaling pathway’’ (hypergeometric distribution

model, p < 0.05, Figure 6A). Therefore, considering emerging evidence to suggest that HRDmay influence the

immune system (Pellegrino et al., 2020), we next investigated the main infiltrating immune cells, including

B cells, CD4 T cells, CD8+ T cells, neutrophils, macrophages, and dendritic cells, between the HRDness

and non-HRDness groups from the PRCA495 dataset in the Tumor Immune Estimation Resource (TIMER) data-

base. The violin plot showed a significantly increased fraction of 5/6 immune cells in the HRDness group than

that in the non-HRDness group (Figure 6B). Surprisingly, two important genes regulating immune cells, IRF3
8 iScience 24, 103135, October 22, 2021
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Figure 6. Immune infiltration analysis of HRDness tumors

(A) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways significantly enriched with the 296 consensus genes were identified. Red, blue, and green

arrows represent pathways related to immunity, HRD, and both, respectively (hypergeometric distribution model, p < 0.05).

(B) Abundance of sixmain infiltrating immune cells between thegroups from the PRCA495dataset. p valuesweredeterminedby a one-sidedWilcoxon rank-sum test.

(C) Relationship between the two key genes belonging to the cGAS-STING pathway and fractions of three types of immune cells.

(D) Distribution of immune scores in groups classified by 16-GPS from the PRCA495 dataset. p value were determined by a one-sided Wilcoxon rank-sum test.

(E) Heatmap displaying the distribution of log-transformed expression levels for immune-stimulators and immune-inhibitors with significant differences

between the groups in the PRCA495 dataset.

(F) Expression levels of four immunotherapeutic targets, viz., PD1, PD-L1,CTLA4, and PD-L2, between the two groups classified by 16-GPS from the PRCA495

dataset. p values were determined by a one-sided Wilcoxon rank-sum test.
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Figure 7. The regulatory network of signature genes for HRD

The nodes (circle and hexagon) represent DEGs of co-expression or co-methylation with six differentially expressed signature genes (rhombus); the solid and

dashed lines represent positive and negative relationships, respectively. KEGG pathways significantly enriched with DEGs connected with SRPX and

ATP6V1CA are shown on the left and right sides, respectively. The pathways enriched with the HRD-related DEGs regulated by each of the remaining four

signatures are displayed in Table S2.
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and TBK1, were upregulated in the HRDness group in more than two datasets. Results suggest that the

overexpression may contribute to B cell and CD8+ T cell activation via the STING-TBK1-IRF3 mechanism as

reported previously (Figure 6C) (Zheng et al., 2020).

Further, the HRDness group exhibited a significantly increased immune score (one-sided Wilcoxon rank-

sum test, p = 9.733 10�12, Figure 6D), which was likely responsible for the activation of immune-stimulators

in the HRDness samples (Figure 6E). In addition, when localizing immunotherapeutic targets, higher PD-L1,

PD-L2, PD1, and CTLA4 expressions were noticed in the HRDness group (Figure 6F). These results demon-

strated that HRDness patients may benefit from immune checkpoint inhibitors (ICIs).

Genes in 16-GPS playing a central role in regulating the HRD-related pathways

There were six overlaps with consistent deregulation directions between signature genes and 831 unique

DEGs. Co-expression or co-methylation among these six signature genes and DEGs were used to construct

the modulation network of HRDness. As shown in Figure 7, the 82 DEGs regulated by SRPX were signifi-

cantly enriched in genetic instability and DNA damage repair (DDR)-related biological pathway, namely

‘‘cGmp-pkg signaling pathway,’’ and an immune-related ‘‘ErbB signaling pathway’’ (p < 0.05, hypergeo-

metric distribution model). Similarly, using the hypergeometric distribution model and 121 DEGs linked

with UBE2W (p < 0.05), some HRD- and/or immune-related pathways were also observed, such as ‘‘cell

cycle’’ and the ‘‘mTOR signaling pathway.’’ Focusing on HRR genes, we found one key HRR gene, viz.,

NBN, which was simultaneously connected to several signature genes, including ATP6V1C1, ESRP1,

UBE2W, and NUCKS1, and was upregulated in the HRDness group, consistent with the results of previous

research (Min et al., 2020); the result may be due to the significantly higher frequency of copy number gain

of NBN in HRDness tumors (Fisher’s exact test, p < 0.0001). Likewise, another HRR gene, viz., UBR5, was

linked with ATP6V1C1 and UBE2W. In addition, UBR5 was over-expressed in the HRD group, which likely

resulted from hypomethylation of this gene. As expected, these results suggest that the signature genes

driving some HRD-related transcriptome alterations matched upstream-specific variations.

DISCUSSION

In this study, we derived a transcriptional qualitative signature, termed as 16-GPS, whose within-sample

REOs could be used to demonstrate the HRD status of prostate cancer patients. To our knowledge, this

was the first study to establish an HRDness transcriptional signature in prostate cancer for expanding

patients who may benefit from PARPi treatment. As expected, the proportion of HRDness samples in

the largest dataset, PRCA495, was slightly higher than the reported scale of HRR gene mutation (33.54%

vs. 25%) (Criscuolo et al., 2019; Handy et al., 2018). In agreement with previous reports, the HRDness sam-

ples showed poor BFS, along with a highGleason score and PSA level. Moreover, when 16-GPS was applied

to the cell line data, we found that HRDness cells were more sensitive to PARPi (Evans et al., 2016; Marshall

et al., 2019a). Further, analysis of genomic data demonstrated that HRDness prostate cancers classified by

16-GPS displayed higher frequencies of mutation and CNA than the non-HRDness samples. HRD-associ-

ated alterations at the epigenomic level were consistent with transcriptional differences obtained between

the HRDness and non-HRDness groups, suggesting that DNA methylation alterations of the CpG loci in

these DEGs play key roles in promoting HRD. Further functional enrichment analysis showed that these

consistent DEGs were enriched with some HRD- and/or immune-related pathways. Subsequently,

HRDness samples were found with increased immune infiltration and expression of the immune checkpoint

genes, suggesting that the HRDness tumors may respond to ICIs. Finally, in addition to some pathways

related to HRD and/or immune system, we found that several HRR genes, such as NBN, UBR5, and

RMI1, were regulated by genes involved in the 16-GPS, which were also regulated by genomic and

epigenomic alterations.

Presently, pre-clinical trials showed various PARPi response rates with different HRR gene mutations.

Moreover, some cases without such mutations also responded to PARPi in prostate cancer (Marshall

et al., 2019b; Mateo et al., 2015). This suggests that these genomic testing panels are not broad enough
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in illustrating the molecular characteristics of HRD tumors and/or to catch the mechanisms of PARPi vulner-

ability outside of the HRR gene mutations. There are two assumptions: (i) these tumors indeed exhibited

the intact HRR gene, but shared a HRDness phenotype; (ii) current genomic testing methods have strict re-

quirements for tumor materials, leading to false-negative results. Therefore, a more accurate biomarker for

determining tumor HRD status is needed. Taking studies on breast and ovarian cancers as a reference,

Zsofia et al. established the same HRD signatures in prostate cancer (Sztupinszki et al., 2020; Telli et al.,

2016). However, setting a reliable cutoff for these HRD signatures induced by tissue-specific backgrounds

is challenging (Jonsson et al., 2019). Even signature 3, the basis of HRDetect discovery, lacks a discrete

threshold to determine the BRCA states of tumors (Alexandrov et al., 2013). Besides, a transcriptomics-

based study created a DDR pathway signature, which mainly focused on predicting the prognosis of

high-risk prostate cancer, rather than defining the DDR status (Evans et al., 2016).

Sokolova et al. shared a unique insight that it may bemore reliable to detect the downstream consequences of

HR function loss for accurately predicting the response to PARPi (Sokolova et al., 2020). Therefore, considering

the important role of the transcriptome as a ‘‘bridge’’ from genome to proteome and current high-throughput

assays for gene expression detection, we developed a transcriptional qualitative signature based on the

within-sample REOs rather than traditional quantitative biomarkers. Here, we chose HRDetect score rather

than the HRD score to identify HRD-associated genes, because the former genomic signature showed a

more accurate characterization of HRD than the latter in the prostate cancer whole-exome sequencing data

from TCGA (Sztupinszki et al., 2020). Strong genomic and proteomic evidence was obtained, which indicated

that the HRDness tumors classified by 16-GPS were associated with enhancing genomic instability and

decreasing HRR protein expression. More importantly, the REO-based signature probably meet great appli-

cation in clinical practice because: (i) the pairwise relative transcript abundancemeasurements of genes could

be acquired using a low-throughput detection technique, such as real-time PCR; (ii) these qualitative signa-

tures are relatively robust against experimental and technical variations; and (iii) the qualitative signature

can be applied at an individual level, without pre-collecting a set of samples for setting a reliable cutoff or

for data standardization (Guan et al., 2018; Bhuva et al., 2020).

In summary, we developed 16-GPS based on REOs, which could be applied to define the HRD status of

prostate cancer at an individual level. The HRDness samples classified by the 16-GPS showed distinct

HRD characteristics at the multi-omics level and in clinical factors. Therefore, it is worthwhile to further

verify the clinical applications of 16-GPS, which may reduce unnecessary medical expenses as well as cyto-

toxicity of some patients who represent PARPi-therapy-irrelevant low risk of death because of the presence

of HRD phenotype.
Limitations of study

There are a few limitations in this study. We were unable to collect prostate cancer samples with PARPi

treatment to validate the inference that HRDness patients determined by 16-GPS could be benefited

from PARPi. However, based on the expression of PARP genes, the prostate cancer samples were divided

into PARPneg and PARPpos groups, and the PARPneg prostate cancer group was suggested to have a loss of

PARP function. As expected, PARPneg patients with HRDness showing higher BFS were recognized rather

than the PARPpos patients in the PRCA495 and PRCA281 datasets. However, a disagreement result was

found in PRCA131 dataset, which may be caused by small sample size and low expression of PARP genes

may be compensated by other genes or pathways in the HR deficient background and further promote can-

cer cell development (Ghosh et al., 2016; Ceccaldi et al., 2015). Besides, because of the absence of data

with prostate cancer or cell lines treated by ICIs, we were only able to obtain some indirect results for

the sensitivity of HRDness to ICIs, including the enlarged immune infiltration, high TMB, and expression

of immunotherapeutic targets in HRDness samples. It is necessary to collect ICIs treatment data to explore

the relationship between HRDness and ICIs in the future.
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KEY RESOURCES TABLE
REAGENTE or RESOURCE SOURCE IDENTIFIER

Deposited data

TCGA RNA-seq data (PRCA495) Genomic data commons application

programming interface (GDC API)

https://gdc.cancer.gov/developers/gdc-application-

programming-interface-api

PRCA213 International Cancer Genome Consortium PRAD-CA (https://icgc.org/)

PRCA131 Gene Expression Omnibus (GEO) GSE21032 (http://www.ncbi.nlm.nih.gov/geo/)

PRCA281 GEO GSE16560 (http://www.ncbi.nlm.nih.gov/geo/)

PRCA12-ADT GEO GSE150368 (http://www.ncbi.nlm.nih.gov/geo/)

PRCA12-FF ArrayExpress E-MTAB-2523 (https://www.ebi.ac.uk/arrayexpress/)

Genomics of Drug Sensitivity

in Cancer

GDSC https://www.cancerrxgene.org/

Cancer Genome Project CGP https://www.nature.com/articles/nature11005#Sec18

TCGA mutation data GDC API https://gdc.cancer.gov/developers/gdc-application-

programming-interface-api

TCGA CNA data GDC API https://gdc.cancer.gov/developers/gdc-application-

programming-interface-api

TCGA DNA methylation data cBioPortal http://www.cbioportal.org/

TCGA proteomics data Firehose https://gdac.broadinstitute.org/

TCGA immune-related data TIMER http://timer.cistrome.org/

Software and algorithms

consensus cluster R-Bioconductor https://bioconductor.org/packages/release/bioc/

html/ConsensusClusterPlus.html

ComplexHeatmap R-Bioconductor https://bioconductor.org/packages/release/bioc/

html/ComplexHeatmap.html

clusterProfiler R-Bioconductor https://bioconductor.org/packages/release/bioc/

html/clusterProfiler.html

Cyctoscape Graphpic Software https://cytoscape.org/

R (4.0.2) The R foundation https://www.r-project.org/
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead

contact, Yunyan Gu (guyunyan@ems.hrbmu.edu.cn).
Materials availability
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Data and code availability

d This paper analyzes existing, publicly available data. These accession numbers for the datasets are listed

in the Key resources table.
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d Any additional information required to reanalyze the data reported in this paper is available from the
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METHOD DETAILS

Data processing

A total of 1144 samples from six datasets were used in this study, as described in the Key resources table.

The dataset name is defined by the sample size. For survival analysis, we only used datasets containing

more than 50 samples to avoid the bias of small sample size. For the training dataset of PRCA495, the

mRNA-seq profiles of level 3 Fragments Per Kilobase Million was extracted. For validation datasets

PRCA213, PRCA131, PRCA281 and PRCA12-ADT, which were measured by four different platforms, the

gene expression profiles were directly used after probe re-annotation without normalization. The probe-

set identifiers (IDs) were mapped to Entrez gene IDs using the corresponding platform information. If mul-

tiple probe-sets were mapped to the same gene, the expression value of the gene was defined as their

average value, and probe sets that did not map to any Entrez gene ID or mapped to multiple Entrez

gene IDs were excluded in our study. For the dataset of PRCA12-FF, whose transcriptional data were

derived from Illumina HiSeq 2000, the gene expression profiles of processed Reads Per Kilobase perMillion

mapped reads were used.

TCGA mutation profiles were extracted according to the following inclusion criteria: (i) non-silent somatic

mutation. (ii) At least one mutation called by Muse, Mutect2, Somaticsniper, or Varscan2 methods. More-

over, CNA, epigenomics and proteomics data were directly used in this study without any processed.

LN_IC50 and AUDIC of five PARPi, viz., veliparib, olaparib, rucaparib, niraparib, and talazoparib, were ob-

tained from GDSC database, and IC50 values of veliparib and olaparib were obtained from CGP database.

Data on the seven prostate cancer cell lines used in this study was referenced from the Catalogue of

Somatic Mutations in Cancer (https://cancer.sanger.ac.uk/cosmic).
Mutational signature, HRD, and HRDetect score

The mutational signature information, including signature 3 and signature 5, HRD score, and HRDetect

score for 495 samples from the PRCA495 dataset and 66 samples from the PRCA213 dataset was derived

from research by Sztupinszki et al. (2020).
Unsupervised clustering

To determine the molecular subclass that is most biologically related to HRD in the RNA-Seq-based data-

set (n = 495), we performed consensus clustering analysis in the range k = 2-6 (the pre-assigned number of

clusters) based on the expression profiles of genes whose expressions were significantly correlated with the

HRDetect score. Spearman’s rank correlation was used for evaluating the relationships between gene

expression and HRDetect scores. To avoid overfitting, the clustering data was resampled 1,000 times,

each cycle consisting of a randomized selection of 80% samples and genes. Then, the resampled data

was converted into a similarity matrix to calculate the probability of two samples clustered together,

termed as consensus matrix. Although the lowest proportion of ambiguous clustering was observed at

k = 5 (Figure S1A), considering the clinical and genomics characteristics that HRDness sample should carry

and the appropriate sample size of HRDness, we chose k = 6, and C1 was considered the HRDness-like sub-

class (Figure S1B). Clinical factors were compared between all cluster pairs using a one-sided Wilcoxon

rank-sum test.

Development of the REO-based signature

Transforming the quantitative expression of a single gene into a binary relation of the within-sample REOs

of gene pairs, a binary matrix was obtained by pairwise comparisons of all genes, with Ei > Ej or Ei < Ej on a

per sample basis, where Ei and Ej represent the expression values of gene i and gene j, respectively. We

identified highly stable gene pairs whose REO pattern was preserved atR 85% of C1 samples, and the sig-

nificant gene pairs in non-C1 samples were detected using the binomial distribution test with false discov-

ery rate (FDR) < 0.01. Further, gene pairs whose REO patterns were preserved in HRDness-like samples, but

reversed in non-HRDness-like samples, were termed as candidate gene pairs. The p-values were adjusted

using the Benjamini-Hochberg (BH) procedure. We classified the samples from the training dataset into the

HRDness or non-HRDness subtypes for each candidate gene pair according to their within-sample REO

pattern. Subsequently, we evaluated the sensitivity and specificity for each gene pair by calculating the

ratio of correctly classified HRDness samples to all HRDness-like samples, and the ratio of correctly classi-

fied non-HRDness samples to all non-HRDness-like samples. Finally, from these candidate gene pairs, we
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performed a forward selection procedure to search for a signature that achieved the largest F-score value

for determining the molecular subclasses of samples, which is defined as follows:

F � score=
2
�
sensitivity � specificity�

�
sensitivity + specificity

�

All candidate gene pairs were sorted in descending order according to their F-score value. The gene pair

with the largest F-score was chosen as the seed, and the gene pairs that follow were added to the set one at

a time, until the F-score value did not increase. Taking 10% as the gradient, we adopted 10-90% gene pairs

contained in the signatures as the cutoff. A sample was classified into the HRDness group if more than the

pre-defined cutoff of the REOs of gene pairs in the set was voted for HRDness; else, the sample was

assigned to the non-HRDness group. Finally, a set of gene pairs with the largest AUC and F-score was

selected as the final HRDness classification signature by employing AUC-ROC. Particularly, the classifica-

tion cutoff correspondingly reduced with the number of matched gene pairs within the sample.
Defining PARPneg and PARPpos tumors

Using the StepMiner algorithm (Sahoo et al., 2007), other than the PRCA281 dataset, in which only PARP1

overlapped with the detected genes, if any two among PARP1, PARP2, and PARP3 expression levels from a

sample were smaller than the corresponding StepMiner cutoff, then the sample was classified into the

PARPneg group.
Pathway enrichment analysis

Functional enrichment analysis of DEGs and differentially expressed proteins was performed using the

R package ‘clusterProfiler’. Subsequently, bubble maps of the KEGG pathway were drawn.
QUANTIFICATION AND STATISTICAL ANALYSIS

Analysis of the multi-omics data

Fisher’s exact test was used to identify genes or genomic regions with significantly different mutations or

CNA frequencies between two groups classified by 16-GPS. TMB was calculated based on somatic

nonsynonymous mutations. The Wilcoxon rank-sum test was used to detect DEGs or DMGs between

two groups. The BH procedure was used to calculate FDR. Further, protein expression was compared

between the two groups using a one-sided Wilcoxon rank-sum test.
Analysis of immunity features

The one-sided Wilcoxon rank-sum test was used to compare the immunity features mentioned above and

the expression of the immune checkpoint genes between two groups. Spearman rank correlation was used

for evaluating the relationships between the expression of two key genes in the STING pathway and the

three main infiltrating immune cells.
Network analysis

Spearman’s rank correlation, with |r| > 0.6 and FDR < 0.01, was used for identifying DEGs that were co-

expressed and co-methylated with signature genes based on the expression and methylation profiles of

PRCA495.
Survival analysis

The Kaplan-Meier curves of BFS were estimated using the Kaplan-Meier method and compared with the

log-rank test.
Statistical analysis

All statistical analyses in this study were performed using R software versions 4.0.2.
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