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Habitat loss and degradation, driven largely by agricultural expansion and

intensification, present the greatest immediate threat to biodiversity. Tropical for-

ests harbour among the highest levels of terrestrial species diversity and are likely

to experience rapid land-use change in the coming decades. Synthetic analyses of

observed responses of species are useful for quantifying how land use affects bio-

diversity and for predicting outcomes under land-use scenarios. Previous

applications of this approach have typically focused on individual taxonomic

groups, analysing the average response of the whole community to changes in

land use. Here, we incorporate quantitative remotely sensed data about habitats

in, to our knowledge, the first worldwide synthetic analysis of how individual

species in four major taxonomic groups—invertebrates, ‘herptiles’ (reptiles

and amphibians), mammals and birds—respond to multiple human pressures

in tropical and sub-tropical forests. We show significant independent impacts

of land use, human vegetation offtake, forest cover and human population

density on both occurrence and abundance of species, highlighting the

value of analysing multiple explanatory variables simultaneously. Responses

differ among the four groups considered, and—within birds and

mammals—between habitat specialists and habitat generalists and between

narrow-ranged and wide-ranged species.
1. Introduction
Habitat loss and degradation, originating mostly from agricultural expansion and

intensification, are currently the most common pressures on biodiversity [1].

These pressures affect the structure of local ecological communities and can

cause local extinctions of species, which in turn can lead to reduced ecosystem

functionality [2,3] and global extinction [1]. The growing human population

and changing consumption patterns are likely to cause continued loss of habitat

and intensification of land use into the foreseeable future [4,5].

Not all species respond equally to land-use changes: some species are ubiqui-

tous in anthropogenic habitats, whereas others are entirely absent [6]. Responses

http://crossmark.crossref.org/dialog/?doi=10.1098/rspb.2014.1371&domain=pdf&date_stamp=2014-08-20
mailto:tim.newbold@unep-wcmc.org
http://dx.doi.org/10.1098/rspb.2014.1371
http://dx.doi.org/10.1098/rspb.2014.1371
http://rspb.royalsocietypublishing.org
http://rspb.royalsocietypublishing.org


Figure 1. Sites with data used in the models of species occurrence and abundance (circles). Grey shaded areas are those defined as being tropical or sub-tropical
forest according to the BIOME model [24].

rspb.royalsocietypublishing.org
Proc.R.Soc.B

281:20141371

2

to land-use and other environmental gradients may be

mediated by the functional traits of species: large, slower-

breeding, less-mobile species that are dietary and habitat

specialists are typically more vulnerable to land-use change

than other species [7–13]. The traits that confer vulnerability

to land-use change vary geographically [14,15], with tropical

forests containing a high proportion of species having traits

likely to render them vulnerable to land-use change [13,16].

Tropical forests are predicted to experience among the greatest

rates of natural vegetation loss in the near future [17].

The response of species to land-use change can be modelled

in three main ways. First, species–area relationships relate loss

in the number of species to loss in the area of natural habitat

[18]; such models can be applied relatively easily at a global

scale, but tend to assume a single relationship between the

area of remaining natural habitat and number of species per-

sisting, making it difficult to analyse different responses by

different species or to account for non-equilibrium conditions.

Second, species distribution models correlate the current

distribution of species to habitat and climate data, and then

use these relationships to project the consequences of habitat

and climate changes [19]. By capturing individual species’

habitat requirements, these models can make detailed,

spatially explicit and taxon-specific predictions of range

loss, but the data requirements are large and comprehensive

data are lacking for many parts of the world and for most

taxa [20].

Finally, empirical data from individual studies can be

pooled in order to develop synthetic statistical models of

the relationship between land-use changes and local occur-

rence or abundance of species [21,22]; this is the approach

we take in this paper. Synthetic analyses take advantage of

the widespread availability of multi-species occurrence and

abundance data at different sites, often in different land-use

types and land-use intensities. Such data can offer a relatively

good representation of different taxonomic groups, including

traditionally under-represented groups such as invertebrates

(see also the electronic supplementary material, table S1).

Previous applications of this approach have classified land

use into discrete categories based on the description of the

habitat given in the source paper [21–23] and have tended

to focus on individual taxonomic groups (e.g. [12], but see

e.g. [22]). Furthermore, because such studies have usually ana-

lysed the effect sizes seen in the source papers rather than the

underlying data, they have generally analysed the average

response of the whole community rather than the response

of individual species, precluding any consideration of differ-

ent responses among taxonomic or ecological groups [21–23].
Using data collated as part of the projecting responses

of ecological diversity in changing terrestrial systems (PRE-

DICTS) project (www.predicts.org.uk), we present an

analysis of individual species’ responses to land-use and

land-use intensity, throughout the world’s tropical and sub-

tropical forests, of nearly 4000 taxa in four major taxonomic

groups: invertebrates, ‘herptiles’ (reptiles and amphibians),

mammals and birds. In order to understand changes in com-

munity composition and which species are being affected

most by land-use change, we also consider differences in

responses within these taxonomic groups, between habitat

specialists and generalists and between wide-ranging and

narrow-ranging species. This is, to our knowledge, the first

study to relate differences in responses to human perturbations

among and within different taxonomic groups, and the first

broad-scale synthetic study to use remotely sensed, and thus

globally consistent, data on human land use and other drivers.
2. Material and methods
(a) Study area
We focus on studies conducted within forest biomes—i.e. potentially

forested areas according to the BIOME model [24] as implemented

in the IMAGE model [25]—in tropical and sub-tropical regions of

the world (408 S to 408 N) (figure 1).

(b) Abundance data
Data on the abundance of individual species were gathered from

sources identified using a combination of Web of Science (http://

wok.mimas.ac.uk) searches, opportunistic surveys of the conserva-

tion and applied ecology literature (electronic supplementary

material, table S2), and surveys of published meta-analyses of

responses of biodiversity to land-use change [22,26,27]. The vast

majority of the papers considered implied that the authors

attempted to sample all species found within specified taxonomic

groups. As with any meta-analysis or synthetic analysis of this

kind, not all species will have been sampled during the original

surveys. It is likely that undetected species tended to be the

rarer species; if the rarer species are also the most sensitive to

land-use change, our results will be conservative. For most of

the sources, we also obtained additional data from papers’

authors, including precise coordinates and plot-specific abun-

dance data (electronic supplementary material, appendix S1).

Criteria for including studies were: (i) that the data were collected

since 2000 (the earliest year for which the remotely sensed data

used here are available); (ii) that the paper contained reported

measures of abundance, community composition or diversity

from multiple sites at differing levels of human pressures; and
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(iii) that the coordinates of the sites sampled could be acquired.

The final dataset came from 42 published papers and one unpub-

lished database from the Centro Agronómico Tropical de

Investigación y Enseñanza (figure 1; electronic supplementary

material, appendix S1) and contained 609 sites, and 51 541 abun-

dance records (of which 26% were non-zero values) for 3708 taxa

(2138 invertebrates; 295 herptiles; 208 mammals and 1067 birds;

electronic supplementary material, table S1). The following

measures of abundance were included in the analyses: abundance

(47 624 records), relative abundance (3528 records), group abun-

dance (171 records), density (96 records) and reporting rate (122

records). For the measures of abundance that are sensitive to

sampling effort (abundance and group abundance), we corrected

for any within-study differences in sampling effort by assuming

that these measures increase in direct proportion to sampling effort.

(c) Species habitat specialization and geographical
range size

In order to analyse differences in how the occurrence and abun-

dance of species respond to land use within major taxonomic

groups, we included information on species’ degree of habi-

tat specialization and geographical range size. For birds, habitat

preferences were classified using the International Union for

Conservation of Nature Habitats Classification Scheme. We used

data from the highest level, which has 14 broad habitat types includ-

ing ‘forest’ (http://www.iucnredlist.org/technical-documents/

classification-schemes/habitats-classification-scheme-ver3). The

importance of each habitat used by species is classified as major,

suitable, marginal or unknown, based on information in the litera-

ture, and reviewed by experts. We considered any species to be a

forest specialist if forest habitat was listed as being of ‘major’

importance. For mammals, we were unable to obtain data on

specialization to forest habitats specifically, so instead we used

the habitat breadth data from the PanTHERIA database [28],

which measures the number of habitat layers (above ground,

aquatic, fossorial and ground) used by a species. Species were

classified as specialists if they had a habitat breadth of one or as

generalists otherwise.

To divide species into wide-ranged and narrow-ranged cat-

egories, we first estimated each species’ total range area by

summing the areas of half-degree grid cells with occurrence

records in the Global Biodiversity Information Facility (GBIF)

database (http://www.gbif.org/); species whose area of occu-

pancy exceeded the median for the broad taxonomic group

were classed as wide-ranged and the others as narrow-ranged.

This coarse categorization around taxon-specific medians reflects

the fact that taxonomic and geographical biases in GBIF occur-

rence data preclude simple and accurate estimates of range size

[20,29]. The GBIF data were used instead of other data sources,

because they allowed comparable estimates of range size for all

taxonomic groups, including invertebrates.

(d) Anthropogenic pressure data
Four measures of anthropogenic environmental pressure were

considered as potential explanatory variables for differences in

the occurrence and abundance of species: the major land-use

type, forest cover, removal of vegetation in the 3 years prior to

sampling and human population density.

The major land use at each site within each study was classi-

fied as primary vegetation (348 sites), secondary vegetation (94),

wood plantation (319), cropland (7), pasture (20) or urban (7)

(electronic supplementary material, table S3), based on the

description of the habitat given in the original paper. To make

the models compatible with globally consistent datasets on

land use, we used the same classes as used in the Representative

Concentration Pathways scenarios [4]. Numbers of sites in
cropland, pasture and urban environments were low, rendering

our confidence in the modelled inferences about these habitats

lower than for natural and plantation forests. The results for

these habitats are presented so that there are at least provisional

estimates of the impact of all land-use types, but in the Discussion

we focus on the results for forested land-use types.

Forest-cover data for the year 2000 were taken from the

moderate-resolution imaging spectroradiometer (MODIS) Veg-

etation Continuous Fields product [30]. Human population

density data for the year 2000 were taken from the Global

Rural–Urban Mapping Project, adjusted to match United

Nations country-level total population values [31].

Removal of vegetation at each site was estimated from values

of the normalized difference vegetation index (NDVI) over the

3 years prior to and including the year of the study. NDVI data

were taken from MODIS MOD13Q1 (collection 5) composited

for 16 days at 250 m spatial resolution [32] using a development

version of the MODISTOOLS package in R [33]. We used a linear

interpolation of the raw data, after excluding any data with a qual-

ity (QA) flag not equal to zero, and calculated the integrated area

under the curve from the minimum observed NDVI value within

the 3 years (iNDVI). For studies conducted in 2000, 2001 and 2002,

we used NDVI data for the 3 years up to and including 2002. The

time integration of NDVI was first suggested by Tucker et al. [34]

and has been used successfully to estimate crop and wood yields

[35] and livestock densities [36].

We removed one statistically influential site with high abun-

dances of reptiles and amphibians, which had an unusual

combination of being located in primary forest while having

high iNDVI, high forest cover and low human population den-

sity. Inspection of the raw NDVI values revealed that the high

iNDVI estimate was caused by a single abnormally low NDVI

estimate, which was almost certainly caused by unflagged

cloud contamination or similar data errors.
(e) Statistical analysis
The abundance data modelled used several different measures,

and both the occurrence and abundance values will have been

influenced by study-specific methodological details and by

species identity. To control for these effects, the responses of

species were fitted using mixed-effects models. Only 26% of

the abundance records were non-zero. Therefore, we used a

two-stage modelling approach [37], modelling separately the

occurrence (assuming detection) of species, using generalized

linear mixed-effects models (GLMMs) with a binomial error distri-

bution, and (given presence) log-transformed abundance of

species, using linear mixed-effects models (LMMs). We did not

model abundances using a GLMM with Poisson errors, because

our records of abundance included many non-integer values, as a

result of the different types of abundance measure reported in the

original papers and/or our correction for sampling effort. All ana-

lyses were conducted using R v. 2.15.2 [38]. All GLMMs and LMMs

were developed using the lme4 R package (v. 0.999375–42) [39].

For the occurrence models, species with non-zero abundance at a

site were taken to be present, while species were assumed to be

absent if they were not recorded at that site but were recorded at

other sites in the same study. The fit of the final models to the

data was assessed by calculating R2
GLMM values [40].

For all models, land use, forest cover, iNDVI and human popu-

lation density were fitted as fixed effects. All two-way interactions

between continuous variables and taxonomic group, two-way

interactions between pairs of continuous variables and three-way

interactions among pairs of continuous variables and taxonomic

group were considered; but not interactions between the continu-

ous variables and the habitat classification, owing to the size of

the dataset. The best model, in terms of fixed effects, was selected

using backward stepwise variable selection [41]. Site, nested

http://www.iucnredlist.org/technical-documents/classification-schemes/habitats-classification-scheme-ver3
http://www.iucnredlist.org/technical-documents/classification-schemes/habitats-classification-scheme-ver3
http://www.iucnredlist.org/technical-documents/classification-schemes/habitats-classification-scheme-ver3
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Table 1. Modelled effects of the environmental variables on the probability of occurrence and (given presence) abundance of species. (Terms were sequentially
removed in a backward stepwise selection and tested with analysis of variance. Main effects were tested after removing all interaction terms from the model. Significant
(a , 0.05) terms are italicized. Terms ‘n.a.’ are interaction terms whose inclusion was not supported by preliminary modelling. HPD, human population density.)

term

occurrence abundance

x2 p x2 p

land use : taxonomic group 219 ,0.001 65.2 ,0.001

HPD 34.8 ,0.001 0.849 0.36

forest cover 7.96 0.047 0.451 0.50

iNDVI 1.01 0.31 101 ,0.001

HPD : forest cover 27.9 ,0.001 0.00 1.0

HPD : iNDVI 9.39 0.025 1.96 0.58

forest cover : iNDVI 5.34 0.14 ,0.001 1.0

HPD : taxonomic group 16.1 0.063 n.a. n.a.

forest cover : taxonomic group 0.00 1.00 40.3 ,0.001

iNDVI : taxonomic group n.a. n.a. 140 ,0.001

HPD : forest cover : taxonomic group 0.00 1.00 13.3 0.0098

HPD : iNDVI : taxonomic group 0.00 1.00 14.2 0.12

forest cover : iNDVI : taxonomic group 0.00 1.00 73.8 ,0.001
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within study, was fitted as a random effect in a random-intercept

model to account for different measures and methodologies

among studies. A random effect describing the taxonomic affilia-

tion of each record was also included, to account for differences

among species unrelated to the explanatory variables of interest.

Simpler random-effects structures were considered—taxonomic

affiliation only, study only and site nested within study only—

but the fit to the data was best with the full set of random effects

(assessed using Akaike information criterion (AIC) values [42]).

The results of the models might be influenced by phylogenetic

non-independence of responses. We estimated the phylogenetic

signal in the residuals of the model against a taxonomic tree. The

full taxonomic hierarchy for each record was resolved using

the Global Names Resolver (http://resolver.globalnames.org/),

which provides a fuzzy search of the Catalogue of Life database

(http://www.catalogueoflife.org). A match was obtained for

2789 of the 3708 taxa considered. A tree was constructed based

on this taxonomic hierarchy, with branch lengths generated

using the Grafen method [43], in the ‘ape’ R package (v. 3.0–2)

[44]. Pagel’s l statistic [45] was calculated for the taxonomic tree

using the ‘geiger’ R package (v. 1.3–1) [46]: a strong phylogenetic

signal (l markedly higher than zero) would indicate considerable

pseudo-replication. To test whether the model residuals showed

significant phylogenetic signal, we compared to a x2 distribution

the difference in the log-likelihoods (multiplied by two) of the l

estimate for the taxonomic tree and for a collapsed tree where all

species were assumed to be equally related to one another. Many

records could not be matched to a known taxon and models

with a taxonomically nested random effect were very computa-

tionally intensive; therefore, we were unable to further account

for phylogeny in the models.

We tested the effect of habitat specialization and geographical

range size on responses to environmental variables in separate

post hoc analyses, by refitting the minimum adequate model to

separate datasets where all species were divided into broad- and

narrow-ranged species, or where birds and mammals were divided

into forest/habitat specialists and generalists. We sequentially added

an additional interaction with habitat specialization or range size to

each term in the minimum adequate model. Improvement in
model fit with the addition of each taxonomic-group-by-habitat-

specialization or taxonomic-group-by-range-size term was assessed

using AIC values.

A non-random spatial configuration of sites within studies

might lead to spurious modelled responses, given that species

abundance and occurrence are likely to show spatial patterns unre-

lated to the anthropogenic environmental variables considered. To

test the potential for such non-independence to bias our results, we

tested for spatial autocorrelation in the residuals of the best

models, separately for each major taxonomic group and for each

study, using Moran’s I tests as implemented in the ‘spdep’ pack-

age in R (v. 0.5–46) [47]. To check that the conclusions of our

models were not affected by any spatial autocorrelation detected,

we repeated the final models; dropping data from studies in

which we detected significant residual spatial autocorrelation.
3. Results
(a) Occurrence
The probability that species occurred at a site was strongly

related to the major land-use type, and this response differed

markedly among taxonomic groups (table 1 and figure 2a).

With the exception of birds in primary forest, narrow-

ranged species were less likely than widespread species to

occur in all land uses, with the largest differences between

narrow- and wide-ranged species seen in urban environ-

ments, croplands and plantation forests (DAIC ¼ 2178;

best-fitting model, AIC ¼ 43705; figure 2a). Among bird

and mammal species, forest specialists were less likely than

non-specialists to occur in secondary forest, wood plantation,

cropland and urban habitats, but more likely to occur in

primary forest (DAIC ¼ 2262; figure 2a).

Probability of occurrence varied significantly with forest

cover, human population density and iNDVI (table 1).

While the major taxonomic groups responded similarly to

forest cover (figure 2b), human population density and

http://resolver.globalnames.org/
http://resolver.globalnames.org/
http://www.catalogueoflife.org
http://www.catalogueoflife.org
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iNDVI, fitting the two-way interactions between the more

refined taxonomic classification—which divided birds and

mammals into habitat specialists and generalists—and both

human population density and forest cover did result in a sig-

nificant improvement in model fit (DAIC ¼ 231.7 and 23.39,

respectively). Similarly, dividing species into narrow-and

wide-ranging species led to a slight improvement in model

fit with respect to forest cover (DAIC ¼ 20.30).

All taxonomic groups were slightly more likely to occur

with increasing forest cover (figure 2b). However, this

relationship masked variation among species within taxo-

nomic groups: forest specialist and narrow-ranged bird

species were much more likely to occur where forest cover

was higher, whereas habitat generalist and wide-ranged

bird species were less likely to do so (figure 2c).

The probability of occurrence of herptiles was highest at

high human population density, but decreased slightly with

increasing iNDVI (figure 2d). There were insufficient data to

divide reptiles and amphibians in the full models, but running

simple models of probability of occurrence against human

population density (with a cubic polynomial) for reptiles

and amphibians separately revealed a U-shaped relation-

ship between human population density and probability

of occurrence for reptiles and a monotonically increasing

relationship for amphibians (electronic supplementary

material, figure S1). Invertebrates were least likely to occur at

sites with a combination of high human population density

and high iNDVI (figure 2e). Occurrence of habitat specialist

mammals and birds declined sharply with increasing human

population density, and to a lesser extent with increasing

iNDVI (figure 2f,h). Habitat generalist bird species were also

generally less likely to occur at higher human population den-

sity and to a lesser extent at higher iNDVI, but showed a peak

in probability of occurrence at intermediate human population

densities (figure 2i). Habitat-generalist mammal species were

most likely to occur at intermediate human population

densities and at higher iNDVI (figure 2g).

Land use, forest cover, iNDVI and human population den-

sity explained a relatively small amount of the variation in

probability of occurrence, after accounting for study- and

taxon-level differences (marginal R2
GLMM ¼ 0:11). The residuals

of the model of species occurrence showed weak but highly

significant phylogenetic signal (l ¼ 0.10; x2 test: p , 0.001).
(b) Abundance
Species’ abundances responded significantly to land-use type,

with large differences among taxonomic groups (table 1 and

figure 3a). Narrow-ranged species tended to be less abundant

than widespread species in all land-use types but especially

in urban environments, croplands and plantation forests

(DAIC ¼ 247.3; best-fitting model, AIC ¼ 38145; figure 3a).

Similarly, among mammals and birds, habitat specialists

tended to be less abundant than habitat generalists, espe-

cially in urban habitats, croplands and plantation forests

(DAIC ¼ 215.4; figure 3a). With the exception of invertebrates,

species present in secondary forest, wood plantation and crop-

land were more abundant there than in primary forest, whereas

even those species that occurred in urban habitats were less

abundant there than in primary forest (figure 3a).

Abundance varied with forest cover, human population

density and iNDVI; all two-way interactions were significant,

and different taxonomic groups showed significantly different
responses (table 1). Furthermore, wide- and narrow-ranging

species showed slightly different responses to forest cover

and iNDVI (DAIC ¼ 210.0 and 22.70, respectively; electronic

supplementary material, figure S2) and, among birds and

mammals, habitat specialists and habitat generalists showed

different responses to forest cover (DAIC ¼ 23.96) and

human population density (DAIC ¼ 27.09). Herptile abun-

dance declined with increasing human population density,

decreasing forest cover and increasing iNDVI (figure 3b,h).

For invertebrates and most mammals and birds, abundance

varied very little with forest cover and human population den-

sity (figure 3c–g), although abundance increased slightly with

human population density for habitat specialist mammal

species (figure 3d). Invertebrates, birds and mammals all

decreased slightly in abundance with increasing iNDVI

(figure 3i–m).

Land use, forest cover, iNDVI and human population den-

sity explained little of the variation in abundance, after

accounting for study- and taxon-level differences (marginal

R2
GLMM ¼ 0:038). The residuals of the model of species

abundance were distributed nearly normally (electronic sup-

plementary material, figure S3) and showed weak, but

significant, phylogenetic signal (l ¼ 0.063; x2 test: p , 0.001).

(c) Sampled sites
Sampled sites were not distributed evenly with respect to the

environmental variables. Sites were located in primary forest

(348 sites), secondary forest (94) and wood plantations (319)

more often than in cropland (seven sites; of which four for

invertebrates, two for herptiles and one for birds), pasture

(20 sites; 17 for invertebrates and three for herptiles) and

urban habitats (seven sites; six for invertebrates and one for

birds) (electronic supplementary material, figure S4). Sites

sampled for herptiles were more patchily distributed with

respect to human population density, forest cover and

iNDVI than the other taxonomic groups (electronic sup-

plementary material, figures S5 and S6). Given that we can

place much greater confidence in the results for primary

and secondary forest and wood plantation than for cropland,

pasture and urban habitats, we will focus on these results in

the Discussion.

Variance in occurrence and abundance was greatest

among studies, then among taxa and finally among sites

within studies (electronic supplementary material, table S4).

The residuals of the best model showed significant spatial

autocorrelation for more of the studies than would be expected

by chance (17.3% and 15.4% for the occurrence and abundance

models, respectively; electronic supplementary material,

figures S7 and S8). The abundance dataset excluding studies

with significant spatial autocorrelation in the model residuals

was little more than half the size of the original dataset. Remov-

ing these studies and re-running the best models did not

change the shape of the fitted responses (electronic supple-

mentary material, figures S9 and S10), although uncertainty

increased markedly for the modelled responses of the abun-

dance of taxa which lost many data in this process—herptiles

and birds (both specialists and generalists).
4. Discussion
Land use has long been recognized as a profound influence

on ecological communities [22,48]. Precisely quantifying
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Figure 3. Response of the abundance of 3708 taxa in tropical forests to land use (a), the interaction between human population density and forest cover (b – g),
and the interaction between forest cover and vegetation removal (iNDVI; h – m). Panel (a) shows the relative (log-transformed) abundance, relative to the abundance
in primary forest; land-use categories considered were: primary forest (PF), secondary forest (SF), plantation forest (WP), cropland (CR), pasture (PA) and urban (UR);
only significant terms are shown. Panels (b – m) show absolute (log-transformed) abundance, with separate panels for forest/habitat specialists (spec.) and habitat
generalists (gen.). Log-transformed abundance was modelled using linear mixed-effects models, fitting site nested within study and taxon as random effects. Error
bars (a) show +1 s.e. Dashed vertical lines in (a) divide the taxonomic groups; grey vertical lines separate the land-use types when taxonomic groups were also
divided by habitat specialization and range size.
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this influence is an essential step towards ecological sustain-

ability but has been problematic because responses to a given

impact can vary among response variables, and both among

and within major taxa. Our results give, to the best of our

knowledge, the clearest and most precise picture to date of

the consistent and profound effect that land use has on ecological

communities throughout the world’s tropical and sub-tropical

forest biome and show that different taxonomic groups, and

different types of species within taxonomic groups, respond

very differently to land-use change.

Overall, the probability of occurrence of species in all taxo-

nomic groups declined in human-modified habitats, whereas

persisting species often increased in abundance. These effects

together led to increased dominance by smaller numbers of

taxa. However, at the community level, the increases in abun-

dance never compensated for the decreased occurrence of

species: a crude measure of total community abundance (the

product of relative probability of occurrence and relative abun-

dance of persisting species) ranged from 7.9% (invertebrates in

pastures) to 62% (herptiles in secondary forest) of the value in

primary forest. We show that the taxa benefiting from land-

use change are generally the more geographically widespread

species, and the species that are more generalist in terms of habi-

tat use. Modelling the occurrence and abundance of individual

species—for, to our knowledge, the first time at this scale—

allowed us to show marked differences in species’ responses

both among and within major taxonomic groups. Using remo-

tely sensed data and other data that are consistent across the

study area allowed for a more consistent characterization of

the habitat at each site.

The increase in the abundance of birds in plantation for-

ests may be because certain types of resources remain

abundant in these habitats allowing the species that use

them to persist in large numbers, or perhaps because of reten-

tion of the vertical structure of natural vegetation, which can

have a strong effect on bird community structure [49]. It is

also possible that increased detectability in plantation forests

led to some of the reported increases in abundance but is

unlikely to be the only explanation given the concomitant

decrease in occurrence. Birds were highly sensitive to urban

land use, declining markedly in both occurrence and abun-

dance compared with primary forest. This is supported by

the finding that bird species declined markedly in their prob-

ability of occurrence with increasing human population

density, consistent with previous studies of bird species in

urban habitats [50–52]. Forest specialists and narrow-

ranged species were the most severely impacted, being less

than 10% as likely to occur in urban habitats as in primary

forest. Although numbers of sites in cropland, pasture and

urban habitats were low, the disproportionate impact on

forest specialists and narrow-ranged species is suggestive of

the biotic homogenization of community composition and

warrants further analysis with expanded datasets.

Surprisingly, herptiles (both reptiles and amphibians)

were more likely to occur at higher human population den-

sity, although sampling of herptiles along the gradient of

human population density was patchy. This suggests that

open habitats, associated with higher human population den-

sity, benefit a greater number of species than do more closed

habitats. This interpretation is supported by the higher prob-

ability of occurrence of herptile species in secondary forest

compared with primary forest. The result might also be

explained by increased detectability in open habitats, which is
likely to be particularly pronounced for herptiles compared to

other taxonomic groups; however, if detectability were solely

responsible, one would expect abundance to also increase

with human population density, which it did not. The decline

in herptile abundance with increasing human population den-

sity, increasing vegetation removal and decreasing forest cover

suggests that while more open habitats might support a greater

number of species, human-dominated habitats have much

lower abundances.

Among mammals, habitat specialist and narrow-ranging

species had much-reduced probabilities of occurrence in non-

primary habitats. Furthermore, habitat specialist mammals

were highly sensitive to human population density, with

declines of about 70% in probability of occurrence across the

gradient of human population densities sampled. The overall

negative effect of human population density may be the

result of direct effects, such as hunting [53], or indirect effects

of, for example, human infrastructure. Previous studies have

shown marked declines in the abundance of mammals near

to roads [54–56]. The peak in the probability of occurrence

of mammal species at intermediate human population den-

sities suggests that at least some species benefit from mild

human disturbance.

Most of the variation in the occurrence and abundance of

species within studies remained unexplained. Additional,

more finely resolved and more accurate habitat information,

and information on other factors affecting species, may help

to constrain the estimates of occurrence and abundance.

Regardless of the quality of the environmental data used in

the models, different species are likely to respond differently

to anthropogenic disturbances [7–13], in ways that additional

trait data might help to explain.

Interactions among species—which we did not con-

sider—are important determinants of the occurrence and

abundance of species [57]. In future, the incorporation of

interactions into models may allow more accurate predictions

of how species respond [58]. We also did not account for the

known effects of habitat patch size and fragmentation on

occurrence and abundance [59].

Spatial and phylogenetic autocorrelation can bias infer-

ences about the response of species to environmental

gradients [60]. We detected residual spatial autocorrelation in

a minority of studies considered. Computational limitations

prevented the inclusion of spatial autocorrelation alongside

the already-complex random-effects structures in our models,

but removing data from the affected studies and refitting the

models had little effect on the modelled responses. We were

also prevented from fully accounting for phylogeny by compu-

tational limitations and the lack of a full taxonomic hierarchy

for many of the species considered. We detected significant

phylogenetic signals in the residuals of our models, suggesting

that in the future, given more complete phylogenies and more

computational power, the modelling could be improved by

better accounting for the relatedness of species. However, the

strength of phylogenetic signal in the residuals of the model

was low, suggesting that the effects of incorporating phylogeny

would be slight.

Overall, the results demonstrate that transformation of

habitats for human land use is causing consistent reductions

in species richness and changes in abundance, altering ecologi-

cal communities in tropical and sub-tropical forests around the

world. Human-dominated habitats have fewer species than

natural habitats. The results add to a growing body of evidence
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that humans are causing fundamental changes to community

structure. Collating published data on species occurrence and

abundance opens new opportunities for assessing biodiversity

state, and analyses like ours can be expanded to other biomes

for which data are available. Using land-use information that

follows a widely used classification scheme, as well as globally

consistent environmental data, makes these models a strong

basis for extrapolating community responses across space

and through time, which will be essential for predicting the

biodiversity impacts of future changes.
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Predictors of forest fragmentation sensitivity in
Neotropical vertebrates: a quantitative review.
Ecography 34, 1 – 8. (doi:10.1111/j.1600-0587.
2010.06453.x)

13. Newbold T, Scharlemann JPW, Butchart SHM,
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