
Modulation of Neutrophil Function by a Secreted
Mucinase of Escherichia coli O157:H7
Rose L. Szabady1, Mary A. Lokuta1,2, Kevin B. Walters1, Anna Huttenlocher1,2, Rodney A. Welch1*

1 Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States of America,

2 Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States of America

Abstract

Escherichia coli O157:H7 is a human enteric pathogen that causes hemorrhagic colitis which can progress to hemolytic
uremic syndrome, a severe kidney disease with immune involvement. During infection, E. coli O157:H7 secretes StcE, a
metalloprotease that promotes the formation of attaching and effacing lesions and inhibits the complement cascade via
cleavage of mucin-type glycoproteins. We found that StcE cleaved the mucin-like, immune cell-restricted glycoproteins
CD43 and CD45 on the neutrophil surface and altered neutrophil function. Treatment of human neutrophils with StcE led to
increased respiratory burst production and increased cell adhesion. StcE-treated neutrophils exhibited an elongated
morphology with defective rear detachment and impaired migration, suggesting that removal of the anti-adhesive
capability of CD43 by StcE impairs rear release. Use of zebrafish embryos to model neutrophil migration revealed that StcE
induced neutrophil retention in the fin after tissue wounding, suggesting that StcE modulates neutrophil-mediated
inflammation in vivo. Neutrophils are crucial innate effectors of the antibacterial immune response and can contribute to
severe complications caused by infection with E. coli O157:H7. Our data suggest that the StcE mucinase can play an
immunomodulatory role by directly altering neutrophil function during infection. StcE may contribute to inflammation and
tissue destruction by mediating inappropriate neutrophil adhesion and activation.
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Introduction

Enterohemorrhagic Escherichia coli (EHEC) of serogroup

O157:H7 is an emerging human diarrheal pathogen associated

with numerous food-borne outbreaks in the U.S. Infection of the

colon by EHEC causes mild diarrhea that proceeds to bloody

colitis and can be acquired following ingestion of fewer than 100

organisms [1]. In 15% of childhood cases, EHEC gastroenteritis

progresses to the more serious hemolytic uremic syndrome (HUS),

characterized by red blood cell fragmentation, low platelet count,

and acute renal failure. HUS can cause severe kidney damage and

have outcomes ranging from full recovery to death [2]. EHEC

virulence factors include the locus of enterocyte effacement, which

confers the ability to form attaching and effacing lesions, and the

phage-encoded Shiga toxin, which causes termination of protein

synthesis in the microvascular endothelium leading to cell death

and tissue destruction [3]. Efforts to study the pathogenesis of

EHEC are complicated by the lack of a suitable animal model that

fully recapitulates human disease. Although models of EHEC-

induced diarrhea in rabbits or injection of purified components

leading to HUS-like symptoms in mice and baboons have been

described, no model exists that follows the natural progression

from EHEC infection to development of HUS [4–6].

The immune response is involved in the development of HUS,

but it is less clear how the interaction between bacteria and the

host immune system influences early EHEC disease progression.

Colonic damage can include hemorrhage and edema within the

lamina propria with focal necrosis and neutrophil influx [7], but

leukocyte infiltration into the intestinal lumen occurs in only

,50% of EHEC cases and is rarely severe [2]. Patients who

progress to HUS demonstrate clear indicators of an inflammatory

response with neutrophil involvement, and increased circulating

blood leukocytes are correlated with development of disease [8,9].

Increased levels of interleukin-8 (IL-8) and complexed elastase are

found in the blood [10–12]. Children with HUS demonstrate

infiltration of monocytes and neutrophils into the kidney glomeruli

[13,14]. The onset of HUS occurs 5–7 days after initiation of

diarrhea, and it has been suggested that inappropriate immune cell

activation in the gut could lead to renal pathology and explain the

lag time in the development of disease [15].

The majority of EHEC isolates in the United States carry the

92 kb pO157 virulence plasmid. Carriage of the plasmid is

associated with increased incidence of hemorrhagic colitis, HUS,

and colonization of the bovine recto-anal junction mucosa

[2,16,17]. pO157 encodes StcE (Secreted protease of C1-esterase

inhibitor), a type II-secreted, 95 kDa zinc-dependent glycopro-

tease that is produced during EHEC infection [18,19]. StcE

recognizes O-glycan-induced protein conformations in order to

cleave the protein backbone of mucin-type glycoproteins [L.

Walters, unpublished, [18,20]].

Mucins are large glycoproteins that coat numerous surfaces in

the body and play important roles in cell-cell interactions within

the immune system. CD43 and CD45 are large mucin-type

glycoproteins expressed exclusively and abundantly on the surface

of nearly all hematopoeitic cells including neutrophils [21,22].

CD45 is a protein tyrosine phosphatase that can exist as several
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isoforms which vary primarily in the length of the terminal O-

glycosylated portion of the extracellular domain. Dephosphoryla-

tion of Src family kinases by CD45 regulates the signaling

threshold in T cells [21]. Little is known about CD45 function on

neutrophils, but it may modulate chemotaxis and the oxidative

burst [23,24]. CD43 possesses a large extracellular domain that

contains 60–80% of its total molecular mass in sialylated O-

glycans. Extensive glycosylation causes the protein to assume a

rod-like conformation that protrudes ,45 nm from the cell

surface [25]. The combination of steric hindrance, negative

charge, and relative abundance on the cell surface provides an

anti-adhesive force [26], and CD43-deficient leukocytes demon-

strate increased adhesion in vitro and in vivo [22,27–29]. The

intracellular domain of CD43 interacts with cytoskeletal linker

proteins, allowing neutrophils and T cells to cluster CD43 at the

rear of the cell, or ‘‘uropod’’, during adhesion and migration. This

removes anti-adhesive force from the leading edge to promote

adhesion and/or migration, while providing a useful anti-adhesive

force at the uropod [30–34].

In this study we report the interaction of the StcE protease with

CD43 and CD45 on the neutrophil surface. StcE altered neutrophil

function via both cleavage-dependent and cleavage-independent

effects. Proteolytic activity of StcE led to increased neutrophil

oxidative burst production, while binding of StcE was sufficient to

increase neutrophil adhesion, leading to impaired migratory

capacity. We propose that the interaction between StcE and

CD43 prevents the sialoglycoprotein from providing crucial anti-

adhesive force, preventing uropod-mediated detachment leading to

impaired migration. Oxidative burst production and migration

defects leading to increased neutrophil retention could contribute to

tissue destruction and inflammation, as well as bacterial evasion of

the immune response. Interaction with neutrophil surface mucins by

StcE might therefore represent a novel way of dysregulating the

immune response during EHEC disease.

Results

StcE Binds the Neutrophil Surface Glycoproteins CD43
and CD45

StcE binds to and aggregates cells of the Jurkat leukemic T cell

line and binds to the undifferentiated HL-60 promyelocytic cell

line [18]. To determine if StcE interacted with neutrophils,

primary human neutrophils isolated from whole blood and

neutrophil-like differentiated HL-60 cells (dHL-60s) were treated

with StcE or a proteolytically inactive StcE point mutant, E435D

[18,35]. Binding was detected by flow cytometry using polyclonal

anti-StcE antibody. Both wild-type StcE and E435D bound to

neutrophils (Figure 1A) and dHL-60s (data not shown). We next

sought to identify the surface determinant responsible for this

interaction. The cell-bound mucin-like glycoproteins CD43

(leukosialin) and CD45 (leukocyte common antigen) were

previously identified as StcE substrates on Jurkat T cells

(unpublished data), and we investigated whether these proteins

served as ligands for StcE on the neutrophil surface. As we were

unable to immunoprecipitate StcE using available antibodies, we

performed direct precipitations with StcE fused to a chitin binding

domain (StcE-CBD) and bound to chitin beads (CB). StcE

precipitated both CD43 and CD45 from dHL-60 lysates

(Figure 1B). Staining of precipitation reactions for total glycopro-

Author Summary

Enterohemorrhagic Escherichia coli (EHEC) poses a signif-
icant threat to the U.S. food supply, causing foodborne
gastrointestinal disease in humans that can progress to
hemolytic uremic syndrome (HUS), a potentially fatal
kidney disease. Research suggests that EHEC strains are
growing more virulent, resulting in a higher incidence of
hospitalization and development of HUS from recent
produce-associated outbreaks. Although immune dysreg-
ulation is a feature of HUS disease, the specific mecha-
nisms contributing to altered immune function require
investigation. Furthermore, the contribution of the im-
mune response to early intestinal disease is not known.
StcE is a secreted protease of EHEC that is expressed
during infection and may contribute to virulence via
cleavage of mucin-like glycoproteins. In this study, we
define mucinase activity toward glycoproteins on the
surface of human neutrophils and find that StcE alters
neutrophil activity by interacting with these proteins. StcE
affected crucial neutrophil functions including oxidative
burst production and migration. The effects of StcE were
both cleavage-dependent and cleavage-independent, pro-
viding insight into a novel mechanism for mediating
neutrophil function via mucin interactions. Our study
reports an immune-modulating role for a potential EHEC
virulence factor and provides a possible explanation for
altered neutrophil phenotypes observed during E. coli
O157:H7-induced disease.

Figure 1. StcE binds to the neutrophil surface and interacts with
CD43 and CD45. (A) Neutrophils were incubated with vehicle control,
purified StcE protein, or the proteolytically inactive mutant E435D at 1 mg/
mL. Cells were stained with polyclonal anti-StcE and analyzed by flow
cytometry for StcE binding. (B) StcE fused to a chitin binding domain
(StcE-CBD) was bound to chitin beads (CB) and used to precipitate
binding partners. dHL-60 cells (56106) were lysed and incubated with
StcE-CBD bound to CB or CB alone. Pulldown reactions were separated by
SDS-PAGE and immunoblotted for CD43 (L10) or CD45 (HI-30).
doi:10.1371/journal.ppat.1000320.g001

E. coli Mucinase Alters Neutrophil Function
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tein or total protein did not reveal other significant binding

partners, suggesting that CD43 and CD45 are the major relevant

binding partners on the neutrophil surface (Figure S1).

StcE Cleaves within the Extracellular Domain of CD43 and
CD45

The pulldown assays described above were performed in the

presence of EDTA, which inhibits the metalloprotease activity of

StcE. We next investigated whether CD43 and CD45 could be

proteolytically cleaved by StcE. Intact dHL-60s were treated with

purified, endotoxin-free StcE or proteolytically inactive E435D

and analyzed by immunoblottting. Recognition by the anti-CD43

L10 monoclonal antibody (mAb), which recognizes an extracel-

lular epitope near the N-terminus, completely disappeared upon

treatment with StcE but not E435D (Figure 2A). An antibody to

the intracellular domain of CD43, sc-7052, recognized a StcE-

cleaved product of ,28 kDa (Figure 2B), consistent with a

fragment containing the intracellular and transmembrane do-

mains. No L10-reactive cleavage product of any size appeared in

the supernatant (Figure 2A), suggesting that the extracellular

domain of CD43 was degraded while leaving the intracellular and

transmembrane domains intact. Selective cleavage of mucin-like

domains is consistent with StcE activity toward other known

substrates [18]. Flow cytometric analysis confirmed that presence

of the CD43 extracellular epitope recognized by L10 was reduced

on the surface of primary human neutrophils following treatment

with StcE but not E435D (Figure 2C).

We examined potential cleavage of CD45 using two antibodies.

The HI30 mAb recognizes an epitope in the CD45 extracellular

domain that is found in all isoforms. Treatment of dHL-60s with

StcE resulted in a small size shift from 180 kDa to ,165 kDa in

the band recognized by HI30 (Figure 2D). This suggested that

Figure 2. StcE cleaves within the extracellular domain of neutrophil CD43 and CD45. (A) Intact dHL-60s (16106) were treated with 1 mg/
mL purified, endotoxin-free StcE, E435D or vehicle control. Supernatants and cell pellets were individually separated by SDS-PAGE and
immunoblotted with L10, which recognizes an extracellular epitope near the N-terminus of CD43. (B) Reactions were performed as in A) and
immunoblotted with sc-7052, which recognizes the intracellular C-terminus of CD43. (C) Primary human neutrophils were treated as in (A) and
analyzed by flow cytometry to detect the CD43 extracellular domain using PE-labeled L10. (D) Reactions were performed as described in (A) and
immunoblotted with HI30, which recognizes all CD45 isoforms. (E) Reactions were performed as in (C) and detected with HI30. F) Reactions were
performed as in (C) and detected with UCHL1, which recognizes only the CD45RO isoform.
doi:10.1371/journal.ppat.1000320.g002
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StcE cleaved within the very N-terminal O-glycosylated extracel-

lular portion of CD45. CD45RO is the major isoform present on

the neutrophil surface. We next examined cleavage of CD45 using

the UCHL1 mAb, which is specific for CD45RO, suggesting that

it binds somewhere in the O-glycosylated extracellular region that

defines this isoform. Flow cytometric analysis of neutrophils

demonstrated no change in staining of total CD45 with HI30,

(Figure 2E), while staining of CD45RO with UCHL1 was reduced

following StcE treatment (Figure 2F). This suggested that StcE

cleaves within the membrane-distal, O-glycosylated extracellular

portion of CD45 but does not degrade the protein further.

Enzymatic Activity of StcE is Required to Increase the
Neutrophil Oxidative Burst

CD43 and CD45 are found uniquely on the surface of immune

cells and may be important for neutrophil function [21,22]. To

determine if StcE modulates neutrophil function, we examined the

effect of StcE treatment on the oxidative burst using a flow-based

assay for hydrogen peroxide and superoxide production. Treat-

ment with StcE increased the respiratory burst in the absence of

other stimuli (Figure 3A and 3B), while neutrophils treated with

proteolytically inactive E435D did not differ significantly from

control samples. These findings suggest that StcE modulates

neutrophil oxidative function through its protease activity. Both

CD43 and CD45 have been suggested to contribute to the

neutrophil oxidative burst, and we did not identify the specific

mediator of this effect [24,33].

StcE Increases Neutrophil Adhesion to the Extracellular
Matrix

Because CD43-deficient leukocytes are more adherent, we

examined whether removal of the CD43 extracellular domain by

StcE altered the ability of human neutrophils to adhere to the

extracellular matrix. Treatment with StcE significantly increased

neutrophil adhesion on a fibrinogen (Fbg)-coated surface in a dose-

dependent manner (Figure 3C). Surprisingly, proteolytic activity of

StcE was not required, as binding by E435D induced a similar

phenotype. Treatment with either protein resulted in a 2–3 fold

increase in adhesion, similar to stimulation with fMLP, which

served as a positive control.

Figure 3. Proteolytic activity of StcE is required to induce the oxidative burst, but not neutrophil adhesion. (A and B) Neutrophils were
labeled with dihydrorhodamine 123, treatmed with 5 mg/mL StcE, E435D, or vehicle control, and analyzed by flow cytometry for oxidative burst
production as indicated by fluorescence in the FITC channel. PMA served as a positive control. The live cell population was gated by forward and side
scatter, and then the ‘‘percent positive’’ gate was drawn to distinguish PBS-treated (negative) and PMA-treated (positive) samples. (A) shows data
from a representative experiment, while B) shows the average of five independent experiments. Error bars represent S.D.; *, p,0.05; **, p,0.01 by
one-way ANOVA with Bonferroni post test. (C) Neutrophils were fluorescently labeled with calcein-AM, treated with vehicle control, StcE, or E435D at
varying concentrations, and allowed to adhere on Fbg for 40 min. Positive control samples were stimulated with 100 nM fMLP for the final 10 min
(dotted line). Relative adhesion was calculated by normalizing the number of adherent cells to the average of all vehicle-treated samples. Data shown
are mean6S.E.M. of three independent experiments performed in duplicate. *, p,0.05; **, p,0.01; ***, p,0.001 compared to equivalent vehicle
control using two-way ANOVA with Bonferroni post test.
doi:10.1371/journal.ppat.1000320.g003
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As proteolytic activity of StcE was not essential to increase

adhesion, we sought to confirm that binding activity of E435D was

responsible for this effect. Purified protein was heat-inactivated,

which eliminates both binding and proteolysis by StcE and

controls for the presence of heat-stable contaminants in the protein

preparation. Heat-inactived StcE (hiStcE) had no effect on

neutrophil adhesion. E435D is proteolytically inactive but retains

substrate binding activity, unlike hiStcE, indicating that binding is

the minimal function necessary to induce neutrophil adhesion. To

account for the possibility that StcE and E435D increased

adhesion by serving as a bridge between CD43 or CD45 and

the extracellular matrix, binding of StcE to Fbg was tested by

ELISA. StcE alone did not bind appreciably to Fbg (Figure S2),

suggesting that effects were specific to interaction of StcE and

E435D with the neutrophil surface.

Relocalization of CD43 is Induced by the Proteolytically
Inactive E435D Mutant of StcE

CD43 is localized to the uropod during neutrophil adhesion and

migration, removing its anti-adhesive force from the front of the

cell [30]. The observation that both StcE and E435D induced

neutrophil adhesion led us to hypothesize that protein binding to

CD43 could interfere with its anti-adhesive function even in the

absence of cleavage. This hypothesis is consistent with reports that

antibodies to CD43 can induce clustering of the protein at the

uropod and increase cell adhesion [30,32]. We therefore examined

how treatment with StcE and E435D affected CD43 localization

in adherent neutrophils via confocal immunofluorescence micros-

copy. Although the anti-StcE antibody exhibited some background

staining of vehicle-treated cells, we observed specific and diffuse

surface staining of bound StcE (Figure 4A), consistent with flow

cytometry data. StcE-treated neutrophils demonstrated reduced

membrane staining for the CD43 extracellular domain with L10,

consistent with results of immunoblotting and flow cytometry. No

change in localization of the CD43 intracellular domain as

detected by sc-7052 was observed, confirming that it remained

intact and membrane-associated (Figure 4B). In contrast, treat-

ment of neutrophils with E435D caused readily observable

relocalization of CD43. Both extracellular and intracellular

staining revealed clustering of CD43, and E435D staining was

co-localized with the CD43 extracellular domain (Figure 4).

Immunofluorescence staining for total CD45 revealed no change

in localization induced by StcE or E435D (data not shown).

These data suggest that E435D promotes neutrophil adhesion by

clustering CD43 to the uropod and removing its anti-adhesive force

from the rest of the cell membrane. To further confirm that E435D

bound to native CD43 on the neutrophil surface, we used flow

cytometry to investigate the ability of E435D to compete with the

L10 mAb for binding to the extracellular domain. Increasing

concentrations of E435D led to decreased L10 staining (Figure S3),

indicating that E435D bound to CD43 and blocked antibody

accessibility. Reduction of L10 binding by StcE was evident at a

much lower protein concentration, demonstrating that cleavage by

StcE was more efficient than blocking with E435D in preventing L10

antibody binding. Together these findings suggest that while StcE

causes loss of CD43 from the neutrophil surface, E435D clusters

CD43 in the uropod, leading to removal of anti-adhesive force from

the cell membrane and providing an alternative mechanism by

which binding alone can induce neutrophil adhesion.

StcE Impairs Neutrophil Migration in vitro
Neutrophil adhesion regulates the development of cell polarity

and is required for cells to become migration-competent, but too

much adhesion can interfere with migration [36]. We examined

how the StcE-induced increase in adhesion affected migratory

capabilities of human neutrophils using transwell assays. In the

absence of chemoattractant, StcE treatment had no effect on

migration across transwell inserts (Figure 5A). In the presence of

fMLP as a chemoattractant in the lower chamber, treatment with

StcE or E435D caused a significant, 1.7-fold reduction in

migration across the filters. Consistent with the results of adhesion

experiments, binding but not proteolytic activity of StcE was

required to inhibit neutrophil migration, and heat-inactivated

protein had no effect.

Circulating leukocytes that detect chemotactic signals first

adhere to the vasculature and then transmigrate across the

endothelium in order to reach effector sites. To verify that results

obtained with purified Fbg extended to interactions with the

endothelium, migration experiments were conducted using

monolayers of primary human lung microvascular endothelial

cells (HMVEC-L). Both StcE- and E435D-treated neutrophils

demonstrated decreased migration across HMVEC-L toward

fMLP (Figure 5B). These findings confirmed that the defect in

neutrophil migration results from the action of StcE on the

neutrophil surface and is not specific to the migratory barrier.

We further examined the effect of StcE on neutrophil migration

using time lapse microscopy. The adhesion and migration

experiments described above were conducted with PBS as a

vehicle control. Although the experimental media contained 5%

serum, the formal possibility remained that increased total protein

concentration was responsible for the effect of StcE or E435D

addition. We therefore evaluated migration in the presence of an

equivalent concentration of human serum albumin (HSA), and cell

behavior was identical to vehicle treatment (data not shown and

Video S1). Neutrophils were treated with HSA, StcE or E435D on

a Fbg-coated surface and non-directional migration was imaged in

the absence or presence of interleukin-8 (IL-8). Consistent with

adhesion and transmigration assays, StcE-treated and E435D-

treated neutrophils demonstrated increased adhesion and were

visibly impaired in their migratory capabilities (Figure 6A and

Videos S2 and S3). IL-8 treatment caused an increase in random

migration of neutrophils (Video S4), and both StcE and E435D

reduced migration even in the presence of IL-8 (Figure 6A and

Videos S5 and S6) and fMLP (data not shown). Quantitation of

neutrophil migration was performed on IL-8 treated samples, as

these had comparable numbers of adherent cells for control and

experimental conditions. Treatment with StcE or E435D

significantly reduced neutrophil migration velocity compared to

HSA control (Figure 6B). Although they traveled shorter distances

over time, StcE- and E435D-treated neutrophils did not appear

deficient in production of forward protrusions. However, cells

seemed unable to retract their rearward edge and move forward,

suggesting that StcE interfered with neutrophil migration by

preventing de-adhesion of the uropod. During migration, StcE-

treated neutrophils displayed striking morphological differences,

with formation of elongated tails at the uropod (Figure 6B). E435D

treatment also resulted in elongated morphology, but the

phenotype was not as severe. Analysis of cell length confirmed

that unstimulated, StcE-treated neutrophils were significantly

longer than control cells, while E435D treatment did not cause

a significant difference in cell length (Figure 6C). Both StcE-

treated and E435D-treated neutrophils exhibited increased cell

length in the presence of IL-8, although the increase was not

significant compared to IL-8 stimulated controls (Figure 6C).

Together our findings suggest that both StcE and E435D interfere

with CD43-based anti-adhesion to alter adhesion and migration,

but do so via different mechanisms dependent on binding and

cleavage of cell surface mucins (StcE) or binding alone (E435D).

E. coli Mucinase Alters Neutrophil Function
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Figure 4. Relocalization of CD43 by the E435D mutant. (A) Neutrophils were treated with 20 mg/mL StcE or E435D for 30 min, followed by
10 min of treatment with 100 nM fMLP to induce firm adhesion and polarization. Cells were fixed and stained with rabbit anti-StcE and mouse anti-
CD43 L10 and analyzed by confocal immunofluorescence microscopy. (B) Neutrophils were treated as in (A) and stained for the CD43 intracellular
domain with sc-7052. Scale bar represents 10 mm for all images.
doi:10.1371/journal.ppat.1000320.g004
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StcE Induces an Inflammation-Like Phenotype during
Wound Healing in Zebrafish

Zebrafish share many features of the mammalian immune

system and have recently been utilized as a model to study

neutrophil migration and chronic inflammation [37–39]. We took

advantage of the zebrafish model to examine the effects of StcE on

neutrophil-mediated inflammation in vivo. Zebrafish embryos at 3

days post-fertilization (dpf) were wounded in the ventral tail fin in

the presence of a bath of StcE protein. At this stage in

development, neutrophils are normally located in the caudal

hematopoeitic tissue and circulating in the bloodstream. Wound-

ing of the tail fin induces neutrophil recruitment to the wound, and

resolution of this response is generally observed after 24 hours

[37]. Wounded embryos were fixed after six or 24 hours and

localization of myeloperoxidase (mpo), a neutrophil-specific

marker, was examined by immunofluorescence microscopy.

Differences in neutrophil recruitment were not observed six hours

after wounding (data not shown). At 24 hours, treatment with StcE

caused visible neutrophil mislocalization (Figure 7A), resembling

chronic inflammation recently observed in zebrafish mutants [39].

Neutrophil mislocalization was quantified by counting neutrophils

present in the fin, confirming that treatment with StcE caused a

significant increase in number of mislocalized neutrophils

(Figure 7B). HiStcE had no effect on neutrophil localization.

The inflammation-like phenotype observed in zebrafish embryos

suggests that StcE may affect neutrophil motility and trafficking in

vivo to regulate inflammatory responses.

Discussion

In this study, we report cleavage of CD43 and CD45 on the

human neutrophil surface by StcE, a secreted glycoprotease of E.

coli O157:H7. We found that StcE exerted both cleavage-

dependent and cleavage-independent effects on neutrophil migra-

tion and activation, suggesting that it may modulate the immune

response during infection. We have previously reported specific

cleavage of mucin-type O-glycoproteins by StcE [18,20]. CD43

and CD45 share characteristics of these substrates and were the

major StcE ligands on the neutrophil surface. We found that StcE

cleaved specifically within the O-glycosylated domains of these

proteins. The majority of the CD43 extracellular domain is heavily

O-glycosylated, and the resultant negative charge and steric

hindrance serve to inhibit non-specific cell-cell interactions. StcE

degraded this domain, leading to loss of anti-adhesive function. In

contrast, the majority of the CD45 extracellular domain is N-

glycosylated, and the N-terminal portion, which varies in length by

differential splicing, is O-glycosylated. StcE cleaved within this

terminal portion, leaving the majority of the protein intact. It is not

known what effect the terminal O-glycosylated region has on

function of the intracellular phosphatase domain, but cleavage of

this region by StcE could promote inhibitory dimerization.

In order to fight infection, neutrophils must leave the

bloodstream to reach effector sites. Cells first adhere to the

vascular endothelium and then migrate across the endothelial cell

layer and through the tissues by sensing and responding to

chemoattractant gradients [40]. Adhesion is required to initiate

this process, but excessive adhesion can inhibit migration [36].

Neutrophils counter the anti-adhesive function of CD43 by

shedding it from their surface when they become activated

[34,41]. The remaining surface-associated CD43 is redistributed

to the uropod at the cell rear [30,31,42], where it may provide

useful anti-adhesive force. Treatment with StcE led to increased

neutrophil adhesion that interfered with random migration as well

as chemotaxis across filters and endothelial monolayers. Surpris-

ingly, this effect was cleavage-independent. The proteolytically

inactive mutant, E435D, caused similar effects to StcE, suggesting

that binding was the minimal function required. Our data suggest

that removal of CD43 anti-adhesion is the mechanism by which

StcE and E435D interfere with migration, although we cannot

rule out a role for CD45. StcE degraded the extracellular domain

of CD43, while E435D clustered CD43 at the uropod and blocked

antibody binding to the extracellular domain. Cleavage of CD43

Figure 5. StcE inhibits neutrophil chemotaxis. (A) Neutrophils
labeled as in figure 3C were treated with 25 mg/mL StcE or E435D in the
upper chamber of Fbg-coated transwell inserts, and media with or
without chemoattractant (100 nM fMLP) placed in the lower chamber.
Cells were allowed to migrate for 210 min and neutrophils in the lower
chamber were quantified and normalized as described. Data shown are
mean6S.E.M. of three independent experiments. **, p,0.01 compared
to vehicle with chemoattractant by one-way ANOVA using Dunnett
post test. (B) Experiments were performed as described in (A), with
50 mg/mL protein and monolayers of HMVEC-L grown on collagen-
coated transwell inserts. Data are mean6S.E.M. from six independent
experiments analyzed as in (A).
doi:10.1371/journal.ppat.1000320.g005
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Figure 6. StcE decreases neutrophil random migration via impaired uropod retraction. Neutrophils were treated with human serum
albumin (HSA), StcE, or E435D (12.5 mg/ml) in Fbg-coated dishes for 30 min and stimulated with IL-8 for the final 5 min where indicated. Neutrophil
migration was imaged by time lapse video microscopy over 10 min. Still images were captured and compiled into videos using Metamorph software
(see Videos S1, S2, S3, S4, S5, and S6), and image tracking was performed. (A) Still images from a representative experiment are shown with scale bar
representing 10 mm. Graphs of cell tracks below still images indicate individual paths of all cells tracked for each condition over 10 min. (B) Cell
velocity was calculated using MetaMorph software for IL-8 stimulated samples. Data are presented as mean6S.E.M. of four independent experiments.
*, p,0.05 as compared to HSA by one-way ANOVA with Dunnett’s post test. (C) Quantitation of cell length in stimulated and unstimulated samples
was performed using Metamorph by measuring the length of all cells in two randomly chosen frames per sample. Data are shown as mean6S.E.M of
three independent experiments; *, p,0.05 compared to appropriate HSA control by two-way ANOVA with Bonferroni’s post test.
doi:10.1371/journal.ppat.1000320.g006
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by StcE reduces anti-adhesive force at the promigratory leading

edge, but also relieves the anti-adhesive force in the uropod that

could promote rear detachment. E435D, like crosslinking

antibodies, induces CD43 relocalization to the uropod, reducing

anti-adhesive force at the leading edge. Binding of E435D may

also mask the negative charge of CD43 and interfere with anti-

adhesion at the rear, causing a similar outcome to StcE via a

slightly different mechanism. Increased adhesion can be induced

by crosslinking antibodies to CD43 [30], and it is unclear if this

results from simple masking of the protein or because antibody

binding transduces a pro-adhesive signal. Our results support the

hypothesis that the anti-adhesive function of CD43 at the uropod

is an important component of cellular migration.

Although it has been proposed that CD45 may regulate

chemotactic signaling in neutrophils [23], only recently has it

been suggested that CD45 may be directly important for cell

adhesion. Shivtiel and colleagues found that bone marrow

mononuclear cells deficient in CD45 were more adherent to

fibronectin as a result of increased activation of b1 integrins [43].

It is possible that CD45 signaling may be important for neutrophil

adhesion and that interaction with CD45 contributes to StcE-

mediated effects on adhesion and migration. It is unknown

whether StcE cleavage of the terminal O-glycosylated portion of

CD45 will affect its signaling capacity. Investigation of the effect of

StcE on CD45 signaling is a potential topic for future study.

The observation of a cleavage-independent function for StcE

in neutrophils parallels findings with C1-esterase inhibitor (C1-

INH), another StcE substrate. StcE-cleaved C1-INH retains its

ability to inhibit the complement cascade, and E435D is equally

capable of potentiating C1-INH function. StcE binds to C1-INH

and the bacterial surface simultaneously, increasing the local

concentration of C1-INH and protecting the cell from comple-

ment-mediated lysis [35]. If binding of StcE to its substrates is

sufficient, what is the purpose of proteolytic activity? Proteolysis

may be more important for some substrates than others. For

example, cleavage of intestinal mucins might be required to

promote colonization, whereas only binding is necessary to affect

activity of C1-INH and CD43. Alternatively, proteolytic activity

of StcE might be dispensable for its interaction with all substrates

but provide enhanced turnover. StcE displays high affinity and

low turnover of C1-INH and MUC7 [44], and it is possible that

proteolysis provides a mechanism for it to detach from one

substrate molecule in order to bind another. This would facilitate

interaction of the same StcE protein molecule with different

substrates, allowing it to interact with multiple glycoproteins

during infection.

Figure 7. StcE induces mislocalization of zebrafish neutrophils. (A) Zebrafish embryos at 3 dpf were wounded in the ventral fin in the
presence of 25 mg/mL StcE, hiStcE, or vehicle control and fixed after 24 hours for whole-mount immunofluorescence with anti-mpo staining. Arrows
indicate abnormal localization of neutrophils in the fin of StcE-treated zebrafish. The edge of the fin is outlined in white, and the site of the wound is
indicated by an asterisk. The scale bar represents 200 mm. (B) Images from independent experiments were blinded and the number of neutrophils in
the fin counted. Data are shown as means of individual experiments (shapes)6S.E.M. and total combined mean (bars); **, p,0.01 of combined means
by one-way ANOVA with Dunnett’s post test.
doi:10.1371/journal.ppat.1000320.g007
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Proteolytic activity was not completely dispensable to modulate

neutrophil function, as the activities of E435D and StcE were not

identical. Active StcE more potently induced an elongated cell

morphology during neutrophil migration than did E435D, suggest-

ing that cleavage was more efficient than binding in preventing rear

detachment. This could be explained if binding of E435D to CD43

blocked charge repulsion, but removal of the CD43 extracellular

domain by StcE eliminated both charge repulsion and steric

hindrance. Furthermore, StcE exerted a cleavage-dependent effect

on neutrophil oxidative burst production. The specific substrate

mediating these effects was not identified, but CD45 is an attractive

candidate because it has previously been reported to modulate

production of the oxidative burst [24]. CD43 may also play a role in

oxidative burst production, although evidence for this is less clear

[33]. Regardless of the exact mechanism, the finding that StcE

increased the oxidative burst in a cleavage-dependent manner

provides further evidence that it may play an immunomodulatory

role during infection.

Neutrophils are the first responders to bacterial infection, and

pathogens have strategies to combat this response that include

inhibition of chemoattractant receptors and inactivation of C5a

and IL-8 [45]. To our knowledge, proteolysis of cell surface

mucins by StcE represents a novel mechanism for altering

neutrophil function. Respiratory burst production and the ability

to migrate are crucial capabilities of neutrophils in fighting

infection, and alteration of these functions by StcE may lead to a

dysregulated immune response during EHEC infection. Neutro-

phils isolated from children with HUS are more adherent to the

vascular endothelium [46], and StcE could contribute to this

phenotype. The effect of StcE on neutrophil migration was both

rapid and persistent. Increased adhesion and impaired migration

were evident after 30 minutes of StcE treatment. After 210 min-

utes, fewer StcE-treated neutrophils had migrated across transwell

filters, suggesting this was not a transient defect that could be

overcome with time. The longevity of the effect further suggests

that the interaction between StcE and neutrophils may be

physiologically relevant. Whether alteration of neutrophil function

leads to pro- or anti-inflammatory outcomes may depend on the

site of activity and presence of other stimuli. Neutrophils that

remain stuck to the endothelium may be unable to migrate into

the intestine in response to infection, and StcE may thus protect

the bacteria from clearance by the host immune response. The

observed decrease in neutrophil migration across endothelial cell

monolayers supports the conclusion that StcE could impair

migration out of the vasculature and into the intestine. Inhibition

of complement activation at sites of infection by StcE-localized

C1-INH would reduce production of the chemotactic C5a

fragment, further contributing to a migration defect. Alternatively,

neutrophils that are stuck to the endothelium may contribute to

inflammation and tissue destruction, as seen in the kidneys during

HUS. Zebrafish treated with StcE exhibited neutrophil misloca-

lization to the tissues that resembled recently described inflam-

matory mutants, lending credence to this hypothesis. The fact that

mislocalization occurred at a late but not early time point after

wounding may be explained by accumulation of inflammatory

signals from neutrophils that are retained in the tissues, leading to

progressive neutrophil infiltration and retention over time.

Enhancement of the neutrophil oxidative burst by StcE could

further contribute to inflammatory tissue damage in the intestines

and during HUS as a result of inappropriate neutrophil retention.

The pO157 plasmid is associated with EHEC disease incidence

and severity, suggesting that plasmid-encoded genes might

contribute to pathogenesis [2,3]. The plasmid-encoded StcE

protein has a dedicated type II secretion system, is co-regulated

with known virulence factors, and is produced in detectable

amounts during infection, making it a likely virulence candidate.

In a recently described disease model of EHEC in rabbits, mutation

of the type II secretion system led to decreased colonization, and the

authors conclude that lack of StcE secretion might contribute to this

defective colonization [47]. Potential contributions of StcE to

virulence including inhibition of complement-mediated lysis and

promotion of pedestal formation have been described [18,20].

Cleavage of CD43 and CD45 by StcE on the neutrophil surface,

leading to increased adhesion, defective migration, increased

respiratory burst production, and overall dysregulation of the

immune response, may provide another mechanism by which StcE

enhances the progression of disease caused by enterohemorrhagic

E. coli. Moreover, as CD43 and CD45 are expressed on many cells

of the immune system, it is unlikely that the immunomodulatory

activity of StcE is limited to neutrophils.

Materials and Methods

Ethics Statement
For studies with neutrophils from human subjects, informed

consent was obtained from healthy donors at the time of blood

draw with approval of the University of Wisconsin-Madison

Center for Health Sciences Human Subjects committee.

Reagents
Recombinant StcE and E435D protein were expressed and

purified as described [20]. Endotoxin was removed using Endo-

trap blue columns (Lonza) according to manufacturer’s instruc-

tions. Samples were evaluated by Lonza Endotoxin Testing

Services, and endotoxin levels were routinely ,1 EU/mL.

Dulbecco’s Phosphate-Buffered Saline with Ca2+/Mg2+

(DPBS+/+, Mediatech) of an equivalent volume to soluble protein

was used as a vehicle control. Heat-inactivated StcE (hiStcE) was

produced by incubation at 65uC for 10 minutes (Grys 2006).

Interleukin-8 (IL-8), f-Met-Leu-Phe (fMLP), fibrinogen (Fbg),

bovine serum albumin (BSA), and phorbol myristate acetate

(PMA) were purchased from Sigma. Human serum albumin

(HSA) was from ZLB Bioplasma AG (Berne, Switzerland).

Phycoerythrin (PE)-conjugated anti-CD43 clone L10 and FITC-

conjugated anti-CD45 clone HI30 were obtained from Caltag

(Invitrogen). The anti-CD43 C-terminal domain antibody (sc-

7052) was obtained from Santa Cruz Biotechnology. PE-

conjugated anti-CD45RO clone UCHL1 was obtained from

Ebioscience (San Diego, CA). EM-grade 16% paraformaldehyde

(PFA) was from Electron Microscopy Sciences (Hartfield, PA) and

16% formaldehyde was from Polysciences (Warrington, PA).

Primary Cells and Cell Lines
Peripheral blood neutrophils were purified from human blood

using Polymorphprep according to manufacturer’s recommenda-

tions (Nycomed, Sheldon, UK). HL-60 cells (ATCC) were

maintained in Iscove’s Modified Dulbecco’s Medium (IMDM)

according to ATCC guidelines. HL-60 cells were differentiated

(dHL-60s) as previously described [48]. Primary human lung

microvascular endothelial cells (HMVEC-L) were maintained in

EGM-2MV media according to manufacturer’s instructions

(Lonza). For transmigration assays, cells were seeded on

collagen-coated 3 mm pore, 0.33 cm2 polycarbonate transwell

inserts (Costar) at a density of 16105 cells.

Western Blotting and Immunoprecipitation
For cleavage reactions, 16106 dHL-60s in IMDM were treated

with 1 mg/mL StcE, E435D or vehicle control for 30 min at 37uC,
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5% CO2, followed by separation of supernatants and cell pellets.

Supernatants were precipitated with 10% trichloracetic acid (TCA)

on ice. Samples were separated by SDS-PAGE, transferred to

nitrocellulose or PVDF and immunoblotted using standard methods

[49]. L10 and HI-30 antibodies were used at 1:500 and sc-7052 was

used at 1:200. Samples were detected by enhanced chemolumines-

cence (ECL) using Immobilon HRP substrate (Millipore). For direct

precipitation of binding partners, StcE was expressed with an

uncleavable intein-chitin binding domain fusion tag (CBD) in vector

pTYB11 and purified using the IMPACT system as previously

described [20]. Purified StcE-CBD bound to chitin beads (CB) was

incubated with 16107 lysed dHL-60s. CB alone served as a negative

control, and samples were processed using standard methods for co-

immunoprecipitations [49].

Flow Cytometry
Neutrophils (16106/mL) were treated with 1 mg/mL StcE or

E435D (unless otherwise indicated) or vehicle control in EGM-

2MV for 30 min at 37uC, 5% CO2. Cells were blocked in

DPBS+/2 with 0.05% BSA and 0.01% HSA and incubated with

primary antibody per manufacturer instructions. Samples were

read using an LSRII flow cytometer (Becton Dickinson). For the

flow oxidative burst (OB) assay, neutrophils (2.56106) were labeled

with dihydrorhodamine 123 (DHR) (Molecular Probes) as

described [50,51] and treated with 5 mg/mL StcE or E435D,

vehicle control, or 30 ng/mL PMA for 30 min at 37uC, 7.5%

CO2. Oxidation by H2O2 and O2
2 of DHR to rhodamine was

measured as fluorescence of live cells in the FITC channel. Data

were analyzed using FlowJo (Treestar) and individual values from

five independent experiments were combined and analyzed by

one-way ANOVA using GraphPad Prism.

Immunofluorescent Staining
Neutrophils (16105/mL) in EGM-2MV were plated on Fbg-

coated (10 mg/mL) glass coverslips for 30 min at 37uC, 5% CO2

in the presence of 20 mg/mL StcE, E435D or vehicle control, and

further incubated for 10 min in the presence of 100 nM fMLP.

Samples were fixed in 1% PFA in DPBS, post-fixed in 1% formic

acid, and permeabilized in 0.1% Triton-X 100 (Sigma). Primary

antibodies were used at 1:200 (anti-StcE), 1:100 (L10 and HI30),

or 1:25 (sc-7052). Goat anti-rabbit Alexa Fluor 633, goat anti-

mouse Alexa Fluor 488, and rabbit anti-goat Alexa Fluor 488

secondary antibodies were used at 1:200, and samples were

mounted in ProLong Gold antifade reagent with DAPI (Molecular

Probes). Coverslips were imaged using a 636 oil immersion lens

on a Zeiss LSM510 confocal microscope. Data were obtained and

analyzed using LSM 5 Image Software (Zeiss).

Video Microscopy
Non-tissue culture-treated dishes were coated with 10 mg/mL

Fbg, and 56105 neutrophils were plated in the presence of 8.33 mg/

mL StcE or E435D or vehicle control in EGM-2MV for 30 min at

37uC, 7.5% CO2. 1.25 nM IL-8 or 100 nM fMLP was included for

the last 5 or 10 min as indicated. Dishes were placed in The Box

closed system (Life Imaging Services, Reinach Switzerland) at 37uC
and imaged on an Olympus IX-70 inverted microscope (Olympus

America) using a 206phase objective. Images were collected using a

Coolsnap fx cooled charged-coupled device (CCD) video camera

(Photometrics, Huntington Beach, CA) and captured into Metaview

v6.2 (Universal Imaging Corp., Downingtown, PA) every 15 s for

10 min. To obtain measurements of cell velocity, cell centroids were

tracked for the first 21 frames using MetaMorph v7.0r2. For

quantitation of cell length, all cells in two random frames were

measured using MetaMorph. Means of at least three independent

experiments were combined and analyzed by one-way ANOVA

using Prism with Dunnett posttest.

Adhesion Assay
Neutrophils were fluorescently labeled as described [52] and

brought to 26106/mL in EGM-2MV. 50 mL of cell suspension

were added to StcE, E435D, hiStcE, or vehicle control serially

diluted in 50 mL EGM-2MV in a Fbg-coated 96-well black plate

(Greiner, Kremsmuenster, Upper Austria). Cells were allowed to

adhere for 40 min at 37uC, 7.5% CO2. Positive control cells were

treated with 100 nM fMLP for the final 10 min. Samples were

washed 3 times and the fluorescence of remaining adherent cells

measured using a Gemini EM microplate spectrofluorometer

(Molecular Devices) with excitation/emission at 485/530 nm. A

standard curve was included on each plate, and linear regression

was performed with Prism to determine number of neutrophils

adhered in each well. Relative adhesion was calculated by

normalizing the number of adherent cells to the average values

for vehicle control in the absence of fMLP. Means of at least three

independent experiments performed in duplicate were combined

and analyzed by two-way analysis of variance (ANOVA) using

Prism with Bonferroni post test.

Transwell Assay
Neutrophil migration was determined using transwell assays

essentially as described (Lokuta 2005). 3 mm transwell filters were

coated with 2.5 mg/mL Fbg or a monolayer of HMVEC-L, and

46105 calcein-AM-labeled neutrophils were placed in the top

chamber with 25 mg/mL (filters) or 50 mg/mL (monolayers) StcE,

E435D, hiStcE, or vehicle control. EGM-2MV alone or

containing 100 nM fMLP was placed in the bottom chamber

and samples were incubated at 37uC, 5% CO2 for 210 min.

50 mM EDTA was added to the lower chamber, transwells were

removed and the fluorescence of migrated cells quantitated as

described for adhesion assays. Numbers of transmigrated cells

were normalized to vehicle control with chemoattractant, and

means of at least three independent experiments were combined

and analyzed by one-way ANOVA using Prism with Bonferroni

post test.

Zebrafish
Zebrafish were bred and maintained as previously described

(Mathias 2006). At 3 days post fertilization (dpf), zebrafish embryos

were anesthetized in 3 mL embryo water (E3) containing 0.1 mg/

mL tricaine and 25 mg/mL StcE, hiStcE, or vehicle control.

Zebrafish were wounded in the dorsal tail fin with the tip of a 25

gauge needle, and the bath replaced with protein treatment in E3

without tricaine. After 24 hours at 28uC, zebrafish were fixed and

stained for whole-mount immunofluorescence as previously

described (Mathias 2006). Rabbit polyclonal anti-myeloperoxidase

antibody and goat anti-rabbit Alexa Fluor 488 (Molecular Probes)

were used at 1:500. Images were acquired with a Nikon SMZ-

1500 zoom microscope with epifluorescent illumination using

MetaMorph software. For quantitation of inflammation, images of

individual fish were compiled and blinded, and the number of

neutrophils in the dorsal and ventral fin caudal to the yolk sac were

counted. Means of four independent experiments were combined

and analyzed by one-way ANOVA using Prism with Dunnett’s

post test.

Accession Numbers
Swissprot ID numbers for proteins described in the text are as

follows: StcE (O82882); CD43 (P16150), CD45 (P08575).
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Supporting Information

Figure S1 Direct precipitation of neutrophil lysates with StcE.

Lysates of dHL-60s or primary neutrophils (16107)were incubated

in the presence of EDTA with StcE crosslinked to agarose beads

(Affigel 15, Biorad, Hercules, CA). Reactions were separated by

SDS-PAGE, and stained with ProQ Emerald 300 glycoprotein

staining kit (Molecular Probes) or Sypro Ruby total protein

staining kit (not shown). Beads alone were included as a control for

background staining. Glycoprotein bands of molecular weight

consistent with CD43 and CD45 are indicated by arrows. An

indistinct band of ,100 kDa (indicated by unlabeled arrow) was

present in pulldowns of dHL-60, but not neutrophil, lysates. This

may be an aberrantly expressed glycoprotein that reflects the

leukemic origin of HL-60s; similar results were obtained with

Jurkat T cells (unpublished data).

Found at: doi:10.1371/journal.ppat.1000320.s001 (0.11 MB PDF)

Figure S2 StcE does not bind appreciably to fibrinogen. ELISA

plates were coated with increasing concentrations of Fbg,

incubated with varying concentrations of StcE, and detected with

a polyclonal antibody to StcE followed by goat anti-rabbit

conjugated to horseradish peroxidase. Reactions were developed

using TMB substrate kit (Pierce) and measured spectrofluorome-

trically. Data shown are from a representative of three

independent experiments performed in duplicate.

Found at: doi:10.1371/journal.ppat.1000320.s002 (0.05 MB PDF)

Figure S3 Competitive binding of E435D to the extracellular

domain of CD43. Neutrophils (16106) were treated with varying

concentrations of E435D for 30 min at 37uC, 5% CO2. Cells were

stained with L10-PE and analyzed by flow cytometry to detect

masking of the L10 epitope by E435D as compared to vehicle

control. Geometric mean fluorescence intensity is also shown for

each sample, and data shown are representative of three

independent experiments. StcE treatment served as a positive

control for removal of the L10 epitope, and cleavage was far more

efficient than binding of E435D at reducing L10 staining. Staining

for total CD45 with the HI30 mAb, which recognizes an epitope

that is unaffected by StcE cleavage, served as a negative control for

epitope blocking. E435D did not affect the binding of HI30.

Found at: doi:10.1371/journal.ppat.1000320.s003 (0.12 MB PDF)

Video S1 Random migration of HSA-treated neutrophils. For

all videos, PMN were treated with 12.5 mg/mL protein for 30 min

at 37uC, 7.5% CO2. Time lapse images were collected over

10 min at 15 s intervals.

Found at: doi:10.1371/journal.ppat.1000320.s004 (1.72 MB AVI)

Video S2 Random migration of StcE-treated neutrophils.

Found at: doi:10.1371/journal.ppat.1000320.s005 (1.75 MB AVI)

Video S3 Random migration of E435D mutant-treated neutro-

phils.

Found at: doi:10.1371/journal.ppat.1000320.s006 (1.76 MB AVI)

Video S4 Random migration of HSA-treated neutrophils

stimulated with IL-8.

Found at: doi:10.1371/journal.ppat.1000320.s007 (1.72 MB AVI)

Video S5 Random migration of StcE-treated neutrophils

stimulated with IL-8.

Found at: doi:10.1371/journal.ppat.1000320.s008 (1.75 MB AVI)

Video S6 Random migration of E435D mutant-treated neutro-

phils stimulated with IL-8.

Found at: doi:10.1371/journal.ppat.1000320.s009 (1.75 MB AVI)
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