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Abstract

Environmental DNA (eDNA) analysis with species-specific primer/probe sets is promising

as a tool to quantify fish abundance and distribution. Nevertheless, several factors could

reduce the accuracy of this method. Here, we aimed to analyze whether intraspecific vari-

ability and diel activity rhythm affect eDNA detection in Japanese eels (Anguilla japonica).

For this purpose, we performed tank experiments focusing on two points. First, we assessed

the effects of base pair sequences with probe region polymorphism on eDNA detection.

Next, we evaluated the influences of diel rhythm, activity, and individual differences in eDNA

release rate on eDNA concentration. We examined the base pair sequences of the probe

regions of 20 individuals and found genetic mismatches in two of them. The eDNA concen-

tration was estimated to be much lower in these variants than it was in the other individuals.

We conducted a rearing experiment on four non-variant individuals to explore the influences

of diel activity and inter-individual differences in eDNA detection. Nocturnal eel activity was

reflected in the eDNA detection but the inter-individual differences remained large. The

observed weak positive correlations between eDNA concentration and activity suggest that

eDNA emission is highly dependent on basal metabolism. The present study suggests that

consideration of polymorphic sites at the probe region and diel activity rhythms should

improve the accuracy and precision of abundance estimation through eDNA. Such fine-tun-

ing is applicable not only for eels but also for other fishes to be targeted by eDNA

technology.

Introduction

Since antiquity, Japanese eel (Anguilla japonica) has been an important food fish in East Asian

countries. However, its populations have dramatically declined in recent decades because of
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climate change and overexploitation [1]. Consequently, it has been listed as “an endangered

species in the near future” [2]. To protect natural Japanese eel populations, it is necessary to

determine when, where, and how many animals are located in each habitat. Japanese eels

spawn near the Mariana Islands [3]. The newly hatched preleptocephali and more developed

leptocephali are transported northward by the Kuroshio Current [4]. They then metamor-

phose into glass eels when they reach rivers or brackish water, develop into elvers, become yel-

low and silver eels, and return to the offshore spawning site [5]. However, the precise

spatiotemporal distributions of the eels in various river sites are yet to be established. Today,

environmental DNA (eDNA) analyses have been applied in the establishment of eel distribu-

tion [6,7].

Analyses of eDNA estimate target species composition and abundance using DNA frag-

ments left by animals and plants in water, soil, and air [8–12]. The technique has been used for

spatiotemporal monitoring of endangered land and aquatic animal species [13] such as marine

sturgeon [14] and freshwater carp [15]. It has also been applied to detect the reproductive

activity of endangered species such as freshwater Macquarie perch [16]. It is necessary to iden-

tify factors that influence eDNA detection when eDNA analysis is used to quantify species.

In quantitative PCR (qPCR) analyses using species-specific primers/probes, mutations and

polymorphisms may influence eDNA detection rate. Base pair mismatches between target spe-

cies and probes have been reported to reduce the detection of DNA in humans [17] or primers

in fish [18]. In addition, haplotype diversity in Japanese eel [19] may affect the sensitivity of

eDNA detection activities. This is a fundamental problem that should be adequately addressed

when developing eDNA assays.

Conversely, ecological and physiological traits of target species could pose challenges when

eDNA concentrations are used as proxies in biomass estimation activities. Some field studies

demonstrated that there is a positive correlation between eDNA concentration and fish

biomass/abundance in freshwater [13,20–24] and marine [25–28] environments. Tank experi-

ments have also demonstrated positive correlations between fish size and eDNA concentra-

tions in bluegill [29] and fish abundance and eDNA concentrations in jack mackerel [30].

Nevertheless, other researchers reported only weak quantitative relationships between biomass

and eDNA abundance [6,31–33]. Individual differences, such as metabolic rate, stress condi-

tions, life stage, and physiological or behavioral status, have been reported to potentially influ-

ence eDNA emission rates in salamanders [34]. Furthermore, Thalinger et al. [35] observed a

positive correlation between eDNA detection and fish activity in seven fish species in

freshwater.

There are inconsistencies among studies and discrepancies among target species with

regard to the relationship between sampling time and eDNA concentration. Nocturnal carp

eDNA concentrations increased 500-fold at night when fish biomass only doubled at a feeding

site [36]. In addition, eDNA concentrations of nocturnal riverine giant salamander [21,37]

and tailed frog [21] did not differ between the daytime and nighttime.

Attempts have been made to use eDNA analysis to detect Japanese eel in rivers [6,38] and

in the ocean [39]. For Japanese eels, there is a positive correlation between eDNA concentra-

tion and wet weight, body length [40]. The eDNA concentration increases 10–200× during

spawning [39]. The degradation of eDNA also affects its detection. Water temperature has a

significant positive influence on eDNA degradation in Japanese eel [41]. Individual differences

in eDNA concentration have been detected among eels of the same size [40]. Eel ecophysiology

and behavior markedly affect the eDNA release rate.

The Japanese eel is nocturnal. During the daytime, it hides in holes or mud in rivers or

ponds [42,43]. In captivity, eels often remain in pipes during the day and leave pipes at night

in search of food [44]. Light, water temperature, tidal cycles, the moon phase, and other
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external environmental factors influence eel ecophysiology and behavior [44]. To accurately

evaluate Japanese eel biomass through eDNA analysis, it is necessary to clarify whether there is

diurnal variation in the eDNA concentration of eels.

The aim of the present study was to investigate factors influencing Japanese eel eDNA con-

centrations. Clarifying such factors could facilitate the development of appropriate tools for

the reliable estimation of the biomass of Japanese eel and other species using eDNA. To this

end, we performed tank experiments focusing on two points. First, we assessed the effects of

base pair sequences with probe region polymorphism on eDNA detection (Experiment 1). Sec-

ond, we evaluated the influences of diel rhythm, activity, and individual differences in eDNA

release rate on eDNA concentration (Experiment 2).

Materials and methods

Ethics statement

This study was conducted in accordance with the guidelines of the Regulation on Animal

Experimentation of Kyoto University, Kyoto, Japan. No fish or other animals were harmed in

any of the experiments performed herein. No ethical approval was required for the experimen-

tal procedure due to the common consumption of cultured eel. All 20 eels were housed for use

in further research.

Experiment 1: Effects of polymorphism on eDNA detection

Fish selection, experimental tank design, and water collection. The effects of probe

region base pair sequence polymorphism on eDNA detection were examined. Twenty Japa-

nese eels (Anguilla japonica, SL = 494 ± 18 mm, W = 159 ± 10 g) were purchased from a com-

mercial provider (Unagikobo, Daigotsusyo Ltd., Shizuoka, Japan) and transferred to the

Maizuru Fisheries Research Station on May 23, 2018. The animals cultured in Miyazaki

(Japan) were received there as glass eels collected by local fishermen ~6 mo before purchase.

No individual had any visible injury.

Six acrylic tanks (L × W × H = 900 mm × 300 mm × 300 mm; I.D. L × I.D. W = 890 mm ×
290 mm; V = 100 L) were arranged in parallel, bleached with 0.1% (w/v) sodium hypochlorite,

enclosed by a blue vinyl sheet on all sides, and covered on the bottom with a black vinyl sheet.

They were filled to 21 cm depth with tap water (54 L) dechlorinated by a water purifier (Stan-

dard Neo; Marfied, Kanagawa, Japan). Aeration was provided by two air stones placed at each

corner of the long axis of each tank.

Three cycles of a 1-week experiment were conducted from May 25 to June 14, 2018. Opera-

tors wore nitrile gloves during sampling and all procedures. Six individual eels that were not

used in an experiment were placed one by one in each tank per cycle. The room temperature

was 24 ± 1˚C. At 10:00 daily, 500 mL water was collected through a vinyl tube with a siphon

from mid-depth of each tank and stored in a plastic bottle. The tanks were bleached with 0.1%

(w/v) sodium hypochlorite and rinsed with tap water 1 d before each cycle. Before eel intro-

duction, the DNA concentrations were determined for the tanks and found to be negative in

the first cycle and positive in the second and third cycles. Nevertheless, the pre-eel DNA con-

centrations divided by those measured on the first day of each respective cycle were < 3.4% in

the latter cycles. This foreign DNA contamination had a negligible impact on the subsequent

quantitative analyses. Eighteen of the 20 eels were used in this experiment. The other two were

kept in separate buckets for 1 h on June 14, 2018. Samples of the water surrounding all 20 eels

were collected in 500-mL plastic bottles and used in the base pair sequence analyses. The plas-

tic bottles were bleached with 0.1% (w/v) sodium hypochlorite and prewashed twice with sam-

pling water before sample collection. After sampling, small volumes of purified tap water were
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added to the tanks at feeding and bottom cleaning. Individual eels were labeled with elastomer

tags in preparation for the subsequent experiment.

Water filtration and eDNA extraction. Water filtration and eDNA extraction were per-

formed according to the instructions in the Environmental DNA Sampling and Experiment

Manual (v. 2.1) [45] with slight modification. Each 500-mL water sample was passed through

an aspirator fitted with a glass fiber filter (GF/F; 0.7 μm pore size; 47-mm diameter; Whatman,

Maidstone, UK). Each 500-mL distilled water sample was filtered once per sampling day and

used as a blank control. After every filtration process, the filtration devices were bleached with

0.1% (w/v) sodium hypochlorite for 5 min, rinsed with tap water, and rinsed again with dis-

tilled water. The filters were wrapped in aluminum foil, placed in plastic bags, and stored at

−20˚C until DNA extraction. The entire process from sampling to preservation was performed

within 1 h.

The eDNA extraction was conducted with a DNeasy blood & tissue kit (Qiagen, Hilden,

Germany). Each filter was placed in a Salivette tube (Sarstedt, Nümbrecht, Germany) and cen-

trifuged at 5,000 × g for 3 min. Then 420 μL of a solution comprising 20 μL Proteinase K,

200 μL Buffer AL, and 200 μL H2O was added to the filter. The tube was incubated at 56˚C for

30 min and the lysed DNA was collected by centrifugation at 5,000 × g for 3 min. Then 200 μL

tris-ethylenediaminetetraacetic buffer (TE buffer) was added to the filter and the liquid was

collected by centrifugation at 5,000 × g for 3 min. Then 200 μL Buffer AL and 600 μL ethanol

were added to the liquid and the mixture was transferred to a spin column and centrifuged at

6,000 × g for 1 min. Subsequently, 100 μL Buffer AE was eluted into the liquid according to the

manufacturer’s instructions and the mixture was preserved at −20˚C. All buffers (except TE),

Proteinase K, and the spin columns from the DNA extraction kit were used in the eDNA

extraction in the present study.

PCR analysis. The Japanese eel eDNA concentrations were quantified by qPCR in a

LightCycler 96 system (Roche Diagnostics, Mannheim, Germany) as in a previous study [41].

The DNA from each target species was amplified using species-specific primers and probe sets

targeting the mitochondrial D-loop region. The forward primer (primer F) Aja–Dlp–F was 50–

TACATTTAATGGAAAACAAGCATAAGCC–30, the reverse primer (primer R) Aja–Dlp–R was

50–CGTTAACATTACTCTGTCAACTTACCTG–30, and the probe Aja–Dlp–P was 5’–FAM–
ACCCATAAACTGATAAATAG–MGB–3’. The amplified length was expected to be 138 bp. The

species-specificities of the primer/probe sets were confirmed by Kasai et al. [41].

Each PCR reaction included 900 nM forward and reverse (F/R) primers and 125 nM Taq-

Man Probe, 7.5 μL TaqMan Environmental Master Mix 2.0 (Thermo Fisher Scientific, Wal-

tham, MA, USA), 0.075 μL AmpErase uracil N-glycosylase (Thermo Fisher Scientific,

Waltham, MA, USA), and 2 μL DNA sample. The total reaction volume was adjusted to 15 μL

with PCR-grade water (Roche Diagnostics, Basel, Switzerland). Dilutions containing 3 × 101–

3 × 104 copies per PCR tube were prepared and used as quantification standards. The qPCR

conditions were as follows: 2 min at 50˚C, 10 min at 95˚C, 55 cycles of 15 s at 95˚C, and 60 s at

60˚C. There were three replicates each of all samples and standard DNAs. Three replicate neg-

ative controls containing PCR-grade water instead of template DNA were included in all PCR

plates. For all PCR runs, the calibration curves’ R2 were > 0.99, and the ranges of the slope, Y-

intercept, and PCR efficiency were −3.58 to −3.36, 39.55 to 40.28, and 0.90 to 0.99, respectively.

None of the PCR-negative or blank controls was PCR-amplified. The amplified fragments

were directly sequenced by a commercial sequencing service (No. SQ18F210091; Fasmac,

Atsugi, Kanagawa, Japan). To mitigate the risk of carryover contamination, the pre-PCR and

post-PCR experiments were conducted in separate rooms.

The DNA from each target individual in the first and second cycles was quantified by an

intercalator method using the same species-specific primers as in the above-mentioned
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TaqMan method. Each PCR reaction system included 900 nM forward and reverse (F/R)

primers, 7.5 μL PowerUp SYBR Green Master Mix (Thermo Fisher Scientific, Waltham, MA,

USA), and 2 μL DNA sample. The total reaction volume, standard dilutions, and replications

were similar to those in the TaqMan method above. The qPCR conditions were as follows: 2

min at 50˚C, 2 min at 95˚C, 55 cycles of 15 s at 95˚C and 60 s at 60˚C, and melting (15 s at

95˚C, 60 s at 60˚C, 0.20˚C/s from 60˚C to 95˚C, and 15 s at 95˚C). For all PCR runs, the cali-

bration curves’ R2 were> 0.99, and the ranges of the slope, Y-intercept, and PCR efficiency

were −3.68 to −3.50, 38.38 to 39.18, and 0.87 to 0.93, respectively. None of the PCR-negative or

blank controls were PCR-amplified.

Experiment 2: Diel eDNA release rate and eel activity patterns

Fish selection. Here, the effects of diel activity and individual differences on the Japanese

eel eDNA release rates were examined. Four individual eels (Aja-1, Aja -2, Aja -3, Aja -4; SL

494 ± 21 mm; W 155 ± 7 g; S1 Table) were selected from the 20 used in Experiment 1 (S2

Table). Eels with similar base pair sequences between primers F and R were chosen. All had

the same sequence except for Aja-2 whose 35th base from the 50 end of primer F was “A” rather

than “C” and Aja-4 whose 48th base from the 50 end of primer F was “A” rather than “G”

between the primer F-30 and probe (S2 Table).

Experimental tank design and activity evaluation. Four acrylic tanks were arranged in

parallel as described for Experiment 1 (Fig 1). The experimental space was enclosed by a

black curtain to minimize external visual disturbances. Purified tap water was stored in a

100-L tank. The water level and volumes were 21 cm and 54 L, respectively. The water

exchange rate was 225 mL/min over six cycles per day. The aeration rate was 200 mL/min.

Dou et al. [46] reported that glass eels are more active at 20˚C and 24˚C than they are at

15˚C. In the present study, the eels moved more actively at� 24˚C than they did at 20˚C.

Hence, the water temperature was maintained at 25.7 ± 0.7˚C. Fluorescent light was turned

on at 05:00 and the light intensity was 402–493 Lx. The light was switched off at 17:00 and the

light intensity declined to 0.01–0.09 Lx. No feeding or bottom cleaning was performed during

the experiment.

A video camera (SEC-TF-N060WISC; Broadwatch, Osaka, Japan) was set in each tank to

record eel activity. Nocturnal behavior was recorded using the infrared function of the camera.

Eel activity was scored at 1-s intervals as follows: eel motionless in the pipe, 0 points; eel mov-

ing and caudal fin out of the pipe, 1 point; at least half but less than the entire eel body out of

the pipe, 2 points; entire eel body out of the pipe, 3 points. Eel activity was evaluated by calcu-

lating the sum of scores at 1 h or 3 h before each water sampling. Eel activity at 1 h and 3 h

were compared to make correlations between eDNA concentration and activity.

Water collection and filtration. An eel was introduced into each tank at 08:00 on July 23,

2018. Water samples were collected at 09:00 between July 23 and July 25, 2018 (acclimatiza-

tion). Eight samplings were conducted between July 26 and July 27, 2018 at 06:00, 09:00, 12:00,

and 15:00 (daytime) and at 18:00, 21:00, 00:00, and 03:00 (nighttime). Water was collected in

three 500-mL plastic bottles as for Experiment 1. Five hundred milliliters of water was col-

lected from the tank in each plastic bottle before introducing an eel on July 20. These samples

were used as blank controls.

Water filtration, eDNA extraction, and qPCR analysis by the TaqMan method using spe-

cies-specific primers and probe sets were performed in the same manner as for Experiment 1.

For all PCR runs, the calibration curves’ R2 were > 0.99. The ranges of the slope, Y-intercept,

and PCR efficiency were −3.60 to −3.31, 39.12 to 40.34, and 0.90 to 1.00, respectively (S3

Table). None of the PCR-negative or blank controls was PCR-amplified.
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Data analysis. All statistical analyses were performed in R v. 3.6.3 [47]. The diurnal and

nocturnal eDNA concentration and activity were compared with a two-tailed, paired Stu-

dent’s t-test. Normality was tested by Shapiro’s test, and then the homoscedasticity was veri-

fied by var-test for t-test and Bartlett’s test for multiple comparisons (S4 Table). During

acclimatization, the daily variation in eDNA concentration at 09:00 between July 23 and 26,

2018 were analyzed by one-way ANOVA with Tukey’s HSD multiple comparisons test. Dur-

ing acclimatization, the individual variations in eDNA concentration at 09:00 between July

24 and 26, 2018 were analyzed by the Kruskal-Wallis and Dunn-Bonferroni multiple compar-

isons tests. Diurnal and nocturnal eDNA concentration and activity over time and among

individuals were evaluated by one-way ANOVA and Tukey’s HSD multiple comparisons

test. Coefficients of variation among individuals, samplings, and PCR replicates were deter-

mined and compared by the Kruskal-Wallis and Dunn-Bonferroni multiple comparisons

tests. Correlations between eDNA concentration and activity for each individual were esti-

mated by linear regression (95% confidence and prediction limits) using the “lm” package in

R v. 3.6.3.

Fig 1. (A) Schematic drawing of the experimental tank system and (B) time schedule. Arrows in (A): Water flow direction.

https://doi.org/10.1371/journal.pone.0255576.g001

PLOS ONE Genetic variability and diurnal activity affect eDNA detection in Japanese eel

PLOS ONE | https://doi.org/10.1371/journal.pone.0255576 September 16, 2021 6 / 19

https://doi.org/10.1371/journal.pone.0255576.g001
https://doi.org/10.1371/journal.pone.0255576


Results

Experiment 1: Effects of polymorphism on eDNA detection

One out of 20 bases in the probe region was different in two of 20 individuals tested (S4

Table). Variant-1 (first cycle on May 25–31, 2018; Fig 2A) presented with a genetic mismatch

in the middle of the probe region. Variant-2 (second cycle on June 1–7, 2018; Fig 2B) had a

mismatch at the third base from the 30 end of the probe region (Table 1). In terms of the

eDNA variation within an individual experiment in 1 week, the variant eDNA concentrations

were consistently low or undetected. In contrast, other individuals fluctuated between high

and low eDNA concentrations (Fig 2A–2C). The fluorescence endpoints of the qPCR amplifi-

cation curves decreased in the order of control, Variant-2, Variant-1 on the first day, Variant-

1 on the second or later day, and negative control (Fig 2D; Ct = 23.58 ± 0.07, 25.28 ± 0.04,

27.32 ± 0.23, and non-detectable (ND), respectively). Variant-1 had a positive eDNA concen-

tration only immediately after it was introduced to the tank. Thereafter, its eDNA concentra-

tion was negative (Fig 2A).

By the intercalator method, the variant eDNA concentration was detected and was consis-

tently as high as in the other individuals (Fig 2E and 2F). The fluorescence endpoints of the

qPCR amplification curves were similar among the control, Variant-2, Variant-1 on the first

day, and Variant-1 on the second or later day, and extremely low in the negative control (Fig

2G; Ct = 20.81 ± 0.16, 21.58 ± 0.07, 22.25 ± 0.07, 20.35 ± 0.20, and ND, respectively). The melt-

ing temperature (Tm) was 74.08 ± 0.46˚C (S5 Table).

Experiment 2: Diel eDNA release rate and eel activity patterns

During acclimatization, the eDNA concentration was significantly higher on the first day after

fish introduction than it was by day four for all individuals except Aja-1 (df = 3, Aja-1:

p = 0.99, Aja-2: p = 0.02, Aja-3: p< 0.01, Aja-4: p< 0.01; Table 2). There was no significant dif-

ference between the second and fourth days for any individual (df = 3, Aja-1: p = 0.98, Aja-2:

p = 0.06, Aja-3: p = 0.99, Aja-4: p = 0.57; Table 2). Inter-individual variation in the eDNA con-

centration was significantly higher for Aja-4 than it was for Aja-1 and Aja-3 between the sec-

ond and fourth days of acclimatization (df = 3, p< 0.01; Table 2). The eDNA concentration

was significantly higher in Aja-4 than it was in the others (df = 3, F = 8.86, p< 0.02; Fig 3). The

activity level of Aja-3 was significantly higher than those of Aja-2 and Aja-4 (df = 3, F = 3.72,

p = 0.02; Fig 3).

Observation of the diel changes during the main experiment indicated that the eDNA con-

centration (df = 3, p = 0.03) and activity (df = 3, p< 0.01) during the nighttime (18:00, 21:00,

00:00, and 03:00) were significantly higher than those during the daytime (06:00, 09:00, 12:00,

and 15:00; Fig 3). The activity at 21:00 was significantly higher than that at 12:00 (df = 7,

F = 2.83, p = 0.03; Fig 3). The eDNA concentration was minimal during the daytime, peaked

around sunset, and decreased significantly by nighttime (df = 7, Aja-1: F = 16.2, p< 0.05, Aja-

2: F = 122.6, p< 0.04, Aja-3: F = 74.8, p< 0.02, Aja-4: F = 35.4, p< 0.03; Fig 3). Peak eDNA

occurred between 15:00 and 21:00 and varied among individuals (Fig 3).

The timing at which the eels actively moved outside the pipes (activity score = 3) also dif-

fered among individuals between 15:00 and 21:00 (around sunset) and at 03:00 (predawn) and

6:00 (dawn) (Fig 3). Both the eDNA concentration and activity increased in Aja-4 at 09:00 (Fig

3D). The standard deviation for the eDNA concentration at 15:00 was very large for Aja-1

(Fig 3A).

There were inter-individual differences in the correlation between eDNA concentration

and activity 1 h before water sampling. These correlations were very weakly positive for Aja-1
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Fig 2. (A), (B), (C) Inter-individual variation in eDNA concentration (eDNA conc.) in 18 individual Japanese eels and

(E), (F) in 12 individual Japanese eels, and (D), (G) amplification curves. (A), (B), (C), (D) the TaqMan method using

species-specific primers and probe sets. (E), (F), (G) an intercalator method with SYBR Green. Black: Controls; red and

green: Variant-1 (first day; second or later day of the first cycle); blue: Variant-2 (second cycle); purple: Negative

controls; square: A-1; diamond: B-1; triangle: C-1; cross: A-2; bar: B-2; circle: C-2. Error bars represent standard

deviations (SD) of PCR replication.

https://doi.org/10.1371/journal.pone.0255576.g002
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and Aja-2 and positive for Aja-3 and Aja-4 (R2 = 0.072, 0.023, 0.30, and 0.56, respectively;

Fig 4). The correlation for the activity data 1 h before water sampling was considerably higher

than that at 3 h before water sampling in Aja-2, Aja-3, and Aja-4 (R2 = 0.12, 0.008, 0.13, and

0.43 in Aja-1, Aja-2, Aja-3, and Aja-4, respectively; S1 Fig).

The coefficient of variation among the individual eDNA concentrations was significantly

larger than those for the sampling and PCR measurement replications (df = 2, p< 0.01; Fig 5).

Therefore, the fluctuations in eDNA concentration shown in Table 2 and Fig 3 were derived

mainly from individual variations.

Discussion

Genetic polymorphism may hinder eDNA studies

The environmental DNA of a target species is specifically detectable when there are a sufficient

number of interspecific base pair mismatches [48]. Intraspecific mutations and polymor-

phisms affect eDNA detection by qPCR analysis using species-specific primers/probes [17,18].

It is reported that eDNA detection is more influenced by base pair mismatches in the primer

region than in the probe region [18]. Mismatches in the probe region nonetheless affect the

estimation of eDNA concentration [49]. The DNA amplicon is certainly amplified in the sub-

sequent steps once the templates are annealed by the primers, because the sequences of DNA

amplicons completely match the sequences in the priming sites of the primers. However, mis-

matches of sequences between probe sets and templates are not eliminated in the subsequent

amplification steps. Therefore, the negative effects of polymorphs in probe regions on DNA

amplification are potentially considerable.

Individual rearing of Japanese eel in Experiment 1 confirmed that base sequence polymor-

phism in the probe region substantially modulate the eDNA concentration. The endpoint fluo-

rescence levels of the qPCR-amplified curves were lower than those of the others (Fig 2D). The

Table 1. Probe region sequences.

Sample Sequence of probe region�

Non variant ACCCATAAACTGATAAATAG

Variant-1 ACCCATAAATTGATAAATAG

Variant-2 ACCCATAAACTGATAAACAG

�Red: Base in polymorphism.

https://doi.org/10.1371/journal.pone.0255576.t001

Table 2. Variation in eDNA concentration (eDNA conc.) during acclimatization.

Sample No.�2 eDNA conc. (104 copies/L)�1

Date 23-Jul 24-Jul 25-Jul 26-Jul

Aja-1B 25.0 ±3.4b 17.3 ±0.9b 98.0 ±30.1a 22.1 ±2.8b

Aja-2AB 62.3 ±11.9a 55.3 ±6.8ab 50.9 ±10.3ab 33.1 ±5.7b

Aja-3B 79.7 ±12.7a 35.9 ±2.6b 21.4 ±3.9b 37.6 ±3.4b

Aja-4A 669.7 ±22.7a 178.7 ±41.2b 71.5 ±14.9c 215.1 ±45.3b

�1Average ± SD. Values within same row having different superscript letters are significantly different (df = 3, Aja-1: F = 19.2, p< 0.01, Aja-2: F = 5.76, p = 0.02, Aja-3:

F = 38.7, p< 0.01, Aja-4: F = 187.3, p< 0.01, one-way ANOVA with Tukey’s HSD multiple comparisons test).

�2Values within the same column having different superscript capital letters are significantly different (df = 3, p< 0.01; Kruskal-Wallis and Dunn-Bonferroni multiple

comparisons tests).

https://doi.org/10.1371/journal.pone.0255576.t002

PLOS ONE Genetic variability and diurnal activity affect eDNA detection in Japanese eel

PLOS ONE | https://doi.org/10.1371/journal.pone.0255576 September 16, 2021 9 / 19

https://doi.org/10.1371/journal.pone.0255576.t001
https://doi.org/10.1371/journal.pone.0255576.t002
https://doi.org/10.1371/journal.pone.0255576


Fig 3. Diel changes in eDNA concentration (eDNA conc.) (circles; left axis) and activity (columns, blue: 1, yellow:

2, red: 3; right axis) in Japanese eels. (A) Aja-1, (B) Aja-2, (C) Aja-3, (D) Aja-4. There were significant differences in

eDNA concentration (df = 3, p = 0.03) and activity (df = 3, p< 0.01) between daytime and nighttime (two-tailed,

paired Student’s t-test). There were significant differences in eDNA concentration among times of day (df = 7,

p< 0.05, one-way ANOVA with Tukey‘s HSD multiple comparisons test). Error bars indicate standard deviations.

https://doi.org/10.1371/journal.pone.0255576.g003
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Fig 4. Correlation between eDNA concentration (eDNA conc.) and activity score 1 h before water sampling. (A)

Aja-1, (B) Aja-2, (C) Aja-3, (D) Aja-4. Dotted lines indicate 95% confidence limits. Dashed lines indicate 95%

prediction limits.

https://doi.org/10.1371/journal.pone.0255576.g004
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eDNA concentrations of the variants were consistently estimated to be lower than those of the

others (Fig 2A and 2B). Earlier studies reported flattened PCR amplification curves [17,48].

The eDNA concentration of the eel with a genetic mismatch in the middle of the probe region

(Variant-1) was lower than that of the eel with a mismatch in the side of the probe region (Var-

iant-2) (Fig 2A and 2B). In the former case, the eDNA concentration was low but positive

immediately after the eel was introduced to the tank (Fig 2A). From the second day onward,

however, its eDNA concentration was negative (Fig 2A). We have no reasonable explanation

for this phenomenon, which is a subject to be addressed in future research.

In general, a probe is hybridized to complementary DNA during qPCR annealing [49,50],

and then is degraded and separated by the 50-to-30 exonuclease activity of DNA polymerase

during target-specific DNA amplification. This reaction is responsible for fluorescence emis-

sion [49,51]. The melting temperature (Tm, ˚C) decreases and the probe hybridization weak-

ens in response to base pair mismatches [49]. In particular, the use of MGB accentuates the

difference in Tm due to single nucleotide polymorphisms (SNPs), and the probe is less likely

to anneal to the target region. We propose that the fluorescence decreases and the eDNA con-

centration is underestimated when probe hybridization is interrupted by a base pair mismatch

in the probe region. Probe hybridization would decrease when the mismatch occurs in the

middle of the probe region. A similar polymorphism was detected in the probe region, and

Fig 5. Coefficients of variation (CV) in individual, sampling, and PCR measurement replications. The CV significantly differed

(df = 2, p< 0.01, Kruskal-Wallis and Dunn-Bonferroni multiple comparisons tests).

https://doi.org/10.1371/journal.pone.0255576.g005
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weak fluorescence was observed in mitochondrial cytochrome b of jack mackerel (Takahashi

et al., unpublished data).

Using the intercalator method with SYBR Green in our study, eDNA concentrations and

the endpoint fluorescence levels of the variants were consistently as high, and their Ct values

were as low as those in the non-variant individuals (Fig 2E–2G). These results confirmed that

the total amount of DNA extracted from the filters in Variant-1 and -2 was equivalent to that

of the other individuals, and inhibitors were absent from these samples.

Some researchers have used Japanese eel primers/probe sets targeting mitochondrial 16S

ribosomal RNA (rRNA) (153 bp [6], 107 bp [39], and 154 bp [40]). Here, we used primers/

probe sets targeting 138 bp of the mitochondrial D-loop region. These primers/probe sets have

also been used in Kasai et al. [7], where a nationwide eel distribution survey in Japan was con-

ducted. Kasai et al. [41] carefully checked the specificity in the set of primers used in the pres-

ent study, as follows. The A. japonica sequence was compared with those of 14 congeneric

subspecies in order to confirm specific amplification. The primer/probe sequences were con-

sistent with the target species consensus sequence based on 857 individuals of A. japonica sam-

ples. In this manner, base pair mismatches caused by intraspecific genetic variation were

minimized. However, a base sequence mismatch in the probe region was detected in two of

the 20 individual eels. Individual tank experiments in our study using these primers/probe sets

revealed that polymorphism in the probe region influenced eDNA detection considerably. It is

necessary to design primers/probe sets selecting regions with relatively low intraspecific poly-

morphism, which would facilitate the precise measurement of eDNA concentrations in each

individual.

D-loop regions have higher rates of polymorphism than other mitochondrial regions. Nev-

ertheless, other mitochondrial regions can also be polymorphed. The risk of overestimation

following PCR amplification of non-native con-generic species’ DNA is increased by the selec-

tion of regions that generally have lower mutation rates than the D-loop region, whereas the

risk of underestimation caused by the primer/probe mismatch could be reduced. Therefore, it

is a trade-off between overestimation and underestimation where to select a target region

when applying eDNA technologies to ecological research.

The target species biomass could be underestimated in marine and riverine DNA surveys

when the variant is mixed at the survey point. We have no data concerning the ratio of variants

in the natural eel population. From the results of our study, 10% of the total population were

variants, which is unlikely to bias the presence–absence data when each habitat hosts a large

enough number of individuals. When eDNA concentrations are applied to estimate biomass,

such a polymorphism is likely to lead to underestimation. If some habitats host only a few indi-

viduals, then such a polymorphism might lead to false negatives. Therefore, we recommend

that the sequence of the target species inhabiting the survey area should be verified in advance

depending on the purpose of the eDNA study.

Inter-individual difference and daily rhythm of activity affect eDNA

emission

The concentration of eDNA often fluctuates soon after the introduction of fish in a tank. For

instance, it took 3 days in the case of bluegill sunfish (Lepomis macrochirus) [29] and 6 days in

the case of common carp (Cyprinus carpio) [20] until eDNA concentrations stabilized in the

still water of the tanks. In the present experiment, although eDNA concentrations on the

fourth day were significantly lower than those on the first day in three individuals, the differ-

ence was non-significant between the second and fourth days in all individuals. Therefore,

eDNA concentrations seem to have stabilized from the second day onward, perhaps due to the
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running water system used in this study. This was advantageous for comparing inter-individ-

ual, as well as diel, differences in eDNA concentrations.

The coefficients of variation in the individual eDNA concentration measurements were sig-

nificantly larger than those for the sampling and PCR replications (Fig 5). The fluctuations in

eDNA concentration might be the result of individual variations in the eDNA release rate. Pos-

itive correlations have been reported between fish size and eDNA concentration [29,30,40]. As

all individuals of this study were equivalent in size, the variation would be caused by factors

other than biomass differences.

Here, we focused on the diurnal activity patterns as putative factors affecting the eDNA

concentrations. Japanese eels are nocturnal [42,43]. Glass eels often remain in pipes during the

daytime and emerge immediately after the light source is switched off [44]. We used elvers

whose diurnal rhythm was assumed to be the same as that of glass eels. Their nighttime activity

was significantly greater than their daytime activity (Fig 3). All individuals were more active at

21:00 than they were at 12:00. Thus, the Japanese eels were active at sunset and non-active at

noon.

Carp eDNA concentration increased at night in accordance with their nocturnal activity

[36]. In contrast, the eDNA concentrations of salamanders and frogs did not markedly differ

between daytime and nighttime [21,37]. Ghosal et al. [36] suggested that a nocturnal increase

in eDNA concentration could be explained by increases in carp biomass and activity as the

fish gather in feeding areas at night. We focused on the nighttime increase in Japanese eel

activity and detected changes in eDNA concentration by examining individual eels of the

same size. The nocturnal eDNA concentrations were higher than the diurnal ones. Therefore,

the observed variations in eDNA concentration coincided with the nocturnal activity of this

species.

A positive correlation between eDNA concentration and fish activity has been reported in

seven freshwater fishes [35]. In the present study, eDNA concentration and activity were also

positively correlated. The activity 1 h before water sampling was more strongly correlated with

the eDNA concentration than the activity 3 h before water sampling (Figs 4 and S1 Fig). More-

over, the correlation between eDNA concentration and activity varied among individuals. We

propose that the factors affecting eDNA concentration include activity and individual differ-

ences in basal metabolism. In the metabolic process, the eels seem to release substantial

amounts of eDNA.

Japanese eels move actively at dawn and dusk [44]. In the present study, individual differ-

ences in active time were observed. Aja-1 moved actively at dawn (06:00) and dusk (18:00)

whereas Aja-2 moved less actively at these times. Relative differences in individual activity

were also detected between midnight (00:00) and predawn (03:00) (Fig 3). The activity and

eDNA concentration at 09:00 were higher for Aja-4 than they were for the other eels (Fig 3).

Throughout the day, the eDNA concentration was the lowest in the daytime, highest at dusk,

and gradually decreased thereafter. Peak eDNA concentrations varied among individuals

between 15:00 and 21:00. During this time interval, the eels actively moved outside the pipes.

The high eel activity at that time coincided with the maximum eDNA concentration, suggest-

ing that a large amount of mucus and other substances containing their DNA was shed from

their body.

The activity level of Aja-3 was significantly higher than those of Aja-2 and Aja-4. In con-

trast, the eDNA concentration of Aja-4 was significantly higher than those of Aja-1 and Aja-3

during acclimatization between the second and fourth days and those of all other eels during

the main experiment. Hence, eDNA release is not always higher in more active individuals.

Possible eDNA sources include urine, mucus, saliva, carcasses, and feces [11,12]. Furthermore,

the aquatic eDNA state may be free, cellular, or particle-bound [13]. In lakes, eDNA
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concentrations may be higher near the bottom than the surface [23]. The same is true for sea-

water [52]. Consequently, eDNA distribution may be irregular. DNA patches in the water may

also affect the eDNA concentration. Patchy aquatic eDNA distribution might account for the

large standard deviation of the eDNA concentration in Aja-1 at 15:00 (Fig 3A).

Conclusions and perspectives

We demonstrated that a base pair mismatch in the probe region may lead to the underestima-

tion of eDNA detection in Japanese eel. The problem of genetic polymorphism, as we have

shown, is likely to occur in the eDNA of other species. The present study also showed that the

Japanese eel diel rhythm and activity affect their eDNA emissions. There was a positive corre-

lation between eDNA concentration and eel activity and both were relatively higher in the

nighttime. Therefore, water collection at sunset maximizes riverine eel detection in eDNA-

based distribution surveys. Moreover, eDNA release rates differ among individual eels. These

findings may well contribute to improve the accuracy and precision of estimating eel abun-

dance and distribution using eDNA. This should be an important step to protect and rebuild

the depleted stock of this species. However, the sample size used in the present study was lim-

ited; hence, extending the survey scale is preferable before confidently upscaling eDNA tech-

nology in the field. The effect of mismatch in priming sites of primers is also worth evaluating

to improve the efficiency of eDNA detection in field surveys. The internal and external envi-

ronments of target species also influence the variation in eDNA concentration. To improve

the accuracy of biomass estimation, further investigation is required to identify the other fac-

tors affecting eDNA concentration and the interactions that may occur among those factors.
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