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Mesenchymal Stem
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The Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China

Macrophages are involved in almost every aspect of biological systems and include
development, homeostasis and repair. Mesenchymal stem cells (MSCs) have good
clinical application prospects due to their ability to regulate adaptive and innate
immune cells, particularly macrophages, and they have been used successfully for
many immune disorders, including inflammatory bowel disease (IBD), acute lung injury,
and wound healing, which have been reported as macrophage-mediated disorders.
In the present review, we focus on the interaction between MSCs and macrophages
and summarize their methods of interaction and communication, such as cell-to-cell
contact, soluble factor secretion, and organelle transfer. In addition, we discuss the
roles of MSC-macrophage crosstalk in the development of disease and maintenance of
homeostasis of inflammatory microenvironments. Finally, we provide optimal strategies
for applications in immune-related disease treatments.
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INTRODUCTION

Mesenchymal stem cells (MSCs) are observed in a variety of tissues, such as bone marrow, umbilical
cord tissue, adipose tissue, and placental tissue (Pittenger et al., 1999), and they have a fibroblast-
like morphology and multidirectional differentiation potential and can differentiate into cartilage,
osteoblasts, and adipocytes (da Silva Meirelles et al., 2006). More importantly, MSCs can regulate
the immune response and anti-inflammatory effects in a specific microenvironment by a number of
pathways (da Silva Meirelles et al., 2009). Previous reports showed that MSCs regulate the immune
response by interacting with various immune cells (Aggarwal et al., 2014; Caires et al., 2018)
and the maturation, differentiation, proliferation and functional activation of peripheral blood
mononuclear cells (PBMCs) by secreting regulatory molecules and cytokines (Di Nicola et al., 2002;
da Silva Meirelles et al., 2006; Gazdic et al., 2015; Vizoso et al., 2017). Additionally, previous studies
have shown that MSCs can regulate adaptive immune cells, such as modulating the proliferation
and differentiation of B cells, thereby inhibiting T cell proliferation and cytokine secretion and
inducing regulatory T cells (Wang R.X. et al., 2014). Moreover, MSCs also possess the potential
to control the immune response from innate immune cells, including monocytes, macrophages,
dendritic cells (DCs), natural killer cells (NK cells), etc. (Li et al., 2010; Chiesa et al., 2011; Cahill
et al., 2015).

Macrophages are specialized phagocytic cells of the innate immune system that have several
diverse functions in homeostatic and immune responses. As scavengers, macrophages constantly
move around to remove dead cells, pathogenic microbes and other foreign bodies. As key
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modulator and effector cells in the immune response, the
activation of macrophages influences and responds to the
immune system. The concepts of classic and alternative
activation, also known as M1 and M2, respectively, have
become increasingly widespread (Gordon, 2003; Aggarwal et al.,
2014), and growing evidence indicates that macrophages are
pivotal for the maintenance of the tissue microenvironment
and repair. For example, intestinal macrophages have roles
in maintaining tissue homeostasis, particularly restoring tissue
homeostasis after inflammation. Liposomes, lipoprotein A4
(LXA4) and specialized pre-degradation mediators (SPM)
have been shown to direct macrophage differentiation to
alternatively activated macrophages with pro-resolving capacity
(Na et al., 2019). These macrophages not only inhibit Th1 and
Th17 responses (Maizels, 2005) but also play an important
role in re-establishing the epithelial barrier upon disruption
of the intestinal epithelium (Fox et al., 2010). Similarly,
alveolar macrophages are critical for tissue homeostasis, their
polarization is driven by injury, and they regulate lung
inflammation and resolution (Jackson et al., 2016; Hu and
Christman, 2019). Moreover, macrophages constantly monitor
the skin microenvironment and maintain skin homeostasis via
their plasticity, such as differentiating into pro-inflammatory
macrophages, pro-wound healing macrophages, or pro-resolving
macrophages to promote or suppress inflammation and modulate
wound healing (Barrientos et al., 2008; Mosser and Edwards,
2008; Yanez et al., 2017; Krzyszczyk et al., 2018). In recent
years, increasing attention has been given to the study of
MSC-macrophage interactions in tissue homeostasis and damage
repair. This review will focus on the regulation of MSCs on
macrophages, the counteraction of macrophages on MSCs, and
the role of MSC-macrophage crosstalk in the inflammatory
microenvironment. The importance of the interaction between
the two is the maintenance of organization stability.

BIOLOGY OF MACROPHAGES

Generally, tissue-resident macrophages are either derived from
circulating monocytes or established before birth and maintained
long-term (Franken et al., 2016). As early as 1939, Ebert and
Florey discovered that monocytes in vivo can migrate from the
blood to different tissues and organs and then develop and
differentiate into macrophages (Mϕs) (Willis et al., 2018). The
life span of Mϕs in different tissues is prolonged, with some able
to survive for months to years (Benoit et al., 2008a). Although
Mϕs have the potential for proliferation in tissues, they rarely
divide and are mainly replenished by the continuous migration
of monocytes in the blood. According to different activation
methods, Mϕ can be divided into two categories: classically
activated Mϕs (M1) and alternatively activated Mϕs (M2). These
two types have different surface receptor expression, cytokine and
chemokine production, effector functions, etc. (Figure 1; Selleri
et al., 2016; Heo et al., 2019).

Cytokines such as interferon gamma (IFN-γ),
lipopolysaccharide (LPS), granulocyte-macrophage colony
stimulating factor (GM-CSF) or tumor necrosis factor (TNF)

can activate M1-type cells, which leads to increased self-antigen
presentation ability, increased complement-mediated phagocytic
activity, proinflammatory factor release (IL-1β, TNF-α, IL-12,
IL-6, IL-23, NO, etc.), and chemokine production (CXCL9,
CXCL10, etc.) (Benoit et al., 2008b; Biswas et al., 2019). By
releasing these inflammatory mediators, M1 cells can promote
the elimination of non-self components in vivo and play an
important role in preventing tumors (Belgiovine et al., 2016).
In addition, M1 cells participate in the Th1-mediated immune
response as effector cells, thereby promoting inflammation and
killing intracellular pathogens (Bystrom et al., 2008; Caires et al.,
2016, 2018).

M2-type cells are further divided into M2a, M2b, and M2c
cells (Mantovani et al., 2004). M2a can be induced by IL-13
or IL-4, and M2b can be induced by some Toll-like receptor
(TLR) ligands and IL-10. M2a and M2b cells mainly perform
immune regulation functions by promoting the Th2-mediated
immune response (Ben-Mordechai et al., 2013; Ben-Lulu et al.,
2014; Behura et al., 2019). The main function of M2c cells
is to suppress the occurrence of the immune response, which
plays an important role in the process of tissue remodeling
(Mantovani et al., 2004).

Complementarily, the recognition and elimination of
invading pathogens by macrophages is an important event
in the innate immune response. Mϕs express a variety of
pattern recognition receptors (PRRs), including mannose
receptors (MRs), scavenger receptors (SRs), TLRs and
phosphatidylserine receptors (PSRs) (Kurokawa et al., 2009).
Ligands are highly conserved molecular structures shared by a
class or group of specific pathogenic microorganisms and their
products, including LPS and lipoteichoic acid (LTA), mannose,
peptidoglycan (PGN), bacterial DNA, double-stranded RNA
and dextran, which are called pathogen-associated molecular
patterns (PAMPs) (Li et al., 2016). When the corresponding PRR
and PAMP are combined, a rapid immunobiological response
can be mediated. In addition, after Mϕ recognizes pathogenic
microorganisms via PRR, it is activated at the same time and
further produces and secretes a variety of chemokines, cytokines
and chemical mediators, including MIP-1α/β, MCP-1, and IL-8,
which mediate and promote inflammation. Moreover, Mϕs can
also secrete a large number of inflammatory mediators, such as
leukotrienes, prostaglandins, elastase, lysozyme, and urokinase,
to induce and strengthen local inflammation (Peng et al.,
2016; Nenasheva et al., 2017). In short, macrophages play an
important role in processing and presenting antigens, killing and
eliminating intracellular pathogens, participating in antitumor
immunity, and even maintaining tissues in environmental
homeostasis (Xu et al., 2017; Willis et al., 2018).

MSCs MODULATE THE MACROPHAGES

MSC-Mediated Effects on Macrophages
Previous studies have shown that MSCs have the ability
to regulate T cells, B cells, and DC cells (English et al.,
2008; Ghannam et al., 2010; Luz-Crawford et al., 2013; Lee
et al., 2014). At the same time, the interaction between
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FIGURE 1 | The characteristics of macrophages.

MSCs and innate immune cells is becoming clearer. MSCs
can regulate the polarization, phagocytosis and metabolism of
macrophages. Biao Huang’s team found that in vitro, MSCs
promoted the apoptosis of RAW264.7 cells, a macrophage
cell line. They also reported that MSCs can downregulate
the number of macrophages in the spleen (Huang et al.,
2016). MSCs promote the phagocytosis of macrophages through
mitochondrial transfer in distinct diseases, such as acute
respiratory distress syndrome (ARDS) and sepsis (Jackson
et al., 2016; Jackson and Krasnodembskaya, 2017), although
fat-derived MSCs can also reduce the phagocytic capacity of
macrophages (Adutler-Lieber et al., 2013). In addition, MSCs
promote the differentiation of naive macrophages and enhance
their bactericidal effect. These stem cells manipulate the plasticity
of macrophages by changing the metabolic state of macrophages
through prostaglandin E2 (PGE2) (Vasandan et al., 2016).
Studies have shown that MSCs are likely to induce macrophages
to transform into an anti-inflammatory/immunosuppressive
phenotype (Luz-Crawford et al., 2017). Nakajima and HongLong
Zhou reported that MSCs can effectively improve spinal cord
injury by polarizing macrophages from the M1 to M2 type
(Nakajima et al., 2012; Zhou et al., 2016). Other studies have
also reported that MSCs can alleviate liver diseases, such as acute
liver injury and liver fibrosis, by inhibiting proinflammatory M1

cells and inducing M2 anti-inflammatory cells (Li C. et al., 2019;
Wang et al., 2021). Reports also show that MSCs can improve
diabetes by inducing macrophage polarization (Yin et al., 2018;
Gao et al., 2019). Liao et al. (2020) demonstrated that MSCs
can induce macrophages toward an anti-inflammatory M2
phenotype in ischemic myocardium, and other investigations
have illustrated that MSCs can polarize macrophages via direct
cell–cell contact or indirectly, such as through soluble factors.

Mechanism of MSC Regulate the
Macrophages
Cell–Cell Contact
Mesenchymal stem cells have been reported to affect immune
cells through direct cell-to-cell contact (Augello et al., 2005;
Gu et al., 2013). Although most reports indicate that the
immunomodulatory properties of MSCs depend largely on
the secretion of soluble factors, cell-to-cell contact is also an
important functional mechanism. Li Y. et al. (2019) found that
the direct interaction between M1 macrophages and MSCs is
essential for the treatment of LPS-induced abortion by MSCs.
Using an abortion model, they demonstrated that MSCs induce
immune tolerance based on a TSG-6-dependent paracrine effect
and by cell-to-cell contact between MSCs and proinflammatory
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macrophages (Li Y. et al., 2019). Espagnolle reported that the
inhibitory effect of MSCs on T cell proliferation was increased
due to the upregulation of CD54 in hMSCs in contact with M1
macrophages (Espagnolle et al., 2017).

Soluble Factors
Mesenchymal stem cells can polarize monocytes or M1
macrophages into M2-type macrophages by secreting soluble
factors. Previous studies have demonstrated that paracrine
activity plays an important role in the anti-inflammatory
effect of MSCs (da Silva Meirelles et al., 2009). We have
summarized the main soluble factors by which MSCs regulate
macrophage polarization.

PGE2
Prostaglandin E2 (PGE2) is the main product of arachidonic
acid metabolism in mammalian cells and plays an important role
in immunosuppression and alleviating inflammation (Peebles,
2019). The Zongjin Li group found that human placenta-
derived MSCs can improve 2,4,6-trinitrobenzene sulfonic acid
(TNBS)-induced mouse colitis. This therapeutic potency was
possibly mediated by MSC production of PGE2 to polarize M2
macrophages (Cao et al., 2020). Wang et al. (2021) reported
that MSCs can protect against D-galactosamine (D-Gal)-induced
liver failure, and they found that MSCs regulate macrophage
polarization by secreting PGE2. In addition, studies have reported
that MSCs improve cardiac injury by increasing M2 macrophages
through the COX-2-PGE2 pathway (Jin et al., 2019, 2020). In
summary, PGE2 is an important factor that mediates MSC
polarization of macrophages.

TGF-β
Transforming growth factor β (TGF-β) plays a very important
role in the immunosuppressive function of MSCs (Eggenhofer
et al., 2014). TGF-β, a well-known immunosuppressive factor,
can inhibit excessive inflammation (Robertson and Rifkin,
2013; Noh et al., 2016; de Araujo Farias et al., 2018). In
addition, TGF-β induces M2 polarization of macrophages and
reduces the inflammatory response mediated by macrophages
(Li et al., 2006; Byrne et al., 2008; Robertson and Rifkin,
2013). Moreover, Pender et al. (1996) showed that TGF-β
improves the survival rate of rats exposed to endotoxic shock
by regulating the production of inflammatory mediators in
peritoneal macrophages. Liu F. et al. (2019) showed that in
a coculture system, TGF-β secreted by MSCs reduced the
level of M1 markers, upregulated M2 macrophage marker
levels, and inhibited excessive activation of the inflammatory
response. Another group reported that TGF-β-licensed MSCs can
improve the secretome of inflammatory bone marrow-derived
macrophages (Lynch et al., 2020). Based on these findings, TGF-β
secreted by MSCs can promote the M2-like polarization of
macrophages and improve inflammatory conditions.

Indoleamine 2,3-dioxygenase
Indoleamine 2,3-dioxygenase (IDO), an intracellular enzyme, can
be induced by interferon-γ (IFN-γ), and it catalyzes tryptophan
into kynurenine (Ball et al., 2009). Metabolites of kynurenine
have been shown to inhibit T cell proliferation and induce T

cell apoptosis (Munn et al., 2005; Fallarino et al., 2006), and
it has also been shown to regulate macrophage phenotype.
Francois et al. (2012) and other investigators found that MSCs
induce the polarization of monocytes toward M2 macropage and
reduce monocytes infiltration dependent on IDO activity (Kang
J.Y. et al., 2020; Galipeau, 2021; Lim et al., 2021). Lee et al. (2017)
also found that melatonin can promote MSCs and improve
blood flow perfusion and vessel regeneration by reducing the
infiltration of macrophages in an IDO-dependent manner.

TSG-6
Tumor necrosis factor-α-induced gene/protein 6 (TSG6) has
been reported to reduce inflammatory responses in corneal
injury, lung injury, peritonitis and skin wounds (Danchuk et al.,
2011; Qi et al., 2014; He et al., 2016). Studies on the effect of
MSC-induced TSG-6 expression on macrophages have also been
performed. Ko et al. (2016) reported that TSG-6 is required for
MSCs to induce a suppressive monocyte/macrophage population.
In a mouse colitis model, BM-MSCs had a therapeutic function
induced by dextran sodium sulfate (DSS) depending on the
production of TSG-6, which polarized macrophages from the
M1 to M2 type (Sala et al., 2015). MSCs have also been
shown to regulate microglia by secreting TSG-6. In this case,
murine BM-MSCs inhibited the production of TNF-a, IL-1β,
iNOS, and IL-6 by BV2 microglia stimulated by LPS in a
TSG-6-dependent manner (Liu et al., 2014). In short, TSG-6
may play an important role in MSC function related to the
programming of macrophages.

CCL2 and CXCL12
CCL2 is a chemokine classically associated with the recruitment
of macrophages and monocytes during angiogenesis (Dipietro
et al., 2001; Khan et al., 2013). MSCs secrete CCL2 at very low
concentrations in the resting state (Kinnaird et al., 2004; Zhang
et al., 2010). When stimulated with inflammatory cytokines,
such as TNFα, MSCs secrete up to 10-fold more CCL2 (Ren
et al., 2012). Using a lymphoma transplantation model, Ren
et al. (2012) demonstrated that tumor-resident MSCs promote
tumor growth by recruiting monocytes/macrophages through
CCL2 production. C-X-C motif chemokine ligand 12 (CXCL12)
plays a major role in macrophages located in regulatory niches
(Sugiyama et al., 2006). Perivascular mesenchymal stem/stromal
cells, endothelial cells, mature osteoblasts, and osteoprogenitors
can also express CXCL12 (Asada et al., 2017). Papa et al. (2018)
demonstrated that MSCs alleviate spinal cord injury through the
recruitment of macrophages and conversion of M1 cells to an
M2 neuroprotective phenotype by secreting CCL2. Recently, Giri
et al. (2020) identified that MSCs can upregulate IL-10 expression
in CCR2+ macrophages by secreting CCL2 and CXCL12, which
cooperate as a heterodimer in vitro.

Extracellular Vesicles
An increasing number of studies have shown that MSCs
perform many paracrine functions by releasing extracellular
vesicles (EVs). Several recently published studies indicated that
MSC-based alleviation of colitis mainly relies on MSC-EV-
induced suppression of colon macrophages (Wu et al., 2014;
Phinney et al., 2015; Cao et al., 2019). Exosomes upregulate
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the nuclear factor kappaB (NF-κB) signal of macrophages, and
the uptake of mitochondria increases their phagocytic capacity
(Wu et al., 2014). Cao et al. (2019) showed that MSC-EVs can
significantly reduce colitis caused by DSS in mice by inducing
colonic macrophage polarization in the immunosuppressive
M2 phenotype, and they observed more IL-10-producing M2
macrophages in MSC-EV-treated mice, which was associated
with weight loss, intestinal epithelial cell damage and increased
colon length. Yang et al. (2015) suggested that MSC-EV effects
on the phenotype and function of macrophages occur by the
regulating the damaged intestinal antioxidant/oxidant balance.
That is, MSC-EV-mediated inhibition of intestinal NO-driven
injury is accompanied by a decrease in the activities of
myeloperoxidase and malondialdehyde and an increase in the
activities of superoxide dismutase and glutathione.

Mitochondrial Transfer
Studies have also shown that other mechanisms may have
a significant impact on the interaction between MSCs and
macrophages. Phinney et al. (2015) described a peculiar process
in which macrophages engulf the mitochondria that pass through
mitochondrial MSCs and shuttle to the cell membrane. Jackson
et al. (2016) also reported that in ARDS, the transfer of
MSC mitochondria to macrophages in the lung occurs by
tunneling through a nanotube-like structure and direct coculture
of MSCs and monocyte-derived macrophages can enhance
their swallowing ability (Jackson and Krasnodembskaya, 2017).
Morrison et al. (2017) reported that the transfer of mitochondria
via MSC-derived EVs promotes phagocytosis and suppresses
proinflammatory cytokine secretion by human macrophages.
It is worth noting that the above studies have shown that
with the uptake of MSC mitochondria, the bioenergy and
phagocytic capacity of macrophages are enhanced, which may
help increase the clearance of microorganisms in diseases such
as pneumonia and sepsis.

EFFECT OF MACROPHAGE ON MSC

As mentioned above, MSCs can induce the transformation of
macrophages. In addition, macrophages, as the target to be
regulated, also have a feedback effect on MSCs that includes
differentiation, migration, apoptosis and immunomodulatory
functions (Figure 2).

MSC Differentiation
Guihard et al. (2012) found that conditioned media from human
monocytes stimulated with LPS or TLR ligands enhanced bone
formation by human bone marrow MSCs. Enhanced osteogenesis
was also observed by several groups, they demonstrated that
M1 macrophages promote osteogenesis in MSCs via the COX-
2-PGE2 pathway (Guihard et al., 2012; Lu et al., 2017; Zhang
et al., 2017; Nathan et al., 2019; Tang et al., 2019). Recently,
the Shi group reported that macrophage-derived supernatants
can inhibit the adipogenic differentiation of human adipose-
derived mesenchymal stem cells (hADSCs) in vitro, irrespective
of the polarization status (M0, M1, or M2 macrophages)

(Ma et al., 2020). In summary, macrophages also have an
important influence on the differentiation ability of MSCs.

MSC Proliferation, Migration, and
Apoptosis
Studies have also clarified that macrophages affect the
proliferation, migration, and survival of MSCs, with M2-
type macrophages promoting MSC proliferation and migration
and M1-type macrophages inducing MSC apoptosis (Yu et al.,
2016; Xia Y. et al., 2020). Other reports also demonstrated that
M2 macrophages can promote the growth of hMSCs, while
M1 type inhibits the growth of hMSCs in vitro. In addition,
macrophages can mediate the protective and repair effects
of MSCs on infarction (Ben-Mordechai et al., 2013; Freytes
et al., 2013; Maldonado-Lasuncion et al., 2021). These studies
have shown that macrophages can affect MSCs, especially M2
type, and can promote MSCs proliferation and engraftment.
This provides new support for targeted macrophage therapy
in tissue repair.

MSC Immunoregulation
In terms of immune regulation, the Nicolas team reported in
detail that MSCs express more immune regulatory genes after
coculture with macrophages (Lynch et al., 2020). The contact
of MSCs with macrophages induces CD54 expression on MSCs
and mediates calcium influx in MSCs, thereby promoting the
immune regulation function of MSCs (Mercier et al., 1993).
de Witte et al. (2018) demonstrated that the phagocytosis
of MSCs by monocytes plays a crucial role in the immune
regulation of MSCs. Moreover, Li Y. et al. (2019) found that the
contact of MSCs with proinflammatory macrophages increases
the production of TSG-6 by MSCs, thereby enhancing the
inhibitory regulation of MSCs on T cells and macrophages. In
addition, proinflammatory macrophages in contact with MSCs
upregulated the expression of CD200 on MSCs and promoted
the anti-inflammatory transformation of macrophages through
the interaction of CD200 and CD200R. The TSG-6-mediated
paracrine effect was enhanced by the cell-to-cell contact between
MSCs and proinflammatory macrophages (Li Y. et al., 2019).

It is worth noting that macrophage depletion prevents the
beneficial effects of MSC-Exos. Similarly, inducing macrophages
to produce IL-10 is also partly involved in the beneficial effects of
MSC-Exos (Liu H. et al., 2019). Krisztián Németh’s team stated
that when mouse-derived bone marrow MSCs are cocultured
with macrophages, MSCs will stimulate the release of IL-10
by macrophages through a PGE2-dependent pathway after LPS
stimulation. However, in coculture systems, TNF-α and iNOS
secreted by macrophages are necessary for MSCs to secrete
PGE2 (Nemeth et al., 2009). Reading et al. (2015) suggested that
proinflammatory cytokines produced by macrophages stimulate
MSCs to produce prostaglandin E2 (PGE2) and interleukin (IL)-
1RA, among other immune modulators.

The studies summarized above suggest that after being
activated by proinflammatory factors, macrophages secrete
cytokines to activate MSCs. After activation, MSCs regulate
the immune response and react on macrophages. In the
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FIGURE 2 | The crosstalk between MSCs and macrophages.

microenvironment of disease, a closed loop interaction occurs
between macrophages and MSCs. In other words, MSCs and
macrophages present a coordinated relationship to maintain the
homeostasis of the inflammatory microenvironment.

MSC-MACROPHAGE CROSSTALK AND
MICROENVIRONMENT HOMEOSTASIS
IN DISEASES

Macrophages are pivotal for the maintenance of the tissue
microenvironment and tissue repair (Ehninger and Trumpp,
2011; Liu et al., 2016). At present, the immunosuppressive
function of MSCs derived from bone marrow and cord blood
makes them useful in clinical trials and as a treatment method
for diseases, including GVHD (Le Blanc and Davies, 2015;
Granot et al., 2020), Crohn’s disease (Bamias and Cominelli,
2006), stroke, systemic lupus erythematosus and arthritis (Choi
et al., 2012; Steiman et al., 2015) and other diseases. MSCs can
improve different diseases by educating macrophages to maintain
microenvironment homeostasis (Table 1).

Alleviating Autoimmune Diseases
Human gingiva-derived MSCs can enhance cutaneous wound
healing by polarizing M2 macrophages (Vasandan et al.,
2016; Zhao et al., 2016; Xu et al., 2017). In addition,
melatonin (MT)-pretreated MSC-derived exosomes (MSC-Exos)
can exert better effects on diabetic wound healing (Liu et al.,
2020). MSC-Exos significantly inhibit macrophage expression
of the proinflammatory factors IL-1β, TNF-α, and iNOS and
simultaneously upregulate the anti-inflammatory factor IL-10,
thereby increasing the polarization ratio of M1 to M2 to
mediate the therapeutic effect (Philipp et al., 2018; Saldana
et al., 2019). In colitis, MSCs are reported to regulate the
polarization of M1 to M2 cells in a CCL2-dependent manner
by upregulating the expression of IL-10 to alleviate intestinal
inflammation (Giri et al., 2020). Liu H. et al. (2019) indicated
that the systemic administration of exosomes from human
bone marrow-derived mesenchymal stromal cells (BM-MSC-
Exos) can effectively alleviate inflammatory bowel disease by
interacting with colonic macrophages. Previous studies indicated
that IL-1β derived from macrophages may stimulate MSCs to
secrete IL-1RA and PGE2, which leads to the polarization of
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TABLE 1 | MSC-macrophage crosstalk in different diseases/in vitro system.

Tissue Models MSC-macrophage crosstalk Microenvironment homeostasis References

Liver Liver fibrosis MSC-sEVs induce CX3CR1 + anti-inflammation macrophage Ameliorated
inflammation and fibrosis

Ohara et al., 2018; Kojima et al., 2019;
Luo et al., 2019; Song et al., 2020

Ischemia/Reperfusion
(IR)-induced sterile
inflammatory liver injury

MSC reprogram macrophage toward anti-inflammatory M2 phenotype Reduced hepatocellular damage;
Diminished liver inflammation

Li C. et al., 2019; Sheng et al., 2021

Acute liver failure MSC induced anti-inflammatory (M2) macrophages; reduced levels of
macrophage

Ameliorated hepatocyte death and liver
inflammatory response.

Li et al., 2017, 2021; Liu et al., 2018;
Hwang et al., 2019; Liang et al., 2019;
Shao et al., 2020; Wang et al., 2021

Liver regeneration Decreased CD68+ macrophages. Stimulated liver regeneration in rat. Elchaninov et al., 2018

Heart Acute rejection of heart
transplantation

Inhibited M1 and promoted M2 polarization Inhibit STAT1 and NF-kB pathways; Inhibit the
acute rejection of heart transplantation in mice.

Gao et al., 2020

Diabetic
cardiomyopathy (DCM)

COX-2-PGE2 pathway to promote M2 macrophage polarization Ameliorate myocardial injury caused by diabetic
cardiomyopathy.

Jin et al., 2019, 2020

Myocardial infarction Secreting periostin to promote the polarization of M2 macrophage.
Reduced pan-macrophage infiltration

Improved cardiac function, decreased infarct size. Ben-Mordechai et al., 2013; Xu et al.,
2019; Gao et al., 2020; Liao et al., 2020

Atherosclerosis Stimulate the production of anti-inflammatory factor IL-10, and reduce
the production of TNF-α by macrophage.

Reduce atherosclerotic plaque. Li et al., 2015; Liao et al., 2020

Intestine Colitis Chemokine interactome dictates the induction of IL-10+ macrophages
and promote M2 polarization.

Mitigate gut injury Song J.Y. et al., 2017; Song W.J. et al.,
2017; Song et al., 2018; Kawata et al.,
2019; Liu H. et al., 2019; Cao et al.,
2020; Giri et al., 2020

Inflammatory bowel
disease

Up-regulate the expression of IL-10 and promote M2 polarization. Alleviate inflammatory bowel disease Wang C. et al., 2014; Mao et al., 2017;
Song et al., 2018; Li Y. et al., 2019

Lung Acute lung injury Promote M2 macrophage polarization. Ameliorate acute lung injury induced by LPS. de Mendonca et al., 2017; Chen et al.,
2018; Lv et al., 2020

Pulmonary arterial Attenuate the CD68+ macrophage and induce the CD163+

macrophage
Reduce lung inflammation and vascular remodeling
Improve hemodynamics in experimental pulmonary
arterial hypertension; Ameliorate the impaired
alveolarization and pulmonary artery remodeling

Jerkic et al., 2019; Park et al., 2019;
Porzionato et al., 2021

Acute Respiratory
Distress Syndrome

Mitochondrial transfer via tunneling nanotubes to enhance macrophage
phagocytosis.

Improve bacteria clearance rate, reduce disease
response, and have obvious antibacterial effect

Jackson et al., 2016; Morrison et al.,
2017; Huang et al., 2019

Wound healing Diabetic wound healing MSC polarizes macrophages to M2 type through MSC-Exos and
PGE2- dependent pathways

Relieve inflammation and autoimmune response Philipp et al., 2018; Saldana et al.,
2019; Liu et al., 2020

Cutaneous wound
healing

Inhibit NF-kB pathway to promote the polarization of M2 macrophages Promote cutaneous wound healing, reduce scar
areas and the infiltration of inflammatory cells

Lee et al., 2015; Ti et al., 2015; Ko
et al., 2020

Cancer Suppress leukemia Reprogram macrophages to the arginine-1 positive phenotype. Change the bone marrow microenvironment and
inhibit the development of leukemia.

Jafarzadeh et al., 2019; Nwabo Kamdje
et al., 2020; Xia C. et al., 2020

Breast cancer Secrete exosomes to promote myeloid cells into M2-polarized breast
cancer macrophages

Drive accelerated breast cancer progression Wolfe et al., 2016; Francois et al., 2019;
Wang et al., 2019

Lung cancer Increased miR-21-5p delivery by MSC-EV after hypoxia pre-challenge
by reducing apoptosis and promoting macrophage M2 polarization.

Promote lung cancer development Gazdic et al., 2017; Ren et al., 2019
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M2 macrophages, thereby forming a feedback pathway that
enables MSC therapy improvement in hepatic injury (Bartosh
et al., 2013; Lee et al., 2015; Reading et al., 2015; Luz-Crawford
et al., 2016). Ko et al. (2020) reported that macrophage-
derived amphiregulin is essential for MSC-mediated CD4+ T
cell suppression and preserves epithelial stem cells to alleviate
autoimmune uveoretinitis. More importantly, MSCs alleviate
inflammatory injury depending on the presence of macrophages
in the body, and pharmacological depletion of macrophages
weakens the therapeutic effect of MSCs (Ko et al., 2016; Giri et al.,
2020).

Hematopoietic Microenvironment
Mesenchymal stem cells and macrophages are pivotal for the
repair and maintenance of the bone marrow microenvironment.
Macrophages can be reprogrammed by MSCs to an arginine
1-positive phenotype and have tissue repair functions, and
these functions are extremely important in the leukemia
microenvironment. The reprogramming of macrophages by
MSCs changes the bone marrow microenvironment and inhibits
the development of leukemia (Xia C. et al., 2020). In the leukemia
microenvironment, leukemia cell exosomes change the immune
characteristics of MSCs and macrophages (Jafarzadeh et al., 2019;
Nwabo Kamdje et al., 2020). In addition, MSCs can reprogram
macrophages into M2 macrophages with phagocytosis functions
and can reduce the secretion of proinflammatory factors to
control the tumor microenvironmental immunity (Wolfe et al.,
2016; Francois et al., 2019; Wang et al., 2019).

Bone Tissue Repair
It is worth noting that MSCs and macrophages are also
extremely important in bone repair, where macrophages
regulate the osteogenic differentiation of adipose tissue MSCs
and their transition from M1 to anti-inflammatory M2 is
beneficial to the proliferation and osteogenic differentiation
of MSCs (Zhang et al., 2017). Moreover, macrophages
can promote the osteogenic differentiation of MSCs by
secreting extracellular vesicles to promote bone regeneration
(Kang M. et al., 2020). Gong et al. (2016) also found that
macrophage polarization plays an extremely important role in
regulating MSC osteogenic differentiation to maintain bone
homeostasis and bone regeneration. In addition, the MSC-
derived extracellular matrix alleviates macrophage inflammation
to promote bone regeneration (Deng et al., 2020). Other
studies have shown that for certain materials, the interaction
between MSCs and macrophages includes the MSC-induced
transformation macrophage phenotypes and macrophage-
induced promotion of MSC differentiation; therefore, the
physiological functions of MSCs and macrophages are regulated
to improve osseointegration and promote bone repair (He et al.,
2019; Mahon et al., 2020).

Myocardial Function Repair
Dichloromethane (DCM) rats have abnormal lipid metabolism
and cardiac inflammation. MSCs improve metabolic
abnormalities and downregulate blood glucose levels by
increasing M2-phenotype macrophages to alleviate cardiac
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inflammation in DCM rats (Sun et al., 2018; Jin et al.,
2019). Yan Liao’s laboratory also reported that MSCs have
a promising therapeutic effect on myocardial infarction by
promoting the polarization of M2 macrophages by secreting
periostin (Liao et al., 2020).

In summary, in various diseases, MSCs interact with
macrophages to adjust the inflammatory microenvironment and
thus affect the occurrence and development of the disease.

CONCLUSION

Mesenchymal stem cells are an emerging treatment for
inflammatory and degenerative diseases, and they are entering
early phase clinical trials. MSCs can regulate the biological
function of innate and adapted immune cells. Macrophages are
important innate immune cells that are found in nearly all
inflammatory tissues, where they play a key role in maintaining
normal tissue homeostasis. Evidence was provided showing that
MSCs regulate the chemotaxis and function of macrophages
and MSC-derived signals can contribute to disease remission
by modulating macrophage function in certain cases (Figure 2).
However, the exact role of MSCs in regulating macrophages
remains to be determined.

The effects of MSCs on macrophages include inducing
the transition from the proinflammatory M1 phenotype to
the anti-inflammatory M2 phenotype, which reduces the
secretion of proinflammatory factors and increases the secretion
of anti-inflammatory factors. Moreover, MSCs could reduce
the recruitment of proinflammatory macrophages to the site
of inflammation. Furthermore, MSCs reciprocally regulate
macrophage function. Studies investigating how macrophages
influence the function of MSCs have gradually increased.
Macrophages have a feedback effect on MSCs that includes
differentiation, migration, apoptosis, and immunomodulatory
functions. The synergistic effect of macrophages and MSCs
maintains microenvironmental homeostasis.

At present, certain problems remain in the research on MSC
and macrophage interactions. Soluble factors secreted by MSCs
have been proven to have different effects on macrophages.

The biological functions mediated by MSCs on macrophages
vary with different inflammatory conditions. Further studies
are needed to discover reliable markers for defining different
subpopulations of macrophages, clarify the heterogeneity among
different subpopulations of macrophages used for specific
treatments and clarify the potential mechanisms by which
MSCs regulate macrophages. Based on the current literature, the
following two strategies to enhance MSC efficacy by targeting
macrophage-MSC crosstalk can be outlined: (1) modulating
the number of macrophages at the inflammatory site and (2)
modulating the injection methods and dosages of MSCs in
inflammatory diseases.

Research on the immunosuppressive effects of MSCs is
underway, but additional research is required to clarify the
interaction between MSCs and macrophages and identify the
mechanism by which MSCs regulate macrophages to provide
better solutions for the treatment of disease. In clinical
applications that combine MSCs with M2 macrophages for the
treatment of immune diseases, the stability and flexibility of
the treatments should be closely considered and optimized to
achieve the appropriate modulation of inflammatory responses
at different stages of disease progression.
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