

### **Research** Article

## Exclusive Breastfeeding and Other Foods in the First Six Months of Life: Effects on Nutritional Status and Body Composition of Brazilian Children

# Taís C. A. Magalhães,<sup>1</sup> Sarah A. Vieira,<sup>1</sup> Silvia E. Priore,<sup>1</sup> Andréia Q. Ribeiro,<sup>1</sup> Joel A. Lamounier,<sup>2</sup> Sylvia C. C. Franceschini,<sup>1</sup> and Luciana F. R. Sant'Ana<sup>1</sup>

<sup>1</sup>Center of Biological Sciences and Health, Department of Nutrition and Health, Federal University of Viçosa,

University Campus, Avenida P. H. Rolfs s/n, 36570-000 Viçosa, MG, Brazil

<sup>2</sup> Center of Health Sciences, Department of Medicine, Federal University of São João Del-Rei, 36307-352 São João Del-Rei, MG, Brazil

Correspondence should be addressed to Taís C. A. Magalhães, taisnut@yahoo.com.br

Received 14 May 2012; Accepted 28 June 2012

Academic Editors: N. Akar, T. Greiner, and D. T. L. Shek

Copyright © 2012 Taís C. A. Magalhães et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

*Objective.* To evaluate the effect of exclusive breastfeeding and consumption of other foods in the first six months of life in the nutritional status and body composition of children. *Methods.* A retrospective cohort study with 185 children aged from 4 to 7 years was monitored during the first months of life in a program of support to breastfeeding. We evaluated weight, height, waist circumference, and body composition by using DEXA. The nutritional status was assessed by the BMI/age index. The parameters of adiposity were classified by using as the cutoff point, the 85th percentile of the sample itself, according to gender and age. Confounding factors considered were variables related to maternal, pregnancy, birth, sociodemographic, health, lifestyle, and diet. Bivariate and multivariate analyses were performed, the latter by means of multiple logistic regression. *Results.* The median exclusive breastfeeding was 3 months. Of the children, 42.7% received cow's milk and 35.7% received infant formula. Regarding nutritional status and body composition of the children and there were no differences between the groups studied. *Conclusion.* Breastfeeding was not a protective factor to overweight and body fat in children.

#### 1. Introduction

The nutrition transition, characterized by a decrease in the prevalence of nutritional deficits and increased rates of overweight, obesity, and related diseases, has been occurring worldwide [1, 2] and has been described in all population groups, including in children [3].

In Brazil, assessments of the prevalence of growth deficits in preliminary comparisons of National Research on Demography and Health (PNDS) of 1996 and 2006 indicated a decrease of about 50% in the prevalence of malnutrition in childhood [4]. According to Brazilian data from the Research on Family Budgets (POF) held in 2008/2009, it was found that 33.5% of the population with ages between 5 and 9 years were overweight and 14.3% were diagnosed as obese [5].

Significant changes are observed in children with excess weight and body fat: components of metabolic syndrome and risk factors for cardiovascular disease [6–8], psychological and psychosocial problems [9]. In addition to health changes during childhood, it is noted that obese children tend to be obese adults [10]. It has already been reported that about one-third of preschool children and half of the school children who are obese keep this nutritional status when they become adults [11].

Given the perception of changes in nutritional status and health ever earlier, public health interventions of a preventive nature are important and should also occur in the early stages of development [12, 13].

It is suggested that exposure to environmental factors during critical periods such as during fetal life, childhood, and adolescence can influence the individual susceptibility to disease throughout life [14, 15].

With regard to childhood as a critical period of development, breastfeeding is more than what has been mentioned as a protective factor throughout life [16, 17]. In addition to the nutritional composition suitable for the child's development [18], breast milk would act upon behavioral aspects of mother-child relationship, the formation of the child's eating habits, and metabolic imprinting mechanism, due to its nutritional composition, presence of bioactive substances and hormones, resulting in protection to overweight and body fat, as well as cardiovascular diseases [16, 17].

Despite the evidence and hypotheses demonstrated, the effect of breastfeeding on the nutritional status and body composition is still controversial [19, 20]. Epidemiologic studies and meta-analyses have confirmed these results and found protection effect in the course of life associated to this practice [21, 22], but this has not been observed in all studies [23, 24]. The major discussions about the topic relate to publication bias, the need for control by confounding factors and form to obtain data of breastfeeding [19, 24–26].

Through the aspects presented, this study aimed at evaluating the effect of exclusive breastfeeding and consumption of other foods in the first six months of life in the nutritional status and body composition of children from 4 to 7 years old participating in a project of extension supporting breastfeeding in the municipality of Viçosa, MG, Brazil.

#### 2. Material and Methods

This is a retrospective cohort study [27] whose sample consisted of children aged between 4 and 7 years, monitored for the first months of life by a support program to breastfeeding (PROLAC) in the city of Viçosa, state of Minas Gerais, southeast Brazil, population around 72,220 inhabitants [28].

PROLAC is a program of the Federal University of Viçosa (UFV), whose main activities are the implementation of guidelines in the postpartum period with a view to promote breastfeeding, in partnership with the Human Milk Bank of the municipality of Viçosa and nutritional care to nursing mothers and children during their first year of life. The program began activities in August 2003 and has established protocols for the care and medical records to register the information and assessments, attending in PROLAC students of Nutrition of the Federal University of Viçosa, from the sixth period of the course and participated for at least 6 months of training to perform the activities.

Inclusion criteria for the initial stage of the study considered the following: perform nutritional monitoring for at least 6 months in the Program for children who received breast milk and for at least two months, provided that no mother's milk was offered to the children at any time during this period to children who had been fed with artificial milk or who had been weaned during followup at PROLAC, stillborn [29], not having been born with low weight or macrosomia [30], and presence of identification data in PROLAC's charts that allowed their residence location. The initial sample consisted of 256 children.

Three attempts of location were made. Additional inclusion criteria after the location of the infant were the written consent of parents or guardians and conducting all phases of the study. It was considered as exclusion criteria the presence of diseases, changes in health, or use of medication by the children that could interfere in their nutritional status or body composition.

Data collection was divided into two stages: retrospective, after consultation with the medical records of PROLAC (data relative to the 2003 to 2006), and data relating to children at ages evaluated in the study (years 2010 and 2011). The collection of retrospective data was performed by a single nutritionist, responsible for the investigation, with previous knowledge of the Program's routine. We obtained maternal and gestational data (prepregnancy BMI, gestational weight gain, and mother's smoking during pregnancy) and at birth (birth weight) evaluated as possible factors associated with nutritional status and body composition at later ages. The maternal prepregnancy BMI and gestational weight gain were evaluated according to reference of the medicine institute [31]. The birth weight was evaluated in three growing categories, with the first category representing children born with insufficient weight [32].

With respect to infant feeding, data were obtained from medical records on the practice of exclusive breastfeeding (EBF), consumption of cow's milk, infant formula, and age of introduction of solid foods in infant feeding. Exclusive breastfeeding (EBF) was evaluated as the type of practice in which the infant receives only breast milk, straight from the breast or expressed, or breast milk from another source, no other liquids or solids, except for drops or syrups containing vitamins, oral rehydration salts, mineral supplements or drugs [18].

Children aged between 4 and 7 years were evaluated for weight, height, waist circumference, and percent body fat (total body and regional android representing the abdominal fat). Weight was measured on a digital electronic scale, with a maximum capacity of 150 kg and sensitivity of 50 g. Height was measured using a vertical stadiometer attached to the wall, with a length of 2 meters, divided into centimeters and subdivided into millimeters. We adopted the techniques proposed by Jelliffe [33].

The nutritional status of the children was evaluated according to sex and age, using the anthropometric indices of weight/age (W/A), height/age (H/A), and Body Mass Index/ age (BMI/A), classified according to anthropometric references of the World Health Organization (WHO) [34, 35]. For the calculations of the indices, the Software WHO Anthro Plus [36] was used and the diagnosis of the nutritional status was performed by following the recommendation in *z*-score of WHO [37]. For the evaluation of the EBF time effect and consumption of other foods in the nutritional status, the index used was the BMI/A and the *Z*-score >+1 was considered as changed.

The children's body composition was assessed using the equipment DEXA (Dual Energy X-ray absorptiometry). The variables considered were total body fat mass in grams, total body fat percentage, fat mass in grams, in the android region in grams and fat percentage in the android region. The total body fat percentage and android region fat percentage variables were categorized using as a cutoff the 85th percentile distribution of the sample by gender and age.

To measure waist circumference a tape measure was used, with a length of 2 meters, flexible, inelastic, divided into centimeters and subdivided into millimeters at the level of the umbilicus scar [38]. The measures were made in triplicate, being considered the two closest ones for the calculation of the average. The cutoff for categorization of the variable was the 85th percentile, obtained in the sample itself, specific for age and sex.

Possible confounding factors associated with nutritional status and body composition at the stage of life of children regarding the evaluations were obtained by applying questionnaires to mothers or guardians. The variables evaluated were sociodemographic and health, lifestyles, and diet. The habits of life were obtained using a questionnaire adapted from Andaki [39].

The food variables were obtained from three food records, completed on nonconsecutive days, including a weekend day [30] by the mother or guardian for the child's diet, supplemented by information in the school or daycare. Information on the frequency of consumption of fatty foods was obtained through a questionnaire of frequency as to food consumption prepared by the investigators.

The analyses relating to food records were performed using the software DietPro 5.1 [40]. We evaluated the percentage of energy derived from lipids and carbohydrates and considered values above the upper limit of the Acceptable Macronutrient Distribution Range (AMDR) as increased [41].

The mean energy intake (Kcal) of three food records of each child was compared to its energy needs for the determination of the variable of energy balance. We calculated the Estimated Energy Requirement (EER), using the physical activity level (PAL) [30, 41], estimated according to the questionnaire on lifestyle previously reported. PAL factors used were those of mild and moderate activities (for children who practiced sports in addition to usual activities). The standard deviation of the energy requirement was considered 58 kcal for males and 68 kcal for females [30]. The cases in which the difference between the mean energy intake and the value of EER were above two standard deviations of the need [30, 42] were considered as positive energy balance.

With regard to ethical aspects, the study was approved by the Ethics Committee on Human Research of the Federal University of Viçosa. The children were only included in the study by signing the consent form and all had returned nutritional consultation and, where necessary, forwarding of the consultation with a pediatrician.

#### **3. Statistical Analyses**

For statistical analysis, the following programs were used: STATA version 11.0 [43] and SPSS for Windows version 17.0 [44].

We used the Kolmogorov-Smirnov's normality test. To compare the groups we used nonparametric tests, Kruskal Wallis and Mann-Whitney and Student's parametric *t*-test [45].

For the analyses of effect of breastfeeding and infant feeding, as well as verification of the possible factors associated with outcome, we used Pearson's Chi-square test and Fisher's Exact test. The Chi-square of linear trend was used for variables with more than two categories in which it assumed linear trend in the ratio. We also estimated the odd ratio (OR) and respective confidence intervals of 95% to associations of interest [45].

To adjust the variables we used multiple logistic regression [46] whose defined criterion for inclusion of variables was the association with the dependent variable in bivariate analysis with a *P* value lower than 0.20. For the other tests performed, the probability lower than 5% was considered as level of statistical significance (P < 0.05). As a quality measure of adjustment of the logistic regression models, Hosmer and Lemeshow test was used [47].

#### 4. Results

The sample consisted of 185 children, 101 (54.6%) male and 84 (45.4%) female. The average age was  $72 \pm 10.7$  months. Of the children in the initial sample, 52 were excluded because they were not located. The additional losses were represented by denials on the part of mothers or guardians (n = 3), failure to carry out all stages of the study (n = 12), and changes in health or use of medication that interfered with the nutritional status and body composition (n = 4).

Comparing the children evaluated with those who constituted the initial sample but were not included in the study (n = 71), no differences were found regarding sex (P = 0.172), mean age in months at baseline (P = 0.375), time of EBF (P = 0.197), solid food introduction age (P = 0.770), cow's milk consumption practice (P = 0.586), and infant formula (P = 0.576).

The median time of EBF was of 3 months and the age of introduction of solid foods was 5 months. Of the children assessed, 20.0% (n = 37) were not breastfed exclusively and 34.6% (n = 64) were breastfed for a period of 1 to 3 months and 45.4% (n = 84) for 4 to 6 months. With respect to the age for introducing solid food, 22.2% of the children (n = 41) received it previously at 3 months and 77.8% (n = 140) from 4 to 6 months of age. The consumption of cow's milk and infant formula occurred in 42.7% (n = 79) and 35.7% (n = 66) of cases, respectively.

Regarding nutritional status of the children, assessed by BMI index/A, we obtained the following results: 6 children (3.2%) classified in the category of thinness, 140 (75.7%) as eutrophic, 3 (1.6%) as at risk of overweight, 22 (11.9%) as overweight and 14 children (7.6%) as obese. Considering the category of overweight risk, overweight, and obesity, 21.1% of the children (n = 39) showed changes in nutritional status. The *z*-scores for BMI/A had an average of  $0.06 \pm 1.20$ .

According to the index H/A, a child (0.5%) had alteration, being classified of low height for the age. Evaluating

The Scientific World Journal

by the W/A, a child (0.5%) was classified as at low weight for age, 168 (90.8%) had normal weight for age, and 16 (8.7%) had high weight for the age.

The variables of nutritional status and body composition, with the exception of *z*-scores of BMI/A index, were not normally distributed, so the results are described as medians, as well as by the minimum and maximum values.

Regarding the effect of exclusive breastfeeding and infant feeding in the first six months of life in the nutritional status and body composition of children, there were no significant differences in BMI, total body fat mass, body fat mass in the android region, and waist perimeter between the different times of EBF and different ages of introduction of solid foods, as well as between children who received or not cow's milk and infant formula in the first six months of life (Table 1).

In the bivariate analyses between the variables of infant feeding and categorized parameters of nutritional status, total body fat percentage, fat percentage in the android region, and waist circumference, there were not significant associations (Table 2). There was one linear association between the EBF and the percentage of total body fat, with increase of the practice tending to increase of this percentage (Table 2).

In Tables 3, 4, and 5 are the results of the association between the confounding factors and the outcomes of interest. Among the potential confounding factors considered in relation to the nutritional status of the children, an association statistically significant was shown in the bivariate analyses in the maternal prepregnancy BMI, gestational weight gain, and sex (Table 3). Further predominance of changes in BMI/A was observed in children whose mother had prepregnancy BMI 25 kg/m<sup>2</sup> (OR: 2,89; IC 95%: 1.18 to 7.09, P = 0.016) and had an excessive gestational weight gain (OR: 3,15; IC 95%: 1.41 to 7.06; P = 0.004). Female children presented lower predominance of changes of nutritional status and less change to present these changes (OR: 0,33; IC 95%: 0.15 to 0.73, P = 0.005) (Table 3). In addition to these variables, there were variables: included in the multivariate analyses (P < 0, 20) birth weight (P = 0, 136), age (P = 0, 136)(0,088) (Table 3), mother's age (P = 0,197), income per capita (P = 0, 147), and hours in school (P = 0, 097)(Table 4).

With respect to the percentage of total body fat, it was associated significantly with the changes in this parameter the maternal gestational weight gain (Table 3), daily time in active play (Table 4), and frequency of consumption of filled cookies (Table 5). Children whose mother presented excessive gestational weight gain (OR: 3,68; IC 95%: 1.50 to 9.03, P = 0.003) (Table 3) and children with active play time daily less than one hour (OR: 3,21; IC 95%: 1.22 to 8.41, P = 0.014) (Table 4) were more likely to present high percentages of total body fat. The frequency of use of filled cookies equal to or above four times a week led to a greater chance of total body fat excess compared with the consumption category of 1-3 times per week (OR: 3,75; IC 95%: 1.38 to 10.21, *P* = 0.007) (Table 5). Of the other factors evaluated as possible confounding factors, the variables of mother's schooling (P = 0.135) (Table 4) and consumption

frequency of chocolate flavored mixes (P = 0.087) (Table 5) were included in the multivariate analyses.

The gestational weight gain (Table 3), daily active play time (Table 4), and frequency in the consumption of filled cookies (Table 5) were associated in a significant way to changes in the fat percentage of the android region. Similar to that observed with regard to the percentage of total body fat, children with consumption frequency of filled cookies in the android region fat percentage were in comparison to those with intermediate consumption of these foods (OR: 3,75; IC 95%: 1.38 to 10.21, P = 0.007) (Table 5). Excessive weight gain during pregnancy was associated to a better chance of changing the fat percentage in the android region (OR: 2,98; IC 95%: 1,21–7,36; *P* = 0,014) (Table 3) and the time below one hour in active play also showed this result (OR: 2,55; IC 95%: 1.01 to 6.40, P = 0.041) (Table 4). In addition to these variables, there were the mother's age (P = 0.163) and time watching TV (P = 0.137) that included in the multivariate analyses (Table 4).

With regard to changes in waist circumference, it showed a significant association as to mother's prepregnancy BMI, gestational weight gain (Table 3) daily active play time (Table 4), and consumption frequency of filled biscuits (Table 5). Like in the other fat variables, children who had higher consumption category of filled cookies presented better chance of having high values of waist circumference in comparison to those with consumption in the intermediary category (OR: 7,26; IC 95%: 2.33 to 22.60, P = 0.000) (Table 5). Excessive maternal prepregnancy BMI was associated to a higher chance of change in waist circumference of children (OR: 3,36; IC 95%: 1.28 to 8.86, P = 0.010), the same being observed for excessive gestational weight gain (OR: 3,41; IC 95%: 1.40 to 8.27, P = 0.005) (Table 3). Other factors included in the multivariate analyses were the mother's age (P = 0.127), income per capita (P = 0.178)(Table 4), and percentage energy derived from lipids (P =0.198) (Table 5).

In the multivariate analyses between the exclusive breastfeeding variables and those of children feeding and the changes of the nutritional status and body composition, controlling by the confounding factors, significant independent associations were not observed for any of the analysis (Table 6).

The *P* values obtained by Hosmer and Lemeshow tests  $(P \ge 0,05)$  (Table 6) showed a good adjustment of the multiple logistic regression models.

It is worth highlighting that in the multivariate analyses, some variables kept the statistical association in all the models, showing themselves as independently associated variables to the nutritional status (pregestational maternal BMI), percentage of total body fat and from the android region (maternal gestational weight gain, daily time at active play, and frequency of consumption of filled cookies), and waist circumference (pregestational maternal BMI, pregestational maternal weight gain, daily time at active play, and frequency of consumption of filled cookies), with different P values and odds ratio, depending on the variable of breastfeeding or child feeding evaluated in the model.

| Variables of child feeding                                | BMI<br>Median<br>(Min–Max) (kg/m²) | Total body fat mass<br>Median (Min–Max) (kg) | Fat mass in android region<br>Median<br>(Min–Max) (g) | Waist circumference<br>Median<br>(Min–Max) (cm) |
|-----------------------------------------------------------|------------------------------------|----------------------------------------------|-------------------------------------------------------|-------------------------------------------------|
| Months in EBF $(n = 185)$                                 |                                    |                                              |                                                       |                                                 |
| 0 (n = 37)                                                | 14,90 (12,30-20,00)                | 2,47 (1,07-10,96)                            | 86,00 (38,00–719,00)                                  | 54,00 (46,50–75,80)                             |
| 1-3 (n = 64)                                              | 15,20 (12,60–21,50)                | 2,80 (0,90-12,34)                            | 92,00 (41,00-71,00)                                   | 54,70 (47,10–72,30)                             |
| 4-6 (n = 84)                                              | 15,40 (12,40-22,20)                | 3,50 (1,34–17,02)                            | 123,00 (40,00–1090,00)                                | 54,30 (47,40-83,00)                             |
| P value                                                   | 0,394ª                             | 0,057 <sup>a</sup>                           | 0,239ª                                                | 0,837 <sup>a</sup>                              |
| Cow's milk $(n = 185)$                                    |                                    |                                              |                                                       |                                                 |
| Yes $(n = 79)$                                            | 15,20 (12,30–21,50)                | 2,64 (0,90–12,34)                            | 89,00 (39,00–772,00)                                  | 54,00 (21,00–143,00)                            |
| No $(n = 106)$                                            | 15,30 (12,40-22,20)                | 3,25 (1,07-17,02)                            | 115,00 (38,00–1090,00)                                | 53,00 (28,00–162,00)                            |
| P value                                                   | 0,469 <sup>b</sup>                 | 0,438 <sup>b</sup>                           | 0,100 <sup>b</sup>                                    | 0,254 <sup>b</sup>                              |
| Dairy formula $(n = 185)$                                 |                                    |                                              |                                                       |                                                 |
| Yes $(n = 66)$                                            | 15,00 (12,30–21,50)                | 3,10 (0,90-12,34)                            | 106,00 (38,00–772,00)                                 | 55,00 (46,50-75,80)                             |
| No $(n = 119)$                                            | 15,40 (12,40-22,20)                | 2,92 (1,47–17,02)                            | 99,00 (39,00–1090,00)                                 | 54,00 (47,40 -83,00)                            |
| <i>P</i> value                                            | 0,281 <sup>b</sup>                 | 0,726 <sup>b</sup>                           | 0,826 <sup>b</sup>                                    | 0,729 <sup>b</sup>                              |
| Age of introduction of solid foods (months) $(n = 181)^1$ |                                    |                                              |                                                       |                                                 |
| 0-3 (n = 41)                                              | 15,40 (12,30-20,00)                | 2,80 (0,90-10,96)                            | 102,00 (42,00-719,00)                                 | 55,00 (46,50-75,80)                             |
| 4-6 (n = 140)                                             | 15,20 (12,40–22,20)                | 3,09 (1,07–17,02)                            | 105,00 (38,00–1090,0)                                 | 54,00 (46,50-83,00)                             |
| <i>P</i> value                                            | 0,836 <sup>b</sup>                 | 0,511 <sup>b</sup>                           | 0,834 <sup>b</sup>                                    | 0,464 <sup>b</sup>                              |

BMI: body mass index; EBF: exclusive breastfeeding; Min: minimum; Max: maximum; <sup>1</sup>4 children were not included because they were being fed artificial milk and closed service at PROLAC previously to the introduction to solid foods. <sup>a</sup>Kruskal Wallis's test;

<sup>b</sup>Mann-Whitney's test.

#### 5. Discussion

It was observed in this study that the time of EBF was not independently associated with nutritional status, assessed as risk of overweight and obesity in children aged between 4 and 7 years. Likewise, the use of cow's milk, dairy infant formulas, and age of introduction of solid foods showed no influence on the nutritional status of these children. There were no significant associations in bivariate analyses, which did not change after adjustment by confounders. We also found no significant differences between the median values of BMI of different groups of children in times of EBF, consumption or not of cow's milk, infant dairy formulas, and ages of introduction of solid foods in infant feeding.

Similarly, the variables of child feeding were not independently associated with total body fat percentage of children, and the values of total body fat mass did not differ between groups studied. Opposed to the initial hypothesis, there was a significant linear tendency of increasing percentage of body fat with increasing duration of EBF (P of linear tendency = 0.042), but this effect was attenuated after controlling by the confounders in multivariate analyses and there was no association or significant linear tendency between the variables.

The percentage of fat in the android region and Waist circumference was measured for evaluation of localized fat in the abdominal area [32, 48]. According to the WHO, the increasing in abdominal fat in the population can provide a sensitive indicator of public health problems related to

excess weight and its consequences [32] and studies show that the highest distribution of fat in this region is associated to diabetes, changes in the lipid profile and in arterial blood pressure, and risk factors to the development cardiovascular diseases [49]. In this study, the EBF time and the consumption of other foods in the first six months of life did not configure as factors associated to these parameters, with no differences in the values of android fat mass and waist circumference between the groups and with no significant statistical association with previous and subsequent changes to the control by the confounding factors.

As demonstrated in this study, other researchers observed no significant association between breastfeeding and nutritional status and body composition. Huus et al. [23] evaluated children aged 5 years and observed that the practice of EBF held for a period less than 4 months was associated with obesity; however, in multivariate data analysis this association was not significant (OR = 1,22; IC 95%: 0,81-1,83; P = 0,341).

Novaes et al. [24], in the municipality of Viçosa, MG Brazil, among children from 6 to 10 years of age, it was found that the duration of EBF was not associated with obesity (P = 0.713), defined as *z*-score >+2, and classified by WHO [35] after the adjustment by confounding factors related to the child and mother's characteristics.

Novotny et al. [50], evaluating 420 American children between 6 months and 10 years of age, despite finding a significant inverse association (P = 0.043) between total breastfeeding and BMI of children in the analyses adjusted

|                                                 |              | BMI                | (A (z-score)            |             |                 | 0 %0                                          | f hodv fat <sup>1</sup> |                |                        | % of and                 | roid region fat         | 1            |               | Waist ci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | rcumference <sup>1</sup> |         |
|-------------------------------------------------|--------------|--------------------|-------------------------|-------------|-----------------|-----------------------------------------------|-------------------------|----------------|------------------------|--------------------------|-------------------------|--------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------|
| bles of child<br>ng                             | $^{>+1}_{n}$ | $\leq +1$<br>n (%) | Crude OR<br>(IC 95%)    | P value     | ≥P85<br>n (%)   | <pre>&gt;0.0<br/><p85<br>n (%)</p85<br></pre> | Crude OR<br>(IC 95%)    | <i>P</i> value | ≥ <i>P</i> 85<br>n (%) | <pre>&gt;0 01 all </pre> | Crude OR<br>(IC 95%)    | P value      | ≥P85<br>n (%) | <pre>rvalst cl </pre> <pre></pre> <pre>&lt;</pre> | Crude OR<br>(IC 95%)     | P value |
| ths in EBF                                      |              |                    |                         |             |                 |                                               |                         |                |                        |                          |                         |              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          |         |
|                                                 | 5<br>(13,5)  | 32<br>(86,5)       | 0,41<br>(0,14 $-1,19$ ) | 0,145       | 3<br>(8,1)      | 34 (91,9)                                     | 0,34<br>(0,09-1,27)     | 0,086          | 3<br>(8,1)             | 34 (91,9)                | 0,37<br>(0,38 $-1,78$ ) | 0,189        | 5<br>(13,5)   | 32<br>(86,5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,72<br>(0,24-2,15)      | 10V 0   |
| 3                                               | 11 (17,2)    | 53<br>(82,8)       | 0,55<br>(0,24 $-1,23$ ) |             | 6<br>(9,4)      | 58<br>(90,6)                                  | 0,41<br>(0,15-1,10)     |                | 7<br>(10,9)            | 57<br>(89,1)             | 0,52<br>(0,10–1,37)     |              | 7<br>(10,9)   | 57<br>(89,1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,56<br>(0,21-1,48)      | 0,407   |
| 2                                               | 23<br>(27,4) | 61<br>(72,6)       | 1,00                    | $0,058^{*}$ | 17 (20,2)       | 67<br>(79,8)                                  | 1,00                    | $0,042^{*}$    | 16 (19,0)              | 68 (81,0)                | 1,00                    | 0,079*       | 15 (17,9)     | 69<br>(82,1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,00                     |         |
| s milk                                          |              |                    |                         |             |                 |                                               |                         |                |                        |                          |                         |              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          |         |
| ~                                               | 15(19,0)     | 64<br>(81,0)       | 0,80<br>(0,38 $-1,65$ ) | 0,547       | $^{8}_{(10,1)}$ | 71<br>(89,9)                                  | 0,55<br>(0,22-1,23)     | 0,185          | 9<br>(11,4)            | 79<br>(88,6)             | 0,67<br>(0,28 $-1,60$ ) | 0,369        | 11 (13,9)     | 68<br>(86,1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,71<br>(0,24-2,10)      | 0,824   |
|                                                 | 24<br>(22,6) | 82<br>(77,4)       | 1,00                    |             | 18   (17,0)     | 88<br>(83,0)                                  | 1,00                    |                | 17 (16,0)              | 89<br>(84,0)             | 1,00                    |              | 16 (15,1)     | 90 $(84,9)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1,00                     |         |
| t dairy<br>ılas                                 |              |                    |                         |             |                 |                                               |                         |                |                        |                          |                         |              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          |         |
|                                                 | 11 (16,7)    | 55<br>(83,3)       | 0,65<br>(0,30 $-1,41$ ) | 0,273       | 9<br>(13,6)     | 57<br>(86,4)                                  | 0,95<br>(0,39-2,26)     | 0,903          | 12 (18,2)              | 54<br>(81,8)             | 1,66<br>(0,72–3,85)     | 0,229        | 11 (16,7)     | 55<br>(83,3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,28<br>(0,56-2,97)      | 0,552   |
|                                                 | 28<br>(23,5) | 91<br>(76,5)       | 1,00                    |             | 17 (14,3)       | 102 (85,7)                                    | 1,00                    |                | 14 (11,8)              | 105 (88,2)               | 1,00                    |              | 16 (13,4)     | 103 (86,6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,00                     |         |
| f introduction<br>id foods<br>ths) <sup>2</sup> | _            |                    |                         |             |                 |                                               |                         |                |                        |                          |                         |              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          |         |
| ~                                               | 10 (24,4)    | 31<br>(75,6)       | 1,29<br>(0,56-2,94)     | 0,544       | 3<br>(7,3)      | 38<br>(92,7)                                  | 0,42<br>(0,12-1,49)     | 0,207**        | $^{4}_{(9,8)}$         | 37<br>(90,2)             | 0,61<br>(0,20 $-1,89$ ) | $0,392^{**}$ | 5<br>(12,2)   | 36<br>(87,8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,78<br>(0,28–2,23)      | 0,652   |
| , c                                             | 28<br>(20,0) | 112<br>(80,0)      | 1,00                    |             | 22<br>(15,7)    | 118<br>(84,3)                                 | 1,00                    |                | 21(15,0)               | 119<br>(85,0)            | 1,00                    |              | 67<br>(15,0)  | 73<br>(85,0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,00                     |         |

6

| regnancy and birth                                     | variables,                                               | , sex, age,                                   | and occurren                                      | ce of hosp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | italizatio                  | ns of child                                                        | lren from 4 t                           | o 7 years o | of age, Vio                             | çosa, MG                              | , Brazil, 2010                                | /11.                    |                       |                                   | 0                                            |                       |
|--------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------------------------------------------------|-----------------------------------------|-------------|-----------------------------------------|---------------------------------------|-----------------------------------------------|-------------------------|-----------------------|-----------------------------------|----------------------------------------------|-----------------------|
| ariables                                               | >+1<br>2 (0/0)                                           | $\underset{n}{\operatorname{BMI}}$            | /A (z-score)<br>OR<br>(IC 95%)                    | <i>P</i> value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ≥P85<br>≥ P85               | % of<br><p85<br><i>n</i> (%)</p85<br>                              | body fat <sup>1</sup><br>OR<br>(IC 95%) | P value     | ≥P85<br>1 (%)                           | % of fat in<br><p85<br>n (%)</p85<br> | android region <sup>1</sup><br>OR<br>(IC 95%) | <i>P</i> value          | ≥P85<br>≈ [0⁄0]       | Waist 6<br><p85<br>n (%)</p85<br> | circumference <sup>1</sup><br>OR<br>(IC 95%) | P value               |
| Pregestational BMI<br>kø/m <sup>2</sup> ) <sup>2</sup> |                                                          |                                               |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             | (0) 1                                                              |                                         |             | (2)                                     | (c) \                                 |                                               |                         | (0) 1                 | (a) \                             |                                              |                       |
| <24,99                                                 | $^{29}_{(18,7)}$                                         | 126     (81,3)                                | 1,00                                              | 0,016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $^{23}_{(14,8)}$            | $     \begin{array}{c}       132 \\       (85,2)     \end{array} $ | 1,00                                    | $1,000^{*}$ | $^{23}_{(14,8)}$                        | 132 (85,2)                            | 1,00                                          | 1,000*                  | $^{19}_{(12,3)}$      | $^{136}_{(87,7)}$                 | 1,00                                         | 0,010                 |
| ≥25,00                                                 | $^{10}_{(40,0)}$                                         | (60,0)                                        | 2,89<br>(1,18–7,09)                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (12,0)                      | $^{22}_{(88,0)}$                                                   | 0,78<br>(0,21-2,82)                     |             | (12,0)                                  | $^{22}_{(88,0)}$                      | 0,78<br>(0,21-2,82)                           |                         | (32,0)                | (68,0)                            | 3,36 $(1,28-8,86)$                           |                       |
| Gestational weight gain.<br>Not excessive              | 22 (16.2)                                                | 114 (83.8)                                    | 1,00                                              | 0,004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $^{14}_{(10,3)}$            | (89.7)                                                             | 1,00                                    | 0,003       | 15 (11.0)                               | 121 (89,0)                            | 1,00                                          | 0,014                   | 15 (11.0)             | 121 (89.0)                        | 1,00                                         | 0,005                 |
| Excessive                                              | $   \begin{bmatrix}     14 \\     37,8   \end{bmatrix} $ | (62,2)                                        | $^{3,15}_{(1,41-7,06)}$                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (29,7)                      | 26<br>(70,3)                                                       | 3,68<br>(1,50-9,03)                     |             | (27,0)                                  | 27<br>(73,0)                          | 2,98<br>(1,21–7,36)                           |                         | (29,7)                | (70,3)                            | $^{3,41}_{(1,40-8,27)}$                      |                       |
| Mother's smoking<br>during pregnancy <sup>4</sup>      |                                                          |                                               |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             |                                                                    |                                         |             |                                         |                                       |                                               |                         |                       |                                   |                                              |                       |
| No                                                     | 34 (19.9)                                                | 137 (80.1)                                    | 1,00                                              | 0,275*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25<br>(14,6)                | 146 (85.4)                                                         | 1,00                                    | 1,000*      | 25<br>(14.6)                            | 146 (85.4)                            | 1,00                                          | 1,000*                  | 25<br>(14.6)          | 146 (85.4)                        | 1,00                                         | $0,692^{*}$           |
| Yes                                                    | (33,3)                                                   | (66,7)<br>(66,7)                              | 2,01<br>(0,57-7,08)                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (8,3)                       | (91,7)                                                             | 0,53<br>(0,06-4,29)                     |             | (8,3)                                   | (91,7)                                | 0,53<br>(0,06-4,29)                           |                         | (16,7)                | (83,3)                            | 1,16<br>(0,24-5,65)                          |                       |
| Birth weight (g)                                       |                                                          | ~                                             |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             |                                                                    |                                         |             |                                         |                                       |                                               |                         |                       | ~                                 |                                              |                       |
| 2500–2999                                              | $^{8}_{(12,9)}$                                          | 54 (87,1)                                     | 1,00                                              | 0,136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $^{5}_{(8,1)}$              | 57 (91,9)                                                          | 1,00                                    | 0,248       | (11,3)                                  | 55<br>(88,7)                          | 1,00                                          | 0,737                   | (11,3)                | 55<br>(88,7)                      | 1,00                                         |                       |
| 3000–3499                                              | $^{17}_{(27,0)}$                                         | 46 (73,0)                                     | 2,49<br>(0,98–6,31)                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $^{11}_{(17,5)}$            | 52 (82,5)                                                          | 2,41<br>(0,78 $-7,40$ )                 |             | 10 (15,9)                               | 53 (84,1)                             | 1,48<br>(0,52-4,18)                           |                         | 10 (15,9)             | 53 (84,1)                         | 1,48<br>(0,52-4,18)                          | $0,660 \\ 0,400^{**}$ |
| 3500–3999                                              | $^{14}_{(23,1)}$                                         | $^{46}_{(76,9)}$                              | 2,05<br>(0,79-5,33)                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $^{10}_{(16,7)}$            | 50 (83,3)                                                          | 2,28<br>(0,73-7,12)                     |             | $^{9}_{(15,0)}$                         | $51 \\ (85,0)$                        | 1,38<br>(0,48-3,99)                           |                         | 10 (16,7)             | 50 (83,3)                         | 1,57<br>(0,55-4,42)                          |                       |
| Sex<br>Male                                            | 29                                                       | 72                                            | 1.00                                              | 200.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14                          | 87                                                                 | 1.00                                    | 0.024       | 14                                      | 87                                    | 1.00                                          | 1000                    | 14                    | 87                                | 1.00                                         |                       |
| Female                                                 | $10^{(28,1)}$                                            | (74)                                          | 0,33                                              | conón                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (13,9)<br>12<br>(14,2)      | (86,1)<br>72<br>(05 7)                                             | 1,03                                    | +cc(n       | (12,9) $12$ $(14,2)$                    | (86,1)<br>72<br>(05 7)                | 1,03                                          | +CC(D                   | (13,9)<br>13<br>(155) | (86,1)<br>71<br>(04 5)            | 1,14                                         | 10/0                  |
| Age (years)                                            | (2(11)                                                   | (1,00)                                        | (0,10-01,0)                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (14,1)                      | (1400)                                                             | (00,7-07)                               |             | (14,7)                                  | (1,00)                                | (00,7-04,0)                                   |                         | (C(CI)                | (0.4,0)                           | (10,2-00,0)                                  |                       |
| 4-5                                                    | $^{13}_{(15,5)}$                                         | 71 (84,5)                                     | 1,00                                              | 0,088                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12     (14,3)               | 72<br>(85,7)                                                       | 1,00                                    | 0,934       | 12 (14,3)                               | 72<br>(85,7)                          | 1,00                                          | 0,934                   | $^{13}_{(15,5)}$      | 71 (84.5)                         | 1,00                                         | 0,757                 |
| 6-7                                                    | 26                                                       | 75                                            | 1,89                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14                          | 87                                                                 | 0,96                                    |             | 14                                      | 87                                    | 0,96                                          |                         | 14                    | 87                                | 0,88                                         |                       |
| Hospitalizations                                       | (1,07)                                                   | (74-1)                                        | (16,0-06,0)                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (1471)                      | (1100)                                                             | (0,42-2,21)                             |             | (((())))                                | (1(00)                                | (0,42-2,41)                                   |                         | (((())))              | (1,000)                           | (66,1-00,0)                                  |                       |
| Yes                                                    | $^{14}_{(18,9)}$                                         | $60 \\ (81,1)$                                | 1,00                                              | 0,556                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10 (13,5)                   | 64 (86,5)                                                          | 1,00                                    | 0,863       | 10 (13,5)                               | 64 (86,5)                             | 1,00                                          | 0,863                   | 10 (13,5)             | 64 (86,5)                         | 1,00                                         | 0,734                 |
| No                                                     | $^{25}_{(22,5)}$                                         | 86<br>(77,5)                                  | 1,24<br>(0,59 $-2,59$ )                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 16   (14,4)                 | 95 (85,6)                                                          | 1,08<br>(0,46 $-2,52$ )                 |             | 16 (14,4)                               | 95<br>(85,6)                          | 1,08<br>(0,46-2,52)                           |                         | $^{17}_{(15,3)}$      | $94 \\ (84,7)$                    | 1,15<br>(0,49-2,69)                          |                       |
| BMI: body mass index;<br>sex and age; $^2n = 180$ ;    | ; A: age; OI $^{3}n = 173$ ; <sup>4</sup>                | $ \text{S: odds rat:} \\ n = 183. \text{ V} $ | io; IC: interval<br><sup>z</sup> alues in bold re | of confidence<br>of states of the | ce; P value<br>istical sign | es derived f                                                       | rom Chi-squar<br>r inclusion in 1       | the multiva | er's Exact <sup>*</sup><br>triate analy | * and of lin<br>rsis $(P < 0)$ ,      | near tendency*<br>20).                        | **; <sup>1</sup> percen | tiles calcul          | ated from                         | among sample                                 | children by           |
| ( ()                                                   |                                                          |                                               |                                                   | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                           |                                                                    |                                         |             |                                         |                                       |                                               |                         |                       |                                   |                                              |                       |

| e interval of 95%) according to | Waist circumference1 $< P85$ $< P85$ $n (96)$ $(IC 9596)$ $P$ value | 59<br>(88,1) 1,00<br>58 0,89 0,127       | $\begin{array}{ccc} (89,2) & (0,30-2,61) \\ 40 & 2,21 \\ (76,9) & (0,83-5,89) \end{array}$ |                                          | $\begin{array}{ccc} 86\\ (84,6) & 1,00 & 0,690 \end{array}$ | $\begin{array}{ccc} 70 & 0.84 \\ (86.4) & (0.36{-1}.93) \end{array}$ |                                                  | $ \begin{array}{cccc} 56 \\ (87,5) \\ 1,00 \\ 0,178 \end{array} $ | $\begin{array}{ccc} 54 & 0.78 \\ (90,0) & (0,25-2,40) \end{array}$ | $\begin{array}{ccc} 48 & 1,89 \\ (78,7) & (0,72-4,95) \end{array}$ | (92,9) 1,00 0.607** | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | (20,01          | $\begin{pmatrix} 78\\(87,6) & 1,00 & 0,407 \end{pmatrix}$ | $\begin{array}{ccc} 80 & 1,42 \\ (83,3) & (0,62-3,24) \end{array}$ | 84<br>667 - 30 0.822               |                        | $\begin{array}{c} (32)\\ 71\\ (84.5)\\ (0.48-2.49)\end{array}$ | $\begin{array}{cccc} (50, 0) \\ (84, 5) \\ (0, 48-2, 49) \end{array}$ | $\begin{array}{cccc} & & & & & & & & & & & & & & & & & $ | $\begin{array}{cccccc} & & 1.09 \\ & & 7.1 \\ & & (84,5) \\ & & (0,48-2,49) \\ & & & 78 \\ & & & 1,00 \\ & & & 3,41 \\ & & & 0,009 \\ & & & & 3,41 \\ & & & & (79,2) \\ & & & & & (79,2) \\ & & & & & & (1,31-8,90) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{cccc} & 1.0 \\ & 7.1 \\ & (84.5) \\ & (9.48-2,49) \\ & (92.9) \\ & 1.00 \\ & 3.41 \\ & 0.009 \\ & 3.41 \\ & (79,2) \\ & (1,31-8,90) \end{array}$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $ \begin{array}{c} \begin{array}{c} & 1.09 \\ & 7.1 \\ & 84.5 \\ & (0,48-2,49) \\ & 80 \\ & 3,41 \\ & 79,2 \\ & (1,31-8,90) \\ & 3,41 \\ & (79,2) \\ & (1,31-8,90) \\ & (1,31-8,90) \\ & 0,009 \\ & 34.1 \\ & (79,2) \\ & (1,31-8,90) \\ & (0,566 \\ & 1,27 \\ & (33,6) \\ & (0,56-2,90) \end{array}  \right) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $ \begin{array}{c} \begin{array}{c} 7.1\\ 7.1\\ 8.4.5 \end{array} & (0,48-2,49) \\ (92,9) & 1,00 \\ 80 & 3,41 \\ (79,2) & (1,31-8,90) \\ (79,2) & (1,31-8,90) \\ 81 & 0,009 \\ 81 & 1,00 \\ 81 & 0,566 \\ 81 & 1,27 \\ (83,5) & (0,56-2,90) \\ 83,23 & 0,336 \end{array}  $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------------------------|---------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|---------------------|------------------------------------------------------|-----------------|-----------------------------------------------------------|--------------------------------------------------------------------|------------------------------------|------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| io (confidence                  | value $\geq P85$<br>n (%)                                           | <b>),163</b> (11,9)                      | (10,8)<br>12<br>(23,1)                                                                     |                                          | , 500 (15,7)                                                | (13,6)                                                               |                                                  | , 446 (12,5)<br>(12,5)                                            | (10,0)                                                             | 13     (21,3)                                                      | (7,1)               | 26<br>(15,2)                                         |                 | $0,137$ $11 \\ (12,4)$                                    | (16,7)                                                             | (14),(671                          | (2,4,3)                | (15.5)                                                         | (15,5)                                                                | (15,5)<br>(15,5)<br>(15,1)<br>(7,1)                      | (15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(1 | $\begin{array}{c} 13\\ (15,5)\\ (15,5)\\ 6\\ (7,1)\\ 21\\ (20,8) \end{array}$                                                                                   | (15,5)<br>(15,5)<br>(15,1)<br>(7,1)<br>21<br>(20,8)<br>(20,8)<br>(13,4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (15,5)<br>(15,5)<br>(15,5)<br>(15,5)<br>(115,5)<br>(15,2)<br>(15,2)<br>(15,2)<br>(16,2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} 113 \\ (15,5) \\ (15,5) \\ (15,5) \\ (21,1) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\ (20,8) \\$        | $\begin{array}{c} 113\\ (15,5)\\ (15,5)\\ (15,5)\\ (15,1)\\ (20,8)\\ (20,8)\\ (20,8)\\ (20,8)\\ (20,8)\\ (21,1)\\ (16,4)\\ (16,4)\\ (16,4)\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Crude odds rati                 | the android region <sup>1</sup><br>OR<br>(IC 95%) $P$               | 1,00<br>0,42 (                           | $(0, 14-1, 30) \ 1, 21 \ (0.47-3, 12)$                                                     |                                          | 1,00                                                        | 0,76 (0.32-1.77)                                                     |                                                  | 1,00                                                              | 0,68<br>(0,22–2,03)                                                | 1,34<br>(0,51–3,51)                                                | 1,00                |                                                      |                 | 1,00                                                      | (0,80-4,55)                                                        | 1,00                               | 2006                   | (0.52-2.75)                                                    | (0,52-2,75)                                                           | (0,52-2,75)<br>1,00                                      | $\begin{array}{c} 1,20\\ (0,52-2,75)\\ 1,00\\ 2,55\\ (1,00-6,40) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} 1,20\\ (0,52-2,75)\\ 1,00\\ 2,55\\ (1,01-6,40) \end{array}$                                                                                   | $\begin{array}{c} 1,20\\ (0,52-2,75)\\ 1,00\\ (1,01-6,40)\\ (1,01-6,40) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (0,52-2,75)<br>(0,52-2,75)<br>1,00<br>(1,01-6,40)<br>(1,01-6,40)<br>1,00<br>1,65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} (0,52-2,75)\\ (0,52-2,75)\\ 1,00\\ (1,01-6,40)\\ (1,01-6,40)\\ 1,00\\ (0,71-3,79) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} (0,52-2,75)\\ (0,52-2,75)\\ 1,00\\ (1,01-6,40)\\ 1,00\\ (0,71-3,79)\\ 1,00\\ 1,00\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ence, and                       | % of fat in t<br><p85<br>n (%)</p85<br>                             | 56<br>(83,6)<br>60                       | $(92,3) \\ 42 \\ (80,8)$                                                                   |                                          | 86 (84,3)                                                   | 71<br>(87,7)                                                         |                                                  | 55<br>(85,9)                                                      | 54 (90,0)                                                          | 50 (82,0)                                                          | $^{14}_{(100,0)}$   | $^{145}_{(90,5)}$                                    |                 | $80 \\ (89,9)$                                            | $^{79}_{(82,3)}$                                                   | 85                                 | (86,7)                 | 71<br>(84.5)                                                   | 71 (84,5)                                                             | $\begin{array}{c} 71\\(84,5)\\7\\(91,7)\end{array}$      | $\begin{array}{c} 71\\ (84,5)\\ 77\\ (91,7)\\ 82\\ (81,2)\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} 71\\(84,5)\\(91,7)\\(91,7)\\82\\(81,2)\end{array}$                                                                                            | $ \begin{array}{c} 71 \\ (84,5) \\ 77 \\ (91,7) \\ 82 \\ (81,2) \\ (81,2) \\ 99 \\ 99 \\ 99 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} 7, \\ 84,5 \\ 77 \\ 77 \\ 81,7 \\ 81,2 \\ 88,4 \\ 88,4 \\ 60 \\ 60 \\ 60 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} 84.5\\ 7\\7\\82\\(91,7)\\82\\(81,2)\\(81,2)\\(81,2)\\(83,4)\\(83,4)\\(82,2)\\(82,2)\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} 84,5\\ (84,5)\\ (91,7)\\ 82,\\ (81,2)\\ 82,2\\ (82,2)\\ (82,2)\\ 60\\ 83,2 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| circumtere                      | $\geq P85$<br>n (%)                                                 | $^{11}_{(16,4)}$                         | (7,7)<br>10<br>(19,2)                                                                      |                                          | $^{16}_{(15,7)}$                                            | (12,3)                                                               |                                                  | $^{9}_{(14,1)}$                                                   | (10,0)                                                             | $^{11}_{(18,0)}$                                                   | $^{0}_{(0,0)}$      | $^{26}_{(94,4)}$                                     |                 | $^{9}_{(10,1)}$                                           | $^{17}_{(17,7)}$                                                   | 13                                 | (13,3)<br>13<br>(17,7) | (0,0)                                                          | (¢,¢1)                                                                | (c,c1)<br>7<br>(8,3)                                     | $(z, z_1)$<br>$(z, z_1)$                                                                                                                                                                                                                                                                                                                                   | (c,c1)<br>(c,3)<br>(c,3)<br>(c,3)<br>(18,8)                                                                                                                     | $(2,21) \\ (2,3) \\ (13,8) \\ (13,8) \\ (13,8) \\ (13,8) \\ (13,6) \\ (13,6) \\ (13,6) \\ (13,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (1$ | $(c,c1) \\ (c,c1) \\ (8,3) \\ (10,8) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (11,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (12,6) \\ (1$                                                                                                                                  | $(c,c1) \\ (c,c1) \\ (c,c1) \\ (10,c1) \\ (11,c1) \\ (11,c1)$                                           | $(2,2) \\ (2,2) \\ (1,2,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) \\ (1,3,3) $                                            |
| , 2010/11.                      | P value                                                             | 0,242                                    |                                                                                            |                                          | 0,135                                                       |                                                                      |                                                  | 0.075                                                             | C/6'N                                                              |                                                                    | 1 000**             | 000(1                                                |                 | 0,523                                                     |                                                                    | 0,671                              |                        |                                                                |                                                                       | 100                                                      | 0,014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,014                                                                                                                                                           | 0,014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>0,014</b><br>0,236                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>0,014</b><br>0,236                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| old region ar<br>sa, MG, Brazil | 6 of body fat <sup>1</sup><br>OR<br>(IC 95%)                        | 1,00<br>0,42                             | (0,15-1,19)<br>0,64<br>(0.24-1.75)                                                         |                                          | 1,00                                                        | 0,51<br>(0.21-1.24)                                                  |                                                  | 1,00                                                              | 0,94<br>(0,33-2,62)                                                | 1,06<br>(0,39-2,87)                                                | 1,00                | 0,98<br>(0,20-4,65)                                  |                 | 1,00                                                      | 1,31<br>(0,56 $-3,03$ )                                            | 1.00                               | 1,20<br>(0.52-2.75)    |                                                                |                                                                       | 1,00                                                     | $ \begin{array}{c} 1,00\\ 3,21\\ (1,22-8,41) \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,00<br>3,21<br>(1,22-8,41)                                                                                                                                     | $ \begin{array}{c} 1,00\\ 3,21\\ (1,22-8,41)\\ 1,00 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,00<br>3,21<br>(1,22–8,41)<br>1,00<br>1,00<br>1,47 (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $1,00 \\ 3,21 \\ (1,22-8,41) \\ (1,22-8,41) \\ 1,00 \\ 1,00 \\ 1,65 \\ (0,71-3,79)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1,00<br>3,21<br>(1,22–8,41)<br>1,00<br>1,00<br>(0,71–3,79)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| fat, andro<br>age, Viçoo        | 9<br><p85<br>n (%)</p85<br>                                         | 54   (80,6)   59                         | (90,8) $45$ $(86,5)$                                                                       |                                          | $^{84}_{(82,4)}$                                            | $^{73}_{(90,1)}$                                                     |                                                  | 55<br>(85,9)                                                      | $52 \\ (86,7)$                                                     | $52 \\ (85,2)$                                                     | $^{12}_{(85,7)}$    | $^{147}_{(86,0)}$                                    |                 | $^{78}_{(87,6)}$                                          | $^{81}_{(84,4)}$                                                   | 85                                 | (86,7)<br>71<br>(84.5) | ( - ( - ) - )                                                  |                                                                       | 78<br>(92,9)                                             | 78<br>(92,9)<br>81<br>(80,2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 78<br>(92,9)<br>81<br>(80,2)                                                                                                                                    | 78<br>(92,9)<br>81<br>(80,2)<br>(80,2)<br>99<br>(88,4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 78<br>(92,9)<br>81<br>(80,2)<br>(88,4)<br>(88,4)<br>(88,4)<br>(88,4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} 78\\ 81\\ 81\\ 81\\ (80,2)\\ (80,2)\\ (83,4)\\ (83,4)\\ (82,2)\\ (82,2)\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 78<br>(92,9)<br>81<br>(80,2)<br>(88,4)<br>(88,4)<br>(82,2)<br>(83,2)<br>(83,2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| years of a                      | $\geq P85$<br>n (96)                                                | $^{13}_{(19,4)}$                         | (9,2)<br>7<br>(13,5)                                                                       |                                          | $^{18}_{(17,6)}$                                            | 8<br>(6,9)                                                           |                                                  | $^{9}_{(14,1)}$                                                   | (13,3)                                                             | $^{9}_{(14,8)}$                                                    | $^{2}_{(14,3)}$     | $^{24}_{(14,0)}$                                     |                 | $^{11}_{(12,4)}$                                          | $^{15}_{(15,6)}$                                                   | 13                                 | (13,3)<br>13<br>(15.5) | ( ) ( ) - ( ) - ( )                                            |                                                                       | $\begin{pmatrix} 6\\(7,1)\end{pmatrix}$                  | $^{6}_{(7,1)}_{20}_{20}_{(19,8)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{pmatrix} 6\\(7,1)\\20\\(19,8) \end{pmatrix}$                                                                                                            | $ \begin{array}{c} 6 \\ (7,1) \\ 20 \\ (19,8) \\ 13 \\ 13 \\ 11.6) \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{smallmatrix} 6 \\ (7,1) \\ 20 \\ (19,8) \\ 13 \\ (11,6) \\ 13 \\ 1178) \\ 1178) \\ 1178) \\ 123 \\ 1178) \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123 \\ 123$ | $\begin{smallmatrix} 6 \\ (7,1) \\ 20 \\ (19,8) \\ (19,8) \\ (19,8) \\ (11,6) \\ 13 \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,8) \\ (17,$ | $\begin{smallmatrix} 6 \\ (7,1) \\ 20 \\ (19,8) \\ (11,6) \\ 13 \\ (11,6) \\ 13 \\ (11,6) \\ 13 \\ (15,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16,8) \\ (16$ |
|                                 | P value                                                             | 0,197                                    |                                                                                            |                                          | 0,924                                                       |                                                                      |                                                  | 0.245                                                             | C+C,U                                                              | 0,147*                                                             | 10.408**            | 0/10                                                 |                 | 0,319                                                     |                                                                    | 0,097                              |                        |                                                                |                                                                       | 705.0                                                    | 0,327                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,327                                                                                                                                                           | 0,327                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0,327                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,327                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,327                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                 | AI/A (z-score)<br>OR<br>(IC 95%)                                    | 1,00<br>0,47                             | (0,19-1,15)<br>0,98<br>(0.42-2.26)                                                         |                                          | 1,00                                                        | 0,96<br>(0,47-1,97)                                                  |                                                  | 1,00                                                              | 1,49<br>(0,60–3,72)                                                | 1,92<br>(0,79-4,64)                                                | 1,00                | 0,64<br>(0,19-2,17)                                  |                 | 1,00                                                      | 1,44<br>(0,70–2,93)                                                | 1.00                               | 0,53 (0.25–1.12)       |                                                                |                                                                       | 1,00                                                     | 1,00<br>1,43<br>(0,69-2,95)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $1,00 \\ 1,43 \\ (0,69-2,95)$                                                                                                                                   | $1,00 \\ 1,43 \\ (0,69-2,95) \\ 1,00$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} 1,00\\ 1,43\\ (0,69-2,95)\\ 1,00\\ 1,00\\ 0,62\\ 3,37\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} 1,00\\ 1,43\\ (0,69-2,95)\\ 1,00\\ 0,62\\ (0,29-1,32)\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} 1,00\\ 1,43\\ (0,69-2,95)\\ 1,00\\ 0,62\\ (0,29-1,32)\\ 1,00\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                 | $\operatorname{BN}_{\substack{\leq +1\\ n \ (\%)}}$                 | 50 (74,6)<br>56                          | (86,2)<br>39<br>(75,0)                                                                     |                                          | $^{80}_{(78,4)}$                                            | 64<br>(79,0)                                                         |                                                  | 54 (84,4)                                                         | $^{47}_{(78,3)}$                                                   | $^{45}_{(73,8)}$                                                   | $^{10}_{(71,4)}$    | $^{136}_{(79,5)}$                                    |                 | $^{73}_{(82,0)}$                                          | $^{73}_{(76,0)}$                                                   | 73                                 | (c,4))<br>71<br>(84,5) | (-()                                                           |                                                                       | $^{69}_{(82,1)}$                                         | $^{69}_{77}_{(76,2)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $^{69}_{77}$ (76,2)                                                                                                                                             | $69\\77\\(76,2)\\85\\85\\(75,9)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 69<br>77<br>(76,2)<br>(76,2)<br>(76,2)<br>(75,9)<br>(75,9)<br>(75,9)<br>(83,6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} 69\\77\\76,2)\\(76,2)\\(76,2)\\(75,9)\\(75,9)\\(75,9)\\(83,6)\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} 69\\ (82,1)\\ 77\\ 77\\ (76,2)\\ (76,2)\\ (75,9)\\ 61\\ (83,6)\\ 83,6)\\ 91\\ (80,5)\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                 | >+1<br>n (%)                                                        | $^{17}_{6,4}$                            | (13,8)<br>13<br>(25,0)                                                                     |                                          | 22 (21,6)                                                   | (21.0)                                                               |                                                  | $10 \\ (15,6)$                                                    | $^{13}_{(21,7)}$                                                   | 16 (26,2)                                                          | $^{4}_{(28,6)}$     | 35 (20,5)                                            |                 | (18,0)                                                    | $^{23}_{(24,0)}$                                                   | 25                                 | (2,2)<br>13<br>(15,5)  | ( -( )                                                         |                                                                       | 15<br>(17,9)                                             | $(17,9) \\ (17,9) \\ 24 \\ (23,8) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $(17,9) \\ (17,9) \\ 24 \\ (23,8) \\ (23,8)$                                                                                                                    | $\begin{array}{c} 15\\ (17,9)\\ 24\\ (23,8)\\ (23,8)\\ 27\\ 27\\ (24,1)\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} 15\\ (17,9)\\ 24\\ (23,8)\\ (23,8)\\ (23,8)\\ (24,1)\\ 12\\ (12)\\ (12)\\ (12)\\ (12)\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} 15\\ (17,9)\\ 24\\ (23,8)\\ (23,8)\\ (23,4,1)\\ 12\\ (16,4)\\ (16,4)\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} 15\\ (17,9)\\ (23,8)\\ (23,8)\\ (23,8)\\ (23,8)\\ (23,4)\\ (16,4)\\ (16,4)\\ (16,4)\\ (19,5)\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                 | Variables                                                           | Mother's age (yrs) <sup>2</sup><br>20–28 | 29–34<br>35–51                                                                             | Mother's schooling<br>(vrs) <sup>2</sup> | 8<                                                          | 8                                                                    | Income <i>per capita</i><br>(reais) <sup>3</sup> | 40,57-204,00                                                      | 204,37 - 350,0                                                     | 357,0–3333,33<br>Residence                                         | Rural               | Urban                                                | Time TV (hours) | ≤2                                                        | >2                                                                 | Hours in school <sup>4</sup><br>>4 | ≤ 45                   |                                                                | 1 ime in active play<br>(hours) <sup>5</sup>                          | 11me in active play<br>(hours) <sup>5</sup><br>>1        | 1 ime in active play<br>(hours) <sup>5</sup><br>>1<br>≤1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11me in active play<br>(hours) <sup>5</sup> >1<br>≤1<br>Time in light activities<br>(hours) <sup>6</sup>                                                        | tıme in active play<br>(hours) <sup>5</sup> >1<br>≤1<br>Time in light activities<br>(hours) <sup>6</sup> ≤1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11me in active play<br>(hours) <sup>5</sup> >1<br>≤1<br>Time in light activities<br>(hours) <sup>6</sup> ≤1<br>≤1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | tıme ın actıve play<br>(hours) <sup>5</sup> >1<br>≤1<br>Time in light activities<br>(hours) <sup>6</sup><br>≤1<br>>1<br>>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11me m active play<br>(hours) <sup>5</sup> >1<br>≤1<br>Time in light activities<br>(hours) <sup>6</sup> ≤1<br>>1<br>Physical education <sup>4</sup><br>Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

8

|          | >+1             | BM<br>≤+1         | I/A (z-score) OR OR (10.050) | <i>P</i> value | ≥P85              | <p85< th=""><th>of body fat<sup>1</sup><br/>OR<br/>(TC 0504)</th><th>P value</th><th>≥P85</th><th>% of fat e<br/><p85< th=""><th>of android region<br/>OR</th><th>P value</th><th>≥P85</th><th>Waist<br/><p85< th=""><th>circumference<sup>1</sup><br/>OR</th><th>P value</th></p85<></th></p85<></th></p85<> | of body fat <sup>1</sup><br>OR<br>(TC 0504) | P value      | ≥P85             | % of fat e<br><p85< th=""><th>of android region<br/>OR</th><th>P value</th><th>≥P85</th><th>Waist<br/><p85< th=""><th>circumference<sup>1</sup><br/>OR</th><th>P value</th></p85<></th></p85<> | of android region<br>OR | P value     | ≥P85             | Waist<br><p85< th=""><th>circumference<sup>1</sup><br/>OR</th><th>P value</th></p85<> | circumference <sup>1</sup><br>OR | P value     |
|----------|-----------------|-------------------|------------------------------|----------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------|------------------|---------------------------------------------------------------------------------------|----------------------------------|-------------|
|          | (0%) 11         | <i>u</i> ( 20 )   | (0/-02-)1)                   |                | n (70)            | (0 <u>/</u> ) <i>u</i>                                                                                                                                                                                                                                                                                        | (0%66 ())                                   |              | u (70)           | (0 <u>/</u> ) 11                                                                                                                                                                               | (10, 22,70)             |             | <i>u</i> (%)     | <i>u</i> ( 20 )                                                                       | (0/06)                           |             |
| )        | 38<br>[21,8]    | $^{136}_{(78,2)}$ | 1,00                         | 0,463*         | $^{25}_{(14,4)}$  | $149 \\ (85,6)$                                                                                                                                                                                                                                                                                               | 1,00                                        | 1,000*       | $^{25}_{(14,4)}$ | $^{149}_{(85,6)}$                                                                                                                                                                              | 1,00                    | $1,000^{*}$ | $^{27}_{(15,5)}$ | $^{147}_{(84,5)}$                                                                     | 1,00                             | $0,372^{*}$ |
| -        | (9,1)           | 10 (90,9)         | 0,36<br>(0.04 $-2.88$ )      |                | (9,1)             | 10 (90,9)                                                                                                                                                                                                                                                                                                     | 0,59 (0.07-4.86)                            |              | (9,1)            | 10 (90.9)                                                                                                                                                                                      | 0,59 $(0.07-4.86)$      |             | 0(0,0)           | (100.0)                                                                               |                                  |             |
| ш        | ~               | ~                 |                              |                | ~                 | ~                                                                                                                                                                                                                                                                                                             |                                             |              | ~                | ~                                                                                                                                                                                              |                         |             | ~                | ~                                                                                     |                                  |             |
| Ú        | 34<br>(22,2)    | (77, 8)           | 1,00                         | 0,405          | $^{20}_{(13,1)}$  | $133 \\ (86,9)$                                                                                                                                                                                                                                                                                               | 1,00                                        | 0,401        | $^{20}_{(13,1)}$ | $133 \\ (86,9)$                                                                                                                                                                                | 1,00                    | 101.0       | $20 \\ (13,1)$   | $133 \\ (86,9)$                                                                       | 1,00                             | 0,198       |
| )        | 15,6)           | $^{27}_{(84,4)}$  | 0,65<br>(0,23-1,81)          |                | $^{6}_{(18,8)}$   | 26 (81,2)                                                                                                                                                                                                                                                                                                     | 1,53<br>(0,56-4,19)                         |              | $^{6}_{(18,8)}$  | 26   (81,2)                                                                                                                                                                                    | 1,53<br>(0,56-4,19)     | 0,401       | $(21,9)^{7}$     | $^{25}_{(78,1)}$                                                                      | 1,86<br>(0,71-4,86)              |             |
|          |                 |                   |                              |                |                   |                                                                                                                                                                                                                                                                                                               |                                             |              |                  |                                                                                                                                                                                                |                         |             |                  |                                                                                       |                                  |             |
| )        | 28<br>(21,7)    | 101 (78,3)        | 1,00                         | 0,752          | (14,7)            | (85,3)                                                                                                                                                                                                                                                                                                        | 1,00                                        | 0,689        | (15,5)           | (84,5)                                                                                                                                                                                         | 1,00                    | 0389        | $^{21}_{(16,3)}$ | 108   (83,7)                                                                          | 1,00                             | 0,325       |
| )        | $11 \\ 19,6)$   | $^{45}_{(80,4)}$  | 0,88<br>(0.40-1.93)          |                | (12,5)            | $^{49}_{(87,5)}$                                                                                                                                                                                                                                                                                              | 0,83<br>(0,32-2,09)                         |              | $^{6}_{(10,7)}$  | 50 (89,3)                                                                                                                                                                                      | 0,65<br>(0.24-1.73)     | 10000       | $^{6}_{(10,7)}$  | 50<br>(89,3)                                                                          | 0,62<br>(0,23-1,62)              |             |
|          |                 | ~                 |                              |                |                   |                                                                                                                                                                                                                                                                                                               |                                             |              | ~                | ~                                                                                                                                                                                              |                         |             |                  | ~                                                                                     |                                  |             |
| ,        | 900             | 15                | 1,00                         |                | 5 0)              | 16                                                                                                                                                                                                                                                                                                            | 1,00                                        |              | 2                | 19                                                                                                                                                                                             | 1,00                    |             | 5                | 16                                                                                    | 1,00                             |             |
|          | 15<br>15        | (/1,4)<br>56      | 0,67                         | 0,646          | 10                | (70/7)<br>61<br>67                                                                                                                                                                                                                                                                                            | 0,52                                        | 0,361        | ().(5)<br>[]     | (°,0%)                                                                                                                                                                                         | 1,74                    | 0,787       | (0,(12)<br>6     | (70,2)<br>62                                                                          | 0,46                             | 0,434       |
|          | (1,12)<br>18    | (75)<br>75        | (0,23-2,02)<br>0.60          | 0.402**        | (14,1)            | (8,c8)<br>87                                                                                                                                                                                                                                                                                                  | (0,15-1,75)<br>0.43                         |              | (c,cl)<br>13     | (c,84)<br>80                                                                                                                                                                                   | (0,35-8,56)<br>1.54     |             | (12,7)           | (87,3)<br>80                                                                          | (0,13-1,58)<br>0.52              |             |
| ) ()     | (19,4)          | (80,6)            | (0,20-1,76)                  | 0,402          | (11,8)            | (88,2)                                                                                                                                                                                                                                                                                                        | (0,13-1,40)                                 | $0,202^{**}$ | (14,0)           | (86,0)                                                                                                                                                                                         | (0,32-7,42)             |             | (14,0)           | (86,0)                                                                                | (0,16-1,66)                      |             |
| OUKIES   | 7               | 26                | 1,00                         |                | 4                 | 29                                                                                                                                                                                                                                                                                                            | 1,00                                        |              | 4                | 29                                                                                                                                                                                             | 1,00                    |             | 4                | 29<br>(07 0)                                                                          | 1,00                             |             |
|          | $14 \\ 17.1$    | (82.9)<br>(82.9)  | 0,76                         | 0,428          | (7.3)<br>(7.3)    | 76<br>76<br>(92,7)                                                                                                                                                                                                                                                                                            | 0,57 (0.15-2.17)                            |              | (7.3)<br>(7.3)   | 76<br>76<br>(92.7)                                                                                                                                                                             | 0,57                    | 0,022***    | (4.9)            | (0,,0)<br>78<br>(95,1)                                                                | 0,37                             | 0,000****   |
|          | 18<br>75 7)     | (74 3)            | 1,28 (0.47-3.46)             |                | 16<br>16<br>17 9) | 54<br>(77 1)                                                                                                                                                                                                                                                                                                  | 2,14                                        | 0,022***     | (22 d)           | 54<br>(77 1)                                                                                                                                                                                   | 2,14<br>(0.65-7.02)     |             | 19<br>19         | 51<br>51<br>(77 q)                                                                    | 2,70<br>2,70                     |             |
| ate      | ( 10-2)         |                   | (01:(-).1:(0)                |                | ()(11)            | (1(1))                                                                                                                                                                                                                                                                                                        | (70,1-00,0)                                 |              | ()(11)           | (+(+))                                                                                                                                                                                         | (70,1-00,0)             |             | (1(1-)           |                                                                                       | (0/0-100)                        |             |
| )        | $10^{10}$       | $^{46}_{(82,1)}$  | 1,00                         |                | 5<br>(8,9)        | $51 \\ (91,1)$                                                                                                                                                                                                                                                                                                | 1,00                                        |              | $^{6}_{(10,7)}$  | 50 (89,3)                                                                                                                                                                                      | 1,00                    | 1000        | $^{6}_{(10,7)}$  | 50 (89,3)                                                                             | 1,00                             | 015.0       |
| <u> </u> | 6<br>28,6)      | $^{15}_{(71,4)}$  | 1,84<br>(0,57-5,92)          | 001.0          | $^{6}_{(28,6)}$   | $^{15}_{(71,4)}$                                                                                                                                                                                                                                                                                              | 4,08<br>(1,09 $-15,26$ )                    | 0,087        | (23,8)           | 16 (76,2)                                                                                                                                                                                      | 2,60<br>(0,70 $-9,68$ ) | 100,0       | 5<br>(23,8)      | 16 (76,2)                                                                             | 2,60<br>(0,70 $-9,68$ )          | 01-010      |
| )        | 23<br>21,3)     | 85<br>(78,7)      | 1,24<br>(0.55-2.84)          | 88C,U          | $^{15}_{(13,9)}$  | 93 (86,1)                                                                                                                                                                                                                                                                                                     | 1,64<br>(0.56-4.78)                         |              | 15 (13.9)        | $93 \\ (86,1)$                                                                                                                                                                                 | 1,34<br>( $0.49-3.68$ ) |             | 16 (14,8)        | 92<br>(85,2)                                                                          | 1,45<br>(0.53 $-3.94$ )          |             |
| spoc     |                 |                   |                              |                |                   |                                                                                                                                                                                                                                                                                                               |                                             |              |                  |                                                                                                                                                                                                |                         |             |                  |                                                                                       | ( ( (- )                         |             |
| )        | 5<br>(20,0)     | $^{20}_{(80,0)}$  | 1,00                         | 0.010          | $^{4}_{(16,0)}$   | $^{21}_{(84,0)}$                                                                                                                                                                                                                                                                                              | 1,00                                        | 200          | $^{4}_{(16,0)}$  | $^{21}_{(84,0)}$                                                                                                                                                                               | 1,00                    | 0355        | $^{4}_{(16,0)}$  | $^{21}_{(84,0)}$                                                                      | 1,00                             | 0 540       |
|          | 23<br>(22,5)    | 79<br>(77,5)      | 1,16<br>(0,39 $-3,44$ )      | 0C0(N          | $^{17}_{(16,7)}$  | 85 (83,3)                                                                                                                                                                                                                                                                                                     | 1,05<br>(0,32 $-3,45$ )                     | ccc'n        | $^{17}_{(16,7)}$ | 85(83,3)                                                                                                                                                                                       | 1,05<br>(0,32 $-3,45$ ) | <i></i> ,0  | $^{17}_{(16,7)}$ | 85 (83,3)                                                                             | 1,05<br>(0,32 $-3,45$ )          | 01-C,U      |
| )        | $11 \\ (19.0)$  | $^{47}_{(81,0)}$  | 0,94<br>(0.28 $-3.04$ )      |                | 5<br>(8,6)        | 53 (91.4)                                                                                                                                                                                                                                                                                                     | 0,49<br>(0.12-2.03)                         |              | 5<br>(8,6)       | 53 (91.4)                                                                                                                                                                                      | 0,49<br>(0.12-2.03)     |             | (10.3)           | 52<br>(89,7)                                                                          | 0,60<br>(0.15-2.36)              |             |
| inks     | ð               | 33                |                              |                | , u               | 57                                                                                                                                                                                                                                                                                                            |                                             |              | , y              | 36                                                                                                                                                                                             |                         |             | ð                | 34                                                                                    |                                  |             |
| <u> </u> | (21,4)          | (78,6)            | 1,00                         | 924 0          | (11,9)            | (88,1)                                                                                                                                                                                                                                                                                                        | 1,00                                        | 162.0        | (14,3)           | (85,7)                                                                                                                                                                                         | 1,00                    | 0.635       | (19,0)           | (81,0)                                                                                | 1,00                             | 0.614       |
| <u> </u> | $^{24}_{19,4}$  | 100 (80,6)        | 0,88<br>(0,37-2,08)          | 0,4/0          | $^{17}_{(13,7)}$  | 107<br>(86,3)                                                                                                                                                                                                                                                                                                 | 0,95 $(0,35-2,60)$                          | 0,024        | 16 (12,9)        | $108 \\ (87,1)$                                                                                                                                                                                | 0,89<br>(0,32-2,44)     | 0000        | 16   (12,9)      | 108 (87,1)                                                                            | 0,63<br>(0,25-1,60)              | 11000       |
| )        | $^{6}_{(31,6)}$ | 13 (68,4)         | 1,69<br>(0,50-5,71)          |                | $^{4}_{(21,1)}$   | $^{15}_{(78,9)}$                                                                                                                                                                                                                                                                                              | 1,12<br>(0,25-5,07)                         | $0,401^{**}$ | $^{4}_{(21,1)}$  | $^{15}_{(78,9)}$                                                                                                                                                                               | 1,60<br>( $0,39-6,50$ ) |             | $^{3}_{(15,8)}$  | 16   (84,2)                                                                           | 0,80<br>(0,18-3,41)              |             |

#### The Scientific World Journal

| OR Crude OR adjusted <sup>6</sup> P value <sup>6</sup> | $\begin{array}{rcl} & \text{OR crude} & \text{OR adjusted}^6 & P \text{ value}^6 & P \text{ value}^4 \\ \hline \text{(IC 95\%)} & \text{(IC 95\%)} & \text{(IC 95\%)} \\ 0.72 & 0.79 \\ 0.24-2.15 & 0.79 \\ 0.256 & 0.774 \\ 0.21-1.48 & (0.23-2.57) \\ 0.21-1.48 & (0.23-2.57) \\ 1.00 \end{array}$ | $\begin{array}{rcl} \mbox{OR Crude} & OR adjusted^6 & P \mbox{value}^6 & P $ | $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                      | $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{c} 0,72\\ 0.727 & (0,24-2,15) \\ \end{array} $ (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} 0.72\\ 0.727 & (0.24-2,15) & (0,0,56\\ 0.56 & (0,51-1,48) & (0,0,1,00) \end{array}$                                                                                                                                                                                                | $\begin{array}{ccc} 0.72 & 0.72 & (0.24-2,15) & (0, 0.56) \\ 0.56 & 0.56 & (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} 0.727 & \begin{pmatrix} 0.72\\ -2.4-2.15 \end{pmatrix} & (0, \\ 0.266 & (0, \\ 1.00 \end{pmatrix} & (0, \\ 0.21-1,48) & (0, \\ 0.21-1,48) & (0, \\ 0.21-1,48) & (0, \\ 0.210 \end{pmatrix} & (0, \\ 0.210 & (0, 56-2, 97) & (0, \\ 1, 00 \end{pmatrix}$ | $\begin{array}{cccc} 0.72 & 0.72 & 0.72 & 0.08 & 0.06 & 0.06 & 0.06 & 0.06 & 0.06 & 0.06 & 0.06 & 0.06 & 0.06 & 0.06 & 0.06 & 0.06 & 0.06 & 0.06 & 0.08 & 0.06 & 0.08 & 0.06 & 0.08 & 0.010 & 0.0562.97 & 0.0 & 0.214 & 0.078 & 0.078 & 0.014 & 0.078 & 0.078 & 0.014 & 0.078 & 0.016 & 0.078 & 0.016 & 0.078 & 0.016 & 0.078 & 0.016 & 0.078 & 0.016 & 0.078 & 0.016 & 0.078 & 0.016 & 0.078 & 0.016 & 0.078 & 0.016 & 0.078 & 0.016 & 0.078 & 0.016 & 0.078 & 0.016 & 0.078 & 0.016 & 0.078 & 0.016 & 0.078 & 0.016 & 0.078 & 0.016 & 0.078 & 0.016 & 0.078 & 0.016 & 0.078 & 0.016 & 0.078 & 0.016 & 0.078 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 & 0.0212 $                                                                                                                                                                                                                                                                                                                                                 |
| 0,576                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0,576<br>$0,139^{**}$                                                                                                                                                                                                                                                                                | 0,576<br>0,139**<br>0,279                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,576<br>0,139**<br>0,279<br>0,241                                                                                                                                                                                                                                        | 0,576<br>0,139**<br>0,279<br>0,241<br>0,557                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\begin{array}{c} 0.56 \\ (0,13-2,30) \\ 6.23 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\substack{0,56\\(0,13-2,30)\\0,63\\(0,22-1,81)\\1,00}$                                                                                                                                                                                                                                              | $\begin{array}{c} 0,56\\ (0,13-2,30)\\ 0,63\\ (0,22-1,81)\\ 1,00\\ 0,58\\ (0,22-1,55)\\ 1,00\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} 0.56\\ (0,13-2,30)\\ (0,263\\ (1,20-1)81)\\ 1,00\\ 0,58\\ (0,28-1,64)\\ 1,00\\ 1,00\end{array}$                                                                                                                                                         | $\begin{array}{c} 0.56\\ (0,13-2,30)\\ 0.63\\ (0,22-1,81)\\ 1,00\\ 0,58\\ (0,22-1,55)\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0,37<br>(0,38-1,78)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} 0,37\\ (0,38-1,78)\\ 0,52\\ (0,10-1,37)\\ 1,00\end{array}$                                                                                                                                                                                                                         | $\begin{array}{c} 0.37\\ (0,38-1,78)\\ 0.52\\ (0,10-1,37)\\ 1,00\\ 0.67\\ (0,28-1,60)\\ 1,00\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} 0.37\\ (0,38-1,78)\\ (0,52)\\ (0,10-1,37)\\ 1,00\\ (1,28-1,60)\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\end{array}$                                                                                                                                           | $\begin{array}{c} 0.37\\ (0,38-1,78)\\ (0,100-1,37)\\ (0,10-1,37)\\ (1,00)\\ 1,00\\ 1,00\\ 1,00\\ (0,29-1,89)\\ (0,20-1,89)\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0.650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0,650                                                                                                                                                                                                                                                                                                | 0,650<br>0,720                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0,650<br>0,720<br>0,859                                                                                                                                                                                                                                                   | 0,650<br>0,720<br>0,859<br>0,473                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0,280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0,280<br>0,077**                                                                                                                                                                                                                                                                                     | 0,280<br>0,077**<br>0,171                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,280<br>0,077**<br>0,171<br>0,813                                                                                                                                                                                                                                        | 0,280<br>0,077**<br>0,171<br>0,813<br>0,813                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\begin{array}{c} 0,39\\ (0,08-1,74)\\ 0,44\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\substack{0,39\\0,44\\0,44}(0,13-1,43)\\1,00$                                                                                                                                                                                                                                                       | $\begin{array}{c} 0,39\\ 0,38-1,74\\ 0,44\\ (0,13-1,43)\\ 1,00\\ 0,47\\ (0,16-1,38)\\ 1,00\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} 0,39\\ (0,08-1,74)\\ 0,44\\ (0,13-1,43)\\ 1,00\\ 1,00\\ 1,00\\ 0,47\\ (0,16-1,38)\\ (0,16-1,38)\\ (0,16-1,38)\\ (0,31-2,50)\\ 1,00\end{array}$                                                                                                          | $\begin{array}{c} 0,39\\ (0,08-1,74)\\ 0,44\\ (0,13-1,33)\\ 1,00\\ 0,47\\ (0,16-1,38)\\ 1,00\\ 0,18\\ (0,31-2,50)\\ 1,00\\ 1,00\\ 1,00\\ (0,12-1,87)\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $\begin{array}{c} 0,34 \\ (0,09-1,27) \\ 0,11 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ${ \begin{smallmatrix} 0,34\\ (0,09-1,27)\\ 0,41\\ (0,15-1,10)\\ 1,00 \end{smallmatrix} }$                                                                                                                                                                                                           | $\begin{array}{c} 0,34\\ 0,09-1,27\\ 0,41\\ 0,41\\ 1,00\\ 1,00\\ 0,55\\ (0,22-1,23)\\ 1,00\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} 0.34\\ (0,09-1,27)\\ (0,15-1,10)\\ 1,00\\ (0,15-1,10)\\ 1,00\\ (0,25\\ (0,22-1,23)\\ 1,00\\ 0,95\\ (0,39-2,26)\\ 1,00\end{array}$                                                                                                                       | $\begin{array}{c} 0.34\\ (0,09-1,27)\\ (0,15-1,10)\\ (0,15-1,10)\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,$ |
| 0,485                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0,485                                                                                                                                                                                                                                                                                                | 0,485                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,485<br>0,750<br>0,613                                                                                                                                                                                                                                                   | 0,485<br>0,750<br>0,613<br>0,225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ) 0,192                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ) 0,192<br>) 0,124**                                                                                                                                                                                                                                                                                 | ) 0,192<br>) 0,124**<br>) 0,383                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ) 0,192<br>) 0,124**<br>) 0,383<br>) 0,383                                                                                                                                                                                                                                | ) 0,192<br>) 0,124**<br>) 0,383<br>) 0,383<br>) 0,697<br>) 0,460                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0,34<br>(0,09-1,26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\substack{0,34\\(0,09-1,26\\0,52\\(0,19-1,37\\1,00\end{aligned}$                                                                                                                                                                                                                                    | $\begin{array}{c} 0.34\\ 0.34\\ 0.5-1.26\\ 0.52\\ 1.00\\ 1.00\\ 0.67\\ 0.67\\ 1.00\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} 0.34\\ (0,052)\\ (0,19-1,37\\ (0,19-1,37\\ 1,00\\ 1,00\\ (0,27-1,64\\ 1,00\\ 1,00\\ 0,83\\ (0,33-2,07\\ 1,00\\ 1,00\\ \end{array}$                                                                                                                      | $\begin{array}{c} (0,0){}^{-1}{}^{2}4\\ (0,0){}^{-1}{}^{2}7\\ (0,19{}^{-1}{}^{3}7\\ (0,19{}^{-1}{}^{3}7\\ (0,57{}^{-1}{}^{6}4{}^{6}{}^{1}{}^{1}{}^{1}{}^{0}0{}^{6}{}^{7}{}^{1}{}^{2}{}^{2}{}^{0}{}^{2}{}^{2}{}^{3}{}^{2}{}^{3}{}^{2}{}^{2}{}^{0}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^{2}{}^$                                                                                                                                                                                                                                                                                                                                             |
| (0, 14-1, 19)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $(0,14-1,19) \\ 0,55 \\ (0,24-1,23) \\ 1,00$                                                                                                                                                                                                                                                         | $\begin{array}{c} (0,14-1,19)\\ 0,55\\ (0,24-1,23)\\ 1,00\\ 0,80\\ (0,38-1,65)\\ 1,00 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} (0.14\pm1.19)\\ (0.14\pm1.12)\\ (0.24\pm1.23)\\ 1,00\\ 0,80\\ 0,80\\ 1,00\\ 1,00\\ 0,65\\ (0,30\pm1.41)\\ 1,00\end{array}$                                                                                                                              | $\begin{array}{c} (0,145-1,19)\\ (0,24-1,23)\\ 1,00\\ 1,00\\ (0,38-1,65)\\ 1,00\\ (0,38-1,65)\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ 1,00\\ $  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nulas<br>ion of                                                                                                                                                                                                                                                           | nulas<br>ion of<br>iths)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

TABLE 6: Values of Crude and adjusted odds ratio (intervals of confidence of 95%) in alternations of BMI/A percentage of body fat, total, and from the android region and waist circumference

for confounders (birth weight, age, sex, and mother's education), report not having found association between the practice of exclusive breastfeeding and its duration with the BMI values, results are not presented in the study.

Toschke et al. [51], assessing body composition in children 9-10 years old by DEXA, observed that the longer duration of breastfeeding was associated significantly with reduced total fat mass (P < 0.001), which was attenuated in 59% after adjustment by confounding factors that were socioeconomic, gestational, birth, lifestyle, and feeding. There was an inverse association between duration of breastfeeding with BMI in the bivariate analysis (P < 0.001) but in the adjusted model this association was not maintained (P = 0.238).

Burdette et al. [52] compared children who were 5 years of age breastfed or not and found no difference in the percentage of total body fat measured by DEXA (P =0.170). Breastfeeding for a time above 12 months without the use of formula did not show association with lower overweight taxes (P = 0.560) and, likewise, no differences were seen between the nutritional status (P = 0.690) and the percentage of body fat (P = 0.980) of the children when it was considered the introduction of solid foods before 4 months of age. The results were adjusted by confounding factors of birth and socioeconomic factors.

Kramer et al. [53] found no statistically significant differences between a group of children exclusively breastfed for longer periods in a group with relation to a group with times lower of EBF at 6.5 years of age, with regard to overweight (OR: 1,2; IC 95%: 0,8–1,6) and to the averages of the values of waist circumference (difference: 0,3 cm; IC 95%: -0.8-1.4), after adjustment for socioeconomic variables, sex, smoking during pregnancy, and birth weight. The study published later on the same sample comparing the EBF for 3 or 6 months also found the same results in relation to nutritional status and waist circumference, with no significant differences and effects of risk or protection [54].

Moorcroft et al. [55] concluded in a systematic review conducted in relation to the effect of the age of introduction of solid foods in obesity (and a portion of the studies, the excess body fat assessed by DEXA) that there is no clear association and that larger impacts relate to genetic and environmental factors.

Otherwise, the present study and the studies cited above, in which there were no associations between infant feeding practices and the outcomes studied, other studies have shown this association [20–22], are showing that they are still controversial results.

The studies evaluating the effect of breastfeeding on the nutritional status and body composition in children are mostly conducted in Western countries, as demonstrated in the discussions of this study. Thus, it is likely that differences in results are not influenced by cultural factors related to diet and lifestyle, since the populations of Western countries have similar lifestyle, to a greater or lesser degree, and have characterized a diet rich in fats and sugars and physical inactivity [56]. These factors could confound the relationship between breastfeeding and the outcomes studied, so they are used as controls in most studies.

It is observed that the studies differ on the subject as to confounding factors controlled, as how to obtain data for breastfeeding, to the type of practice measured (total or exclusive breastfeeding), and the definition used for this practice. Different anthropometric references and the cutoff points for diagnosis of the nutritional status or body composition may additionally affect the comparison of results [25, 26, 57].

The absence of information on exclusive breastfeeding represents a limitation in the studies [57, 58], and in the present study we evaluated this practice. We chose to evaluate only the exclusive breastfeeding because PROLAC's followup occurs up to one year of the child's life.

It is considered that the method of obtaining the data regarding exclusive breastfeeding and feeding in the first six months of life is the main positive point of the study. We consulted the recorded data, from charts of a well structured project, with established protocol. Different results are found in studies that use recall data or that assesses breast-feeding by data obtained at the time of their practice [19, 59]. According to Adair [26], studies that recall past data on breastfeeding are subject to memory bias and discrepancies are noted between the breastfeeding analyses by data registered and data recalled.

Also as a positive point, most studies assess the effects of breastfeeding on nutritional status and total body fat; this work supplemented the assessments by parameters of fat in the abdominal region. Furthermore, the assessment of body composition was performed using DEXA, a method that has been considered the gold standard for this purpose [60].

Note also the large number and variety of confounding factors investigated that could be associated with nutritional status and body composition of children, to made a proper adjustment of the variables, could be made and sought as an independent effect of breastfeeding and infant feeding in the studied parameters. Some studies did not evaluate the confounding factors such as age, sex, birth weight, physical activity, lifestyle and current diet, socioeconomic factors, among others, which tends to undermine the analysis and discussion of results found [19, 61]. In a systematic review performed by Arenz et al. [22], it was observed that the protective effect of breastfeeding in relation to obesity was more pronounced in studies that adjusted it to less than seven potential confounders compared with those that used more than seven factors for this adjustment.

Among the confounding factors considered, there are the variables of food for the period evaluated, little considered by some researchers, evaluated in this study by two different methods. Unlike expected, it is observed that the variables from the food records and energy balance, whose determination used the average energy intake obtained by this method, were not associated with nutritional status and body composition. Errors inherent to the Food Register method, such as difficulty in describing the food, especially for quantities, may be involved in these observations [30].

One factor that probably favors the divergence of the results found in the literature in relation to nutritional

status is the difference in the anthropometric reference used. When it comes to assessing the nutritional status and its association with breastfeeding, we highlight differences as to the sample of the studies that have been developed for the construction of anthropometric references. The WHO reference used for evaluation of children aged under five years comes from a multicenter study and the children included were breastfed and following patterns followed satisfactory eating patterns, especially in relation to breastfeeding. This differentiates this anthropometric reference from others, which probably do not adequately express the growth of breastfed infants, especially those in EBF, since infants in the sample combine different breastfeeding practices [62].

Different definitions and cutoff points in relation to body composition also tend to influence the results [24, 26]. In this study, we decided to use the percentile 85 of the distribution of the sample itself by age and sex so that, just like in the evaluation of the nutritional status (when the *z*-score +1 was used as cutoff point), the risk categories were evaluated. We preferred to perform the division into percentiles within the sample itself due to the lack of national or multicentric references that included the entire age range studied.

As a limitation of this study we have to add that by prioritizing the use of data recorded of EBF and infant feeding, and because PROLAC is a program that serves a portion, but not the entire population of Viçosa, it was not possible to perform a sample that was representative or a calculation of the sample, considering the associations to be tested. To minimize this effect we included in the study all children enrolled in the program who met the inclusion criteria. An additional limitation was the losses due to failure in locating the children, because of old identification data. On the other hand, these did not affect the representativeness of the sample since it did not differ from the group analyzed. However, this is not a statistical difference between cases included and excluded in the study does not completely eliminate the risk of bias because of small sample sizes are often not sufficient to exclude type II errors. The error type II consists of not rejecting the null hypothesis when it in reality is false.

According to Dewey [57], often a small sample size is one of the factors justifying the failure to detect the effect of breastfeeding in the health parameters evaluated at later ages. Generally, large sample sizes are needed, even to be able to adjust the confounding factors [63].

A discussion held on the theme relates to publication bias: largest number of publications of studies that found positive results or with large sample sizes, which could interfere with the evaluation of the actual effect of breastfeeding on health throughout life, also interfering in the comparison between the results [25].

Importantly, the ethical issues preclude conducting controlled screening, with randomization of breastfed groups or not in studies involving human breastfeeding in humans. Thus, knowledge is obtained through observational studies with different methodologies and influence of various other factors, which helps explain some of the contradictory findings that are observed [64]. Excess weight and body fat are probably multifactorial and the effect of breastfeeding and feeding during the first months of life is relatively small compared to factors such as current dietary habits and living conditions and genetic factors, which makes this effect to be not quite often detected in the studies, especially those with smaller sample size [57].

Although not the direct targets of this work, interesting associations were found in multivariate analyses, with some variables proving to be independently associated with the parameters evaluated, demonstrating that environmental factors, in some cases even related to gestational periods, lifestyle habits, and feeding, confirmed influence on the children's health.

It is argued that, supporting the concept of nutrition transition, considering the BMI/A, children presented nearly seven times greater possibilities of alterations related to overweight (21.1%) than the deficit (3.2%). In comparison with the last national study conducted, in which the age of evaluated was range 5–9 years [5], the children of this study showed lesser prevalence of changes in nutritional status. In the cited study, 33.5% of children had values of *z*-score  $\geq$ +1 and 14,3% values of *z*-score  $\geq$ +2.

As for feeding during the first months of life, it was observed that the practice of exclusive breastfeeding was common among the children studied; however, it can be observed, even when dealing with a program of support for breastfeeding, that there was a practice of early introduction of solid foods, as well as cow's milk, infant dairy formula in the first six months of life. The median exclusive breastfeeding was 3 months, below the level recommended by the World Health Organization, but higher than that shown in a recent study conducted in Brazilian capitals and the Federal District, which was 1.8 months [65]. It is recommended that the child gets only the mother's milk during the first six months of life and then new food be introduced (cereal, tubercles, meats, leguminous, fruit, and vegetables) slowly and gradually, in accordance with the family's meal times, at regular intervals and so as to respect the child's appetite, keeping the mother's milk up to two years of age or longer [66].

#### 6. Conclusions

Unlike what has been proposed in hypotheses but consistent with some results found in the literature, exclusive breastfeeding was not confirmed as a protection against excess weight and body fat and was not associated independently to parameters of abdominal fat. The results were similar with respect to the consumption of cow's milk, dairy infant's formulas in the first six months, and the age of introduction of solid foods, without the presence of significant risk or protection.

The effects of breastfeeding on growth, development, and health of infants are indisputable, but the long-term effects in preventing cardiovascular risk factors, despite intensive discussions and a large number of publications and studies, are still controversial.

The control for the largest possible number of confounding factors, the use of reliable data on breastfeeding, appropriate definitions, and measurements of outcomes, combined with an adequate sample size, are important to reduce the existing limitations in this investigation.

#### **Conflict of Interests**

None.

#### Acknowledgments

This work is supported by the National Counsel of Technological and Scientific Development (CNPQ) and Coordination of Improvement of Upper Level Personnel (CAPES).

#### References

- C. A. Monteiro, L. Mondini, A. L. M. Souza, and B. M. Popkin, "The nutrition transition in Brazil," *European Journal of Clinical Nutrition*, vol. 49, pp. 105–113, 1995.
- [2] B. M. Popkin, "The nutrition transition and obesity in the developing world," *Journal of Nutrition*, vol. 131, no. 3, pp. 871–873, 2001.
- [3] B. Koletzko, J. P. Girardet, W. Klish, and O. Tabacco, "Obesity in children and adolescents worldwide: current views and future directions—working group report of the first world congress of pediatric gastroenterology, hepatology, and nutrition," *Journal of Pediatric Gastroenterology and Nutrition*, vol. 35, supplement 2, pp. S205–S212, 2002.
- [4] Brasil Ministério da Saúde, Pesquisa Nacional de Demografia e Saúde da Criança e da Mulher—Relatório Final, Ministério da Saúde, 2008.
- [5] Instituto Brasileiro de Geografia e Estatística, Pesquisa de orçamentos familiares 2002-2003. Antropometria e análise do estado nutricional de crianças e adolescentes no Brasil, IBGE, Rio de Janeiro, Brazil, 2006.
- [6] R. M. S. Oliveira, S. C. C. Franceschini, G. P. Rosado, and S. E. Priore, "Influência do estado nutricional pregresso sobre o desenvolvimento da síndrome metabólica em adultos," *Arquivos Brasileiros de Cardiologia*, vol. 92, pp. 107–112, 2009.
- [7] C. L. Davis, B. Flickinger, D. Moore, R. Bassali, S. D. Baxter, and Z. Yin, "Prevalence of cardiovascular risk factors in schoolchildren in a rural Georgia community," *American Journal of the Medical Sciences*, vol. 330, no. 2, pp. 53–59, 2005.
- [8] A. P. Ferreira, C. E. R. Oliveira, and N. M. França, "Síndrome metabólica em crianças obesas e fatores de risco para doenças cardiovasculares de acordo com a resistência à insulina (HOMA-IR)," *Journal of Pediatrics*, vol. 83, pp. 21–26, 2007.
- [9] L. Edmunds, E. Waters, and E. J. Elliott, "Evidence based paediatrics: evidence based management of childhood obesity," *British Medical Journal*, vol. 323, no. 7318, pp. 916–919, 2001.
- [10] S. S. Guo, W. Wei, W. C. Chumlea, and A. F. Roche, "Predicting overweight and obesity in adulthood from body mass index values in childhood and adolescence," *American Journal of Clinical Nutrition*, vol. 76, no. 3, pp. 653–658, 2002.
- [11] M. K. Serdula, D. Ivery, R. J. Coates, D. S. Freedman, D. F. Williamson, and T. Byers, "Do obese children become obese adults? A review of the literature," *Preventive Medicine*, vol. 22, no. 2, pp. 167–177, 1993.
- [12] S. Y. Kimm, G. H. Payne, M. P. Stylianou, M. A. Waclawiw, and C. Lichtenstein, "National trends in the management of cardiovascular disease risk factors in children: second NHLBI

- [13] L. C. Pellanda, L. Echenique, L. M. A. Barcellos et al., "Doença cardíaca isquêmica: a prevenção inicia durante a infância," *Journal of Pediatrics*, vol. 78, pp. 91–96, 2002.
- [14] P. P. Silveira, A. K. Portella, M. Z. Goldani, and M. A. Barbieri, "Developmental origins of health and disease (DOHaD)," *Jornal de Pediatria*, vol. 83, no. 6, pp. 494–504, 2007.
- [15] D. J. P. Barker, "In utero programming of chronic disease," *Clinical Science*, vol. 95, no. 2, pp. 115–128, 1998.
- [16] G. Balaban and G. A. P. Silva, "Efeito protetor do aleitamento materno contra a obesidade infantil," *Journal of Pediatrics*, vol. 80, pp. 7–16, 2004.
- [17] W. H. Dietz, "Breastfeeding may help prevent childhood overweight," *Journal of the American Medical Association*, vol. 285, no. 19, pp. 2506–2507, 2001.
- [18] World Health Organization, *The optimal duration of exclusive breastfeeding.*, Report of an Expert Consultation, World Health Organization, Geneva, Switzerland, 2001.
- [19] M. S. Kramer, T. Guo, R. W. Platt et al., "Breastfeeding and infant growth: biology or bias?" *Pediatrics*, vol. 110, no. 2, pp. 343–347, 2002.
- [20] R. Martorell, A. D. Stein, and D. G. Schroeder, "Early nutrition and later adiposity," *Journal of Nutrition*, vol. 131, no. 3, pp. 874–880, 2001.
- [21] M. K. Kwok, C. M. Schooling, T. H. Lam, and G. M. Leung, "Does breastfeeding protect against childhood overweight? Hong Kong's "Children of 1997" birth cohort," *International Journal of Epidemiology*, vol. 39, no. 1, pp. 306–307, 2010.
- [22] S. Arenz, R. Rückerl, B. Koletzko, and R. Von Kries, "Breast-feeding and childhood obesity—a systematic review," *International Journal of Obesity*, vol. 28, no. 10, pp. 1247–1256, 2004.
- [23] K. Huus, J. F. Ludvigsson, K. Enskär, and J. Ludvigsson, "Exclusive breastfeeding of Swedish children and its possible influence on the development of obesity: a prospective cohort study," *BMC Pediatrics*, vol. 8, pp. 1–6, 2008.
- [24] J. F. Novaes, J. A. Lamounier, E. A. Colosimo, S. C. C. Franceschini, and S. E. Priore, "Breastfeeding and obesity in Brazilian children," *The European Journal of Public Health*, vol. 22, no. 3, pp. 383–389, 2011.
- [25] B. L. Horta, R. Bahl, J. C. Martines, and C. G. Victora, *Evidence* on the Long-Term Effects of Breastfeeding—Sytematic Reviews and Meta-Analyses, World Health Organization, Geneva, Switzerland, 2007.
- [26] L. S. Adair, "Methods appropriate for studying the relationship of breast-feeding to obesity," *Journal of Nutrition*, vol. 139, no. 2, pp. 408–411, 2009.
- [27] C. M. Coeli and F. Faerstein, "Estudos de Coorte," in *Epidemiologia*, Medronho, Ed., pp. 161–174, Atheneu, São Paulo, Brazil, 2004.
- [28] Instituto Brasileiro de Geografia e Estatística, Características da População e dos Domicílios: Resultados do Universo, Censo Demográfico, Rio de Janeiro, Brazil, 2010.
- [29] Brasil. Secretaria de Atenção à Saúde, Manual de vigilância do óbito infantil e fetal e do Comitê de Prevenção do Óbito Infantil e Fetal, Ministério da Saúde, 2009.
- [30] R. M. Fisberg, D. M. Marchioni, and B. Slater, "Recomendações nutricionais," in *Inquéritos Alimentares: Métodos e Bases Científicos*, R. M. Fisberg, B. Slater, D. M. Marchioni, and L. A. Martini, Eds., Manole, São Paulo, Brazil, 2005.
- [31] K. M. Rasmussen and A. L. Yaktine, Weight Gain during Pregnancy: Reexamining the Guidelines, Committee to Reexamine IOM Pregnancy Weight Guidelines, Institute of Medicine, National Research Council, 2009.

- [32] World Health Organization, Physical Status: The Use and Interpretation of Anthropometry, vol. 854 of WHO Technical Report, World Health Organization, Geneva, Switzerland, 1995.
- [33] D. B. Jelliffe, Evaluación del Estado de Nutrición de la Comunidad, WOrganización Mundial de Salud, Geneva, Switzerland, 1968.
- [34] WHO Multicentre Growth Reference Study Group, WHO Child Growth Standards: Length/Height-for-Age, Weight-Forage, Weight-for-Length, Weight-for-Height and Body Mass Index-for-Age: Methods and Development, World Health Organization, Geneva, Switzerland, 2006.
- [35] M. De Onis, A. W. Onyango, E. Borghi, A. Siyam, C. Nishida, and J. Siekmann, "Development of a WHO growth reference for school-aged children and adolescents," *Bulletin of the World Health Organization*, vol. 85, no. 9, pp. 660–667, 2007.
- [36] World Health Organization, WHO AnthroPlus for Personal Computers Manual: Software for Assessing Growth of the World's Children and Adolescents, WHO, Geneva, Switzerland, 2009.
- [37] World Health Organization, *Training Course on Child Growth Assessment. Module C: Interpreting Growth Indicators*, World Health Organization, Geneva, Switzerland, 2008.
- [38] Y. C. Chuang, K. H. Hsu, C. J. Hwang, P. M. Hu, T. M. Lin, and W. K. Chiou, "Waist-to-thigh ratio can also be a better indicator associated with Type 2 diabetes than traditional anthropometrical measurements in Taiwan population," *Annals of Epidemiology*, vol. 16, no. 5, pp. 321–331, 2006.
- [39] A. C. R. Andaki, Antropometria e nível de atividade física na predição de alterações metabólicas em crianças de 10 anos [Dissertação de Mestrado em Ciência da Nutrição], Departamento de Nutrição e Saúde, Universidade Federal de Viçosa, Minas Gerais, Brazil, 2010.
- [40] Dietpro: Soluções em Nutrição® [Computer Program], Versão 5i Profissional for Windows, Agromídia Software Ltda, Vicosa, Brazil, 2008.
- [41] Institute of Medicine, *Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids (Macronutrients)*, The National Academies Press, Washington, DC, USA, 2002.
- [42] I. E. Grinberg, Caracterização de crianças portadoras de câncer segundo sensibilidade ao unami e consumo alimentar [Tese de Doutorado], Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, Brazil, 2011.
- [43] StataCorp: STATA Statistical Software, *Release 10.0. College Station*, Stata Corporation, 2003.
- [44] SPSS 17.0 for Windows [Computer Program], Statistical Package for Social Science (SPSS). Release Version 17.0.1, SPSS Incorporation, Chicago, Ill, USA, 2008.
- [45] S. M. Callegari-Jacques, Bioestatística: Princípios e Aplicações, Artmed, Porto Alegre, Brazil, 2003.
- [46] M. R. D. O. Latorre, "Medidas de risco e regressão logística," in Métodos Quantitativos em Medicina, E. Massad, N. R. S. Ortega, P. S. P. Silveira, and R. X. Menezes, Eds., pp. 337–349, Manole, São Paulo, Brazil, 2004.
- [47] D. W. Hosmer and S. Lemeshow, *Applied Logistic Regression*, John Wiley & Sons, New York, NY, USA, 2nd edition, 1989.
- [48] C. J. Ley, B. Lees, and J. C. Stevenson, "Sex- and menopauseassociated changes in body-fat distribution," *American Journal* of Clinical Nutrition, vol. 55, no. 5, pp. 950–954, 1992.
- [49] J. P. Després, "Intra-abdominal obesity: an untreated risk factor for type 2 diabetes and cardiovascular disease," *Journal* of Endocrinological Investigation, vol. 29, supplement 3, pp. 77– 82, 2006.

- [50] R. Novotny, P. Coleman, L. Tenorio et al., "Breastfeeding is associated with lower body mass index among children of the commonwealth of the Northern Mariana Islands," *Journal of the American Dietetic Association*, vol. 107, no. 10, pp. 1743– 1746, 2007.
- [51] A. M. Toschke, R. M. Martin, R. Von Kries, J. Wells, G. D. Smith, and A. R. Ness, "Infant feeding method and obesity: body mass index and dual-energy X-ray absorptiometry measurements at 9-10 y of age from the Avon Longitudinal study of parents and children (ALSPAC)," *American Journal of Clinical Nutrition*, vol. 85, no. 6, pp. 1578–1585, 2007.
- [52] H. L. Burdette, R. C. Whitaker, W. C. Hall, and S. R. Daniels, "Breastfeeding, introduction of complementary foods, and adiposity at 5 y of age," *American Journal of Clinical Nutrition*, vol. 83, no. 3, pp. 550–558, 2006.
- [53] M. S. Kramer, L. Matush, I. Vanilovich et al., "Effects of prolonged and exclusive breastfeeding on child height, weight, adiposity, and blood pressure at age 6.5 y: Evidence from a large randomized trial," *American Journal of Clinical Nutrition*, vol. 86, no. 6, pp. 1717–1721, 2007.
- [54] M. S. Kramer, L. Matush, N. Bogdanovich et al., "Health and development outcomes in 6.5-y-old children breastfed exclusively for 3 or 6 mo," *American Journal of Clinical Nutrition*, vol. 90, no. 4, pp. 1070–1074, 2009.
- [55] K. E. Moorcroft, J. L. Marshall, and F. M. McCormick, "Association between timing of introducing solid foods and obesity in infancy and childhood: a systematic review," *Maternal and Child Nutrition*, vol. 7, no. 1, pp. 3–26, 2011.
- [56] S. I. Bleil, "O padrão alimentar Ocidental: considerações sobre a mudança de hábitos no Brasil," *Cadernos de Debate*, vol. 6, pp. 1–25, 1998.
- [57] K. G. Dewey, "Is breastfeeding protective against child obesity?" *Journal of Human Lactation*, vol. 19, no. 1, pp. 9–18, 2003.
- [58] R. S. Siqueira and C. A. Monteiro, "Amamentação na infância e obesidade na idade escolar em famílias de alto nível socioeconômico," *Revista de Saúde Pública*, vol. 41, pp. 5–12, 2003.
- [59] S. M. Robinson, L. D. Marriott, S. R. Crozier et al., "Variations in infant feeding practice are associated with body composition in childhood: a prospective Cohort study," *Journal of Clinical Endocrinology and Metabolism*, vol. 94, no. 8, pp. 2799–2805, 2009.
- [60] A. Sopher, W. Shen, and A. Pietrobelli, "Pediatric body composition methods," in *Human Body Composition*, S. B. Heymsfield, T. G. L. Lohman, Z. Wang, and S. B. Going, Eds., Human Kinetics, 2005.
- [61] S. Plancoulaine, M. A. Charles, L. Lafay et al., "Infant-feeding patterns are related to blood cholesterol concentration in prepubertal children aged 5-11 y: the Fleurbaix-Laventie Ville Sante study," *European Journal of Clinical Nutrition*, vol. 54, no. 2, pp. 114–119, 2000.
- [62] F. J. F. Silveira and J. A. Lamounier, "Avaliação nutricional de crianças do Vale do Alto Jequitinhonha com a utilização das novas curvas de crescimento do NCHS e da OMS," *Revista Paulista De Pediatria*, vol. 27, pp. 133–138, 2009.
- [63] C. G. Owen, P. H. Whincup, K. Odoki, J. A. Gilg, and D. G. Cook, "Infant feeding and blood cholesterol: a study in adolescents and a systematic review," *Pediatrics*, vol. 110, no. 3, pp. 597–608, 2002.
- [64] J. F. Novaes, Fatores associados ao sobrepeso e à hipertensão arterial em escolares do Município de Viçosa-MG [Tese de Doutorado], Faculdade de Medicina, Universidade Federal de Minas Gerais, 2007.

- [65] Brasil. Secretaria de Atenção à Saúde, Ministério da Saúde, *II Pesquisa de prevalência de aleitamento materno nas capitais brasileiras e Distrito Federal*, Ministério da Saúde, 2009.
- [66] Brasil. Secretaria de Atenção à Saúde, Departamento de Atenção Básica, Ministério da Saúde, Dez passos para uma alimentação saudável: guia alimentar para menores de dois anos: um guia para o profissional da saúde na atenção básica, Ministério da Saúde, 2010.