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Abstract
Hepatic encephalopathy (HE) is a common, severe complication of
advanced chronic liver disease (CLD) and has a devastating impact on the
patient’s quality of life and prognosis. The neurotoxin ammonia and the
presence of systemic and neurological inflammation are considered the key
drivers of this neuropsychiatric syndrome. Treatment options available in
routine clinical practice are limited, and the development of novel therapies
is hampered owing to the complexity and heterogeneity of HE. This review
article aims to outline the current understanding of the pathomechanisms of
HE and the recent advances in the identification and development of novel
therapeutic targets.
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Introduction
In patients with advanced liver disease, liver insufficiency 
and/or portosystemic shunting may lead to the occurrence of 
a wide range of neuropsychiatric symptoms1. This brain dys-
function, known as hepatic encephalopathy (HE), marks the  
end-stage of chronic liver disease (CLD) and has disas-
trous consequences for the quality of life of patients and their  
caregivers2,3. HE is a common feature in CLD, as it will develop 
in about 30–40% of patients at some point during the course of 
the disease. HE can be classified as overt (West Haven grade  
II–IV, diagnosed based on clinical symptoms ranging from 
disorientation to coma) or covert (minimal HE or West Haven 
grade I, diagnosis requiring specialist neuropsychologic testing  
[Table 1])1. Overt HE development is unpredictable and rapid 
and often requires admission to the intensive care unit4,5.  
Prognosis of these patients is poor; unless there is access to 
liver transplantation, 1-year survival generally does not exceed 
40%6,7. Also, minimal HE (mHE) is associated with a significant 
impact on quality of life and an increased risk of development 
of overt HE, hospital admission, and death. Despite advances  
in the understanding of HE and the development of novel thera-
pies, recent data point out that it is still the leading cause for  
readmission and mortality in CLD5.

Although it is well established that the neurotoxin ammonia 
is key in the pathogenesis of HE, the neurochemical changes 
following ammonia metabolism are numerous and not all 
yet fully understood. Moreover, distinct pathomechanisms  
such as alterations in cerebral blood flow (CBF) and, more 
recently, inflammation have been shown to contribute. The het-
erogeneity of the clinical presentation as well as the complex 
and multifactorial pathogenesis of HE have hampered the opti-
mization of its management and the development of effective 
therapies. This article aims to review the most recent advances 
in understanding of the disease, with a focus on ammonia  
and inflammation, and the translation into clinical manage-
ment. Moreover, the future perspectives of the most promising  
therapeutic opportunities will be discussed.

Recent advances in understanding the complex 
pathophysiology
Ammonia: the traditional hypothesis
Of all neurotoxin candidates that have been studied over the 
last century to explain the neuropsychiatric phenotype in 
liver disease patients, ammonia has been investigated and dis-
cussed most extensively. Ammonia is a nitrogenous compound  
that is mainly derived from bacterial production and amino acid 
metabolism in the gut8–10. In healthy individuals, ammonia is 
metabolized in the liver by the urea cycle and glutamine syn-
thetase (GS) and subsequently excreted by the kidneys. The very 
first link between ammonia and HE dates back almost a cen-
tury (1922), when a causal relationship between ammonia and  
meat intoxication was reported in dogs with a portocaval 
shunt11. Later (1954), the significance of portal-systemic shunt-
ing in cirrhosis in the pathogenesis of HE was reported by 
Sheila Sherlock et al.12. They measured peripheral and hepatic 
venous blood levels of ammonia in CLD patients following oral  
ammonium chloride intake and showed that ammonia can  
enter the systemic circulation via the gut by passing through 
a cirrhotic liver and/or by bypassing it via portal-systemic  
collaterals. This was therefore defined by the term “portal-systemic 
HE”. This circulating ammonia is then able to cross the  
blood–brain barrier (BBB), where it induces a cascade of  
deleterious effects on the brain13.

Ammonia: advances in understanding its cerebral effects
Once ammonia reaches the brain, its metabolism mainly 
relies on glutamine synthesis via GS, which is almost exclu-
sively located in the astrocytes14,15. In physiological states, GS 
is already acting near its maximum rate, thereby efficiently  
converting ammonia into glutamine. However, in the set-
ting of hyperammonemia, the brain becomes less efficient 
in ammonia removal because of an insufficient upregula-
tion of GS activity and the absence of an alternative removal 
pathway16. Nevertheless, glutamine concentrations are well  
known to be markedly increased in the brains of animals and 
patients with HE16–18. Inhibition of glutamine breakdown by 
ammonia has been suggested to be a contributing factor19. 
Increased cytosolic glutamine creates an osmotic gradient and 
thereby contributes to the characteristic morphological changes 
and mild swelling of the astrocytes in chronic hyperammonemia,  
known as Alzheimer type II astrocytosis20. Also, ammonia-related 

Table 1. WHC and ISHEN classification (modified according to 
Vilstrup et al.1).

WHC grade ISHEN Clinical features

Unimpaired No present or previous HE

Minimal Covert Alterations of psychometric or 
neuropsychological tests (i.e. PHES, 
CFF, EEG) without clinical manifestations

Grade I   •  Trivial lack of awareness 
  •  Euphoria or anxiety 
  •  Shortened attention span 
  •  Impairment of addition or subtraction 
  •  Altered sleep rhythm

Grade II Overt   •  Lethargy or apathy 
  •  Disorientation for time 
  •  Obvious personality change 
  •  Inappropriate behavior 
  •  Dyspraxia 
  •  Asterixis

Grade III   •  Somnolence to semi-stupor 
  •  Responsive to stimuli 
  •  Confused 
  •  Gross disorientation 
  •  Bizarre behavior

Grade IV Coma

CFF, Critical Flicker Frequency; EEG, electroencephalography; HE, hepatic 
encephalopathy; ISHEN, International Society for Hepatic Encephalopathy 
and Nitrogen Metabolism; PHES, Psychometric Hepatic Encephalopathy 
Score; WHC, West Haven Criteria.

Page 3 of 13

F1000Research 2020, 9(F1000 Faculty Rev):312 Last updated: 29 APR 2020



changes in the expression of key astrocytic proteins, such as glial 
fibrillary acidic protein21,22 and peripheral type benzodiazepine 
receptors23–25, contribute to the altered astrocyte morphology  
and dysfunction.

Besides low-grade brain edema and astrocyte dysfunction, HE in 
CLD seems to be characterized by a global (ammonia-induced) 
depression of the central nervous system’s function. This is 
reflected by 1) a net increase in inhibitory neurotransmission  
(mainly via impairment of the glutamate neurotransmit-
ter system)26–28, 2) reduced CBF29,30, 3) reduced oxygen con-
sumption and brain oxygenation31,32, and 4) reduced energy  
metabolism33,34. All of these factors seem to be closely inter-
connected, and imaging studies in cirrhotic patients with 
chronic hyperammonemia show similar redistribution pat-
terns for CBF and the cerebral metabolic rate for glucose  
(CMR

glucose
), characterized by a decrease in the cortical and an 

increase in certain subcortical areas35. This corresponds with 
regions of ammonia-induced suppression of brain metabolism 
and neurotransmission36. The link between HE and impaired 
energy metabolism was first suggested in 195537. Thereafter, 
studies showed that key processes such as glycolysis38–40,  
the tricarboxylic acid cycle (TCA)41,42, and the electron trans-
port chain (ETC)43–45 are affected by ammonia. An increased 
rate of glycolysis is a well-characterized phenomenon in HE 
and hyperammonemia. Although increased glycolysis would 
be anticipated to increase the operational rate of the TCA 
cycle, this is not the case in hyperammonemia. Instead of  
being used in the TCA cycle, pyruvate produced during gly-
colysis is converted into lactate40,46. Diminished availability 
of pyruvate in hyperammonemia may lead to a decreased  
operational rate of the TCA cycle, ETC (reduced  
oxaloacetate generation and availability of NAD/NADH), and  
ultimately ATP production47. Reduced brain ATP levels have been  
reported in experimental models of both acute and chronic 
hyperammonemia33,48–50. Whether reduced brain ATP levels 
reflect suppressed synthesis or increased consumption is  
not yet fully elucidated. More recent studies have been 
focusing on the role of ammonia-induced mitochondrial  
dysfunction as an underlying mechanism of impaired energy  
metabolism in HE. Particularly, the mitochondrial perme-
ability transition (mPT) has been suggested to play a central 
role. It is characterized by a sudden increase in permeabil-
ity of the inner mitochondrial membrane to small molecules 
by opening of the permeability transition pore (PTP)51,52. The 
most important triggers of PTP opening are increased mitochon-
drial Ca2+ and (ammonia-/glutamine-induced) production of 
reactive oxygen species (ROS)53. This then leads to depolariza-
tion of the mitochondrial membrane potential, osmotic swelling  
of the mitochondrial matrix, uncoupling of the ETC, and thus 
inhibition of ATP synthesis. Ammonia has been shown to 
induce an early increase in intracellular Ca2+ in cultured astro-
cytes and subsequent induction of mPT54–57. Although results  
of various in vivo and in vitro studies of acute and chronic 
hyperammonemia support the role of ammonia in disturbed 
energy metabolism and mitochondrial dysfunction, it must 
be noted that conflicting results exist47. This may be partly 
explained by differences in studied brain regions, cell types, and  
ammonia concentration and durations. The chronological order 

of events and interrelationships among changes in neurotrans-
mission, CBF, and oxygen and energy metabolism are yet to be 
clarified and may guide us to better understand this complex  
condition and ultimately to develop novel therapeutic strategies.

A recently opened field in the exploration of the pathogenesis 
of HE is ammonia-induced cellular senescence of astrocytes. 
It has been described that ammonia can induce senescence 
via glutamine synthesis-dependent formation of ROS, p53  
activation, and upregulation of cell cycle inhibitors (p21 and 
GADD45a)58. Another study describes a role for heme oxy-
genase (HO)-1 in mediating ammonia-induced inhibition of 
astrocyte proliferation in cultures59. Although it is currently  
unknown whether there is a role for astrocyte senescence in 
the development of cognitive impairment in HE, it seems to 
have exciting implications for explaining the increasing evi-
dence that cognitive dysfunction does not fully reverse in all 
patients who experienced an acute episode of HE and may even  
persist after liver transplantation.

Ammonia: the refined hypothesis
The above-described selection of deleterious effects of ammo-
nia on the brain form the basis of the traditional ammonia 
hypothesis. This is supported by the fact that ammonia-lowering 
therapies improve symptoms and outcome in HE, which are  
therefore the current cornerstones of therapy1. However, 
this hypothesis is often criticized, mainly because the clini-
cal value of ammonia measurements is, to date, still unclear, 
as plasma levels do not always correlate well with severity and 
outcome60. This observation suggests that in different clinical  
situations the effect of ammonia on the brain may well be  
different. Features in cirrhosis such as inflammation, mal-
nourishment, sodium levels, sarcopenia, co-morbidities, renal  
dysfunction/failure, and gastrointestinal bleeding (high intestinal 
protein load) may be some of the contributory factors.

Systemic inflammation in chronic liver disease: role in 
hepatic encephalopathy
The poor correlation between circulating ammonia levels and 
HE severity in CLD led to the hypothesis that other mechanisms 
are involved. Systemic inflammation, commonly referred to as  
systemic inflammatory response syndrome (SIRS), is a common 
phenomenon in CLD and can occur in the context of non-sterile 
(i.e. bacterial infection) as well as sterile inflammation61. It 
is characterized by the systemic release of pro-inflammatory 
cytokines (“cytokine storm”), which may subsequently culmi-
nate in severe impairment of systemic hemodynamics and organ 
hypoperfusion, organ inflammation, cell death, microvascular  
damage, and eventually (multi-) organ failure. It is well described 
that sepsis without underlying liver disease can present similarly 
to HE with altered mental state and motor function, a condition 
also referred to as “septic encephalopathy”62. This indicates that a  
pro-inflammatory state itself can precipitate an encephalopathic 
state. Previous studies have shown that the vast majority of 
patients admitted with severe HE indeed present with evidence of  
systemic inflammation63. Moreover, patients with CLD are gener-
ally immunosuppressed and therefore prone to infections, which 
are well-recognized precipitants of overt HE64. The presence of 
systemic inflammation has been found to significantly impact on 
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mortality risk, and pro-inflammatory markers correlate well with 
the severity of HE. Also, in patients with mHE, serum levels of  
pro-inflammatory cytokines are increased (IL-6, IL-18) and 
correlate with the degree of neurocognitive dysfunction and  
driving ability65,66.

Peripheral inflammation can lead to neuroinflammation via sev-
eral pathways, of which the humoral (circulating cytokines) 
and immune (activated immune cells) pathways are the most  
important67. Firstly, translocation of Gram-negative bacteria 
across the intestinal barrier and the release of bacterial prod-
ucts (i.e. pathogen-associated molecular patterns [PAMPs]) play 
an important role in the development of systemic inflamma-
tion in CLD68. PAMPs, such as lipopolysaccharide (LPS), bind  
to pattern recognition receptors resulting in the release of pro-
inflammatory cytokines. Circulating cytokines can directly enter 
the brain by impacting on the permeability of the BBB or by bind-
ing to receptors of pro-inflammatory cytokines (TNFα, IL1β) 
expressed by endothelial cells in the BBB69,70. Subsequently, 
this leads to the release of secondary messenger molecules into  
the brain. These molecules (such as prostaglandins and nitric 
oxide [NO]) can induce the activation of microglia that can them-
selves produce inflammatory mediators. Secondly, activated 
immune cells can similarly bind to endothelial cells in the BBB,  
thereby inducing the release of secondary messenger molecules 
and microglia activation. There is a high number of studies pro-
viding evidence of microglia activation in the brains of both  
rodent models and patients with HE. This neuroinflamma-
tory state can lead to changes in neurotransmission, oxidative 
stress, and neuronal cell death, as shown in both in vitro and  
in vivo studies71–73.

Besides the alterations in intestinal integrity and increased 
bacterial translocation in CLD, an upcoming field in explor-
ing the role of the gut–brain axis in HE is the gut microbiome. 
Considering the disrupted intestinal barrier and suppressed  
immune system in CLD, it is not surprising that dysbiosis of 
gut microflora can contribute to inducing peripheral inflamma-
tion in CLD. Characteristic changes in microbiome associated 
with HE have been found to correlate with cognitive function 
and systemic inflammation and involve an abundance of  
non-autochthonous microorganisms such as Veillonellaceae,  
Alcaligenaceae, Enterococcus, Megasphaera, Burkholderia, Strep-
tococcus salivarius, Staphylococcaceae, Porphyromonadaceae, 
and Lactobacillaceae74–76. Similar findings have been  
reported in both stool and salivary microbiota. This suggests 
that a global gastrointestinal dysbiosis strongly correlates 
with cognition and inflammation in CLD and therefore holds  
prognostic and therapeutic potential in HE77,78.

Systemic inflammation in chronic liver disease: synergy 
with ammonia
Increasing evidence points towards the fact that hyperammonemia 
and systemic inflammation are not two distinct mecha-
nisms driving the severity of HE but that they are working 
synergistically by making the brain more susceptible to  
each other’s effects. An elegant clinical study by Shawcross  
et al. showed for the first time that scores of neuropsycho-
logical tests in stable cirrhotic patients are declining when  

hyperammonemia is induced in an inflammatory state but not after 
the infection has resolved79. This synergism was later confirmed 
in animal models of CLD, showing that the administration of  
LPS results in hyperammonemia, brain swelling, and coma80,81. 
On the other hand, a reduction in blood ammonia was shown to 
protect the brain from a subsequent dosing of LPS, suggesting 
that not only does inflammation make the brain more suscep-
tible to the effects of ammonia but also the reverse is true82.  
Furthermore, hyperammonemia itself can directly induce micro-
glia activation and neuroinflammation and appears to have a 
role in suppression of the immune system83–85. Induction of  
hyperammonemia in rats is associated with impaired neutrophil 
phagocytic activity leading to ROS production, thereby con-
tributing to systemic inflammation and predisposing infections.  
Although the precise underlying mechanisms of the synergy 
between ammonia and inflammation in driving HE sever-
ity are not yet fully understood, it may provide essential novel  
therapeutic targets.

Future perspectives on novel therapeutic targets
Cornerstone pharmacotherapies: targeting the gut
The pharmacotherapies for the treatment of HE traditionally target 
the gut. The two main treatments in current routine clini-
cal practice are non-absorbable disaccharides (i.e. lactulose)  
and the poorly absorbed antibiotic rifaximin1. Lactulose is 
traditionally the first-line treatment in CLD-related HE. It 
reduces circulating ammonia levels by different mechanisms: 
1) modulation of intestinal flora and therefore reduction in  
urease-producing bacteria and 2) its laxative effect reduces 
diffusion of ammonia and nitrogenous compounds into the  
bloodstream. Lactulose plays an important role as a first-line  
treatment of HE and in secondary prophylaxis of recur-
rent overt HE. A recent meta-analysis once again confirmed 
its beneficial effect regarding HE resolution, development of  
liver-related complications, and mortality86,87. These data, 
together with this treatment’s low cost and small spectrum of 
side effects, support the recommendation for lactulose as the 
initial therapy for HE in CLD. However, as a first-line treat-
ment of an acute HE episode, there is no robust evidence that 
lactulose improves mortality and outcome. Rifaximin is derived 
from rifamycin and has a broad spectrum of action against  
Gram-positive, Gram-negative, aerobic, and anaerobic bacte-
ria. Its mode of action is thought to be via modulation of the gut 
microbiota, thereby inducing a shift towards a less-pathogenic 
bacteria population and a reduction in ammonia, endotoxins, 
and pro-inflammatory cytokines. Addition of rifaximin to lac-
tulose is recommended in patients with recurrent overt HE 
in CLD despite lactulose prophylaxis1. In addition, several 
studies support the effectiveness of rifaximin in the setting  
of acute HE, but robust data showing improvement of  
survival in these patients are lacking88,89. Along with the  
globally increasing incidence of liver cirrhosis, the number of  
hospitalizations for HE has been continuing to grow over the 
last decade, despite the implementation of novel therapies, such 
as rifaximin2,5. Moreover, long-term antibiotic usage is associ-
ated with increased risk of infection with antibiotic-resistant  
strains of bacteria. Therefore, there is still a significant need  
for identifying and exploring novel therapeutic targets.
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Potential future therapies targeting the gut
Probiotics have been studied in a small number of trials 
that reported positive results regarding primary prevention 
of HE, risk of HE-related hospitalization, and the severity  
of liver disease90–92. As for rifaximin, the mechanism of action 
is thought to be through modulation of the gut microbi-
ome and metabolism. However, it should be noted that pro-
biotics have been reported to be unsafe in some categories 
of patients, such as those with acute pancreatitis93. A report 
released by the World Health Organization (WHO)/Food and  
Agriculture Organization (FA) (https://www.who.int/foodsafety/
fs_management/en/probiotic_guidelines.pdf) describes four types 
of potential side effects, namely systemic inflammation, del-
eterious metabolic activities, excessive immune stimulation in  
susceptible individuals, and gene transfer. A more recent 
report from the Agency for Healthcare Research and Qual-
ity (AHRQ) reviews the results of 622 studies and concludes  
that, based on the currently available literature, questions 
on the safety of probiotics cannot be entirely addressed94.  
Another novel, upcoming approach to restore the gut dysbio-
sis is fecal microbiota transplantation (FMT). In pre-clinical 
studies, it has been proven that transplantation of fecal micro-
biota can effectively reduce ammonia levels95,96. A small  
number of clinical trials have shown promising results in 
terms of the safety/tolerability profile and efficacy (hospitali-
zation, cognition, dysbiosis) of FMT97,98. However, a recent 
case report describes two patients included in two independent  
clinical trials (one of them had advanced CLD and refrac-
tory HE), who developed extended-spectrum beta-lactamase 
(ESBL)-producing Escherichia coli bacteremia after they had  
received FMT oral capsules derived from the same stool 
donor99. Therefore, well-selected stool transplantation may 
be an attractive future target for the treatment of HE, but  
continuous research on the risks and benefits of FMT and  
the optimization of donor screening is needed.

Targeting ammonia and nitrogen metabolism
L-ornithine L-aspartate (LOLA) is a combination of two 
non-essential amino acids that can promote ammonia detoxi-
fication by acting as a substrate for the urea cycle and by  
activating GS100. Intravenous administration has been reported 
to effectively reduce ammonia and improve mental state in 
overt HE, whereas the oral formulation seems effective in 
mHE by improving the outcome of psychometric tests101.  
However, a recent Cochrane review states that the quality of 
evidence on the use of LOLA in HE is poor and further rand-
omized controlled trials are needed102. Therefore, administration 
of LOLA is currently restricted to countries in which it is  
approved for the treatment of HE. A potential risk of LOLA is 
the so-called “rebound” of ammonia production, as glutamine 
can be recycled into ammonia by glutaminases103. The ammo-
nia scavenger ornithine phenylacetate (OP) bypasses this issue 
by conjugating glutamine with phenylacetate, which forms a 
water-soluble molecule that can be excreted by the kidneys  
and hence prevents re-metabolism via glutaminase to gluta-
mate and ammonia. OP was studied up to phase IIb trials and 
has been shown to safely and effectively reduce ammonia with 
a dose-related clinical improvement104–106. A planned phase  
III trial needs to confirm these findings.

Nitrogen scavengers that have been investigated in HE include 
sodium benzoate, glycerol phenylbutyrate, and sodium phenyl-
butyrate. These agents decrease ammonia by activating conju-
gation reactions, thereby promoting the elimination of waste 
nitrogen as amino acid conjugates instead of urea. Benzoate  
conjugates with glycine to form hippurate and phenylacetate 
with glutamine to form phenylacetylglutamine, which are both 
readily excreted by the kidneys107,108. Several trials have been  
showing a beneficial effect of these scavengers on ammo-
nia levels and the risk of overt HE development109. However, 
in a recent Cochrane review, it was concluded that the number 
of available studies is low and the quality of evidence poor 
at present109. Furthermore, the high salt load required for 
sodium benzoate may imply a limited utility in the treatment of  
HE in CLD. Another approach that has been studied to reduce 
brain glutamine in HE is the inhibition of GS, for example  
by L-methionine-S,R-sulfoximine (MSO). Several pre-clinical 
studies have shown a beneficial effect of MSO on ammonia-
induced astrocyte swelling and intracranial hypertension110–114. 
However, the translation of MSO to the clinical situation is  
hampered by the fact that it can cause convulsions, as observed  
in animal models115,116.

Finally, nutritional supplements, such as branch-chained 
amino acids (BCAAs) and zinc, have been studied. In the set-
ting of impaired hepatic ammonia metabolism in CLD,  
skeletal muscle plays an important role in ammonia detoxifi-
cation through glutamine synthesis by GS117,118. In cirrhosis, 
BCAAs are consumed in skeletal muscle to form α-ketoglutarate,  
which may be depleted due to enhanced amination to gluta-
mate and subsequent glutamine synthesis119–121. Clinical trials 
assessing BCAA supplementation for the treatment of HE  
showed mixed results and further studies are required122–126. 
Nevertheless, BCAA supplementation is safe and seems to be  
useful in preventing the deterioration of liver failure and  
nutritional status of the cirrhotic patient127,128.

Zinc, often deficient in CLD, is considered a cofactor of urea 
cycle enzymes, and low levels are associated with hyperammon-
emia and HE129–132. The potential benefit of zinc supplementation 
has been studied in several clinical trials showing largely ben-
eficial effects in HE133–135. A recent  meta-analysis concluded 
that a combination of zinc with lactulose over 3–6 months  
may improve the outcome of psychometric tests in patients  
with covert HE as compared to lactulose alone136.

Targeting systemic inflammation
The concept of the beneficial effect of anti-inflammatory 
agents on HE has initially been shown for ibuprofen (NSAID) 
and indomethacin (a potent inhibitor of cyclooxygenase-2) 
in pre-clinical models of HE83,137–139. However, it needs to be  
considered that these non-steroidal anti-inflammatories are not 
indicated in the context of CLD because of their deleterious 
effects on kidney function and impact on risk of gastrointesti-
nal bleeding. Currently, the majority of studies are focusing on 
reducing the degree of endotoxemia and systemic inflammation 
by gut-targeting therapies as described above. Also, albumin  
administration has been studied as a treatment for HE. Besides 
its property to promote the maintenance of systemic oncotic 
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pressure, albumin is able to scavenge toxins, has anti-oxidant  
properties, and stabilizes endothelial function140. However, 
albumin was found to be ineffective in improving HE sever-
ity, ammonia levels, and markers of oxidative stress and  
inflammation in clinical trials, but it prolonged survival141,142. 
However, although no survival benefit was reported when albu-
min was applied in extracorporeal liver assist devices (i.e. 
MARS), it was associated with a decline in HE severity143. 
This dialysis system may have its indication in HE as a bridge 
to transplantation or spontaneous clinical improvement in  
specialized centers.

A few approaches have been studied to target neuroinflammation 
directly. N-methyl-D-aspartate (NMDA) receptors are known 
to play an important role in some types of learning. The 
function of these receptors is reduced in models of chronic  
hyperammonemia144. Activation of these receptors increases 
calcium in postsynaptic neurons, thereby increasing NO 
and cyclic guanine monophosphate (cGMP). This so-called 
glutamate–NO–cGMP pathway plays a key role in inhibit-
ing neuroinflammation and promoting neural cell survival. 
Sildenafil is a phosphodiesterase inhibitor that inhibits the deg-
radation of cGMP and thereby improves the function of the  
glutamate–NO–cGMP pathway. Sildenafil has been shown to 
improve learning abilities in rodent models of minimal HE. In 
addition, it has been reported to reduce neuroinflammation145–147.  
Targetingthe NMDA receptors directly is clinically difficult 
because in acute hyperammonemia (in contrast to its behavior 

during chronic hyperammonemia) the NMDA receptors are 
highly activated and account for ammonia-induced mortality144. 
Other studied approaches to reduce neuroinflammation involve 
reducing microglial activation directly by inhibiting the p38 
mitogen-activated protein kinase148,149. Agusti et al. showed that 
inhibiting p38 reduces neuroinflammation (microglial activa-
tion and inflammatory markers) and improves cognitive and 
motor function (learning ability, motor activity, and coordina-
tion) in rats with portal systemic shunt-induced minimal HE150.  
Current and potential therapies for HE in CLD and their  
recommended or studied doses are summarized in Table 2.

Conclusion
HE is a devastating complication of end-stage liver disease 
with an ever-persisting impact on morbidity, hospitalization, 
and mortality. Currently available therapies in clinical practice  
are limited, and the development of novel approaches has been 
hampered by the complexity and heterogeneity of the syndrome. 
Traditionally, elevated levels of the neurotoxin ammonia 
have been considered to be the key driver of “portal-systemic 
HE”. In the last few decades, the involvement of extrahepatic 
organs in ammonia metabolism and the role of systemic and  
neurological inflammation in the pathogenesis of HE have 
been more and more established and gained their role in  
clinical management (Figure 1). The development of novel thera-
pies is currently mainly focusing on scavenging ammonia and 
modulating the gut microbiome, which are attractive potential  
treatment approaches. The synergistic relationship between 

Table 2. Overview of the discussed (potential) treatment options for HE in CLD and their 
recommended or studied doses.

Treatment Drug Recommended/studied dose

Non-absorbable disaccharides Lactulose Initial dose 25 mL. Dose titration 
to maintain 2–3 loose bowel 
movements/day.

Antibiotics Rifaximin 550 mg BD orally

Ammonia/nitrogen scavengers

LOLA 25–40 g/day (i.v.)

OP Up to 20 g/day (i.v.)

Sodium benzoate 10 g/day (oral)

Sodium phenylbutyrate 200 mg/kg/day (oral or via 
nasogastric tube)

Glycerol phenylbutyrate 6 mL twice daily for 16 weeks (oral)

Albumin dialysis MARS various

Probiotics various various

FMT n.a. various

BCAAs n.a. various (13.2–60 g/day)

Zinc n.a. various (50–600 g/day)

Selection of experimental 
therapies targeting 
neuroinflammation

Indomethacin 0.5 mg/kg i.v.

Sildenafil unknown

SB239063 
(MAP-kinase-p38 
inhibitor)

unknown

BCAA, branched-chain amino acid; BD, twice daily; FMT, fecal microbiota transplantation; HE, hepatic 
encephalopathy; i.v., intravenously; LOLA, L-ornithine L-aspartate; OP, ornithine phenylacetate.
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pathogen-associated molecular patterns.
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