
Microcirculation. 2021;28:e12718.	 wileyonlinelibrary.com/journal/micc	   | 1 of 11
https://doi.org/10.1111/micc.12718

© 2021 John Wiley & Sons Ltd

Received: 12 March 2021  | Revised: 18 April 2021  | Accepted: 11 May 2021
DOI: 10.1111/micc.12718  

R E V I E W

Coronary microvascular dysfunction pathophysiology in 
COVID-19

Jie Yin1 |   Shaoshen Wang2 |   Yang Liu1 |   Junhong Chen2 |   Dongye Li1  |   Tongda Xu2

Yin and Wang should be considered as co-first authors.  

Abbreviations: ACE2, Angiotensin I converting enzyme 2; Ang II, Angiotensin II; Ang(1–7), Angiotension 1–7; AT1R, Angiotensin II type 1 receptor; BNP, Brain natriuretic peptide; CMD, 
Coronary microvascular dysfunction; COVID-19, Coronavirus disease 2019; CVD, Cardiovascular disease; DM, Diabetes mellitus; eNOS, endothelial nitric oxide synthase; HTN, 
Hypertension; ICU, Intensive care unit; NOX-2, NADPH oxidase 2; RAAS, Renin-angiotensin-aldosterone system; ROS, Reactive oxygen species; VWF, von Willebrand Factor.

1Institute of Cardiovascular Disease 
Research, Xuzhou Medical University, 
Xuzhou, China
2Department of Cardiology, Affiliated 
Hospital of Xuzhou Medical University, 
Xuzhou, China

Correspondence
Dongye Li, Institute of Cardiovascular 
Disease Research, Xuzhou Medical 
University, No.84, West Huaihai Road, 
Xuzhou 221002, China.
Email: dongyeli@xzhmu.edu.cn

Tongda Xu, The Affiliated Hospital of 
Xuzhou Medical University, No.99, West 
Huaihai Road, Xuzhou 221006, China.
Email: xutongda3004@163.com

Abstract
Recently, accumulating evidence has highlighted the role of endothelial dysfunction 
in COVID-19 progression. Coronary microvascular dysfunction (CMD) plays a piv-
otal role in cardiovascular disease (CVD) and CVD-related risk factors (eg, age, gen-
der, hypertension, diabetes mellitus, and obesity). Equally, these are also risk factors 
for COVID-19. The purpose of this review was to explore CMD pathophysiology in 
COVID-19, based on recent evidence. COVID-19 mechanisms were reviewed in terms 
of imbalanced renin-angiotensin-aldosterone-systems (RAAS), systemic inflammation 
and immune responses, endothelial dysfunction, and coagulatory disorders. Based 
on these mechanisms, we addressed CMD pathophysiology within the context of 
COVID-19, from five perspectives. The first was the disarrangement of local RAAS 
and Kallikrein-kinin-systems attributable to SARS-Cov-2 entry, and the concomitant 
decrease in coronary microvascular endothelial angiotensin I converting enzyme 2 
(ACE2) levels. The second was related to coronary microvascular obstruction, induced 
by COVID-19-associated systemic hyper-inflammation and pro-thrombotic state. The 
third was focused on how pneumonia/acute respiratory distress syndrome (ARDS)-
related systemic hypoxia elicited oxidative stress in coronary microvessels and cardiac 
sympathetic nerve activation. Fourthly, we discussed how autonomic nerve dysfunc-
tion mediated by COVID-19-associated mental, physical, or physiological factors 
could elicit changes in coronary blood flow, resulting in CMD in COVID-19 patients. 
Finally, we analyzed reciprocity between the coronary microvascular endothelium and 
perivascular cellular structures due to viremia, SARS-CoV-2 dissemination, and sys-
temic inflammation. These mechanisms may function either consecutively or intermit-
tently, finally culminating in CMD-mediated cardiovascular symptoms in COVID-19 
patients. However, the underlying molecular pathogenesis remains to be clarified.
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1  |  INTRODUCTION

At the end of 2019, coronavirus disease 2019 (COVID-19) was de-
fined as a global emergency by the World Health Organization.1 The 
disease went worldwide within months and was transmitted and 
exacerbated by international travel and human-to-human contact.2 
COVID-19 has demonstrated a wide spectrum of clinical manifesta-
tions in asymptomatic to critically ill patients, ranging from severe 
pneumonia, respiratory failure, cardiovascular events, diffuse intra-
vascular coagulation, multi-organ failure, sepsis, septic shock, and 
death.3,4 Moreover, elderly males (>65 years) with underlying CVD, 
for example, hypertension, myocardial ischemia, heart failure, and 
arrhythmias, have been confirmed as independent risk factors for 
disease severity and in-hospital mortality.5,6

Prior epidemiological statistics from China reported that gross 
case fatality percentages for different comorbidities were as fol-
lows: 10.5% for established CVD, 7.3% for diabetes mellitus (DM), 
6.0% for hypertension (HTN), 6.3% for respiratory disease, and 
5.6% for cancer.7 Furthermore, a recent meta-analysis recruited 
49,076 confirmed COVID-19 cases, indicating that patients with 
pre-existing CVD risk factors (eg, DM and HTN) and those with es-
tablished CVD were more vulnerable to SARS-CoV-2, with a higher 
risk of developing severe disease.8 Additionally, autopsy findings 
from Germany showed that the majority (85%) of the deceased pa-
tients had established CVD, followed by lung disease (55%), kidney 
disease (34%), central nervous system (CNS) disease (35%), and DM 
(21%).9 Coronary microvascular dysfunction (CMD) is closely related 
to these co-morbidities.

COVID-19 is caused by a novel β-coronavirus SARS-CoV-2, 
which is a single-stranded RNA virus of 60-140nm in diameter. The 
virus shares approximately 79% sequence identity to SARS-CoV, 
which was responsible for another epidemic in 2003.10–12 The ACE2 
receptor is well documented to facilitate SARS-CoV-2 entry into the 
human body. Emerging clinical evidence has shown that COVID-19 
is implicated in renin-angiotensin-aldosterone-system (RAAS) dys-
regulation, hyper-inflammation, and coagulatory dysfunction.13–15 
However, further evidence has also underscored the importance 
of microvascular endothelial dysfunction in pathophysiology. 
Microvascular endothelial dysfunction is an important mechanism 
of microvascular dysfunction. SARS-CoV-2 has been proposed to 
infect blood vessels after lung incursion, thereby inducing vascular 
endothelial injury, activating hemostasis and coagulation, ultimately 
leading to thrombotic disorders in COVID-19 patients.16,17 The sur-
face area of the microvascular endothelium in the human circula-
tion is greater than that of the macrovascular endothelium, and the 
microvascular endothelium is the primary barrier for blood-tissue 
exchange.18,19 In addition, any microstructural (eg, microvascular 
remodeling, capillary density changes) or functional alterations of 
microvessels (eg, in endothelium, vascular smooth muscle cells) can 
affect organ perfusion and metabolism, resulting in direct organ 
injury.20

Like other microcirculatory-dependent organs, heart hemo-
dynamics and metabolic homeostasis are regulated by coronary 

microcirculation.21 Moreover, CMD primarily presents as chest 
pain syndrome, accounting for myocardial ischemia in some cases, 
irrespective of the presence/absence of obstructive epicardial 
coronary vessels.22 During SARS-CoV-2 infection, manifestations 
of cardiovascular dysfunction include acute coronary syndrome, 
myocarditis, pericarditis, heart failure, and arrhythmias,23 with their 
incidences remaining obscure. Thus, the accumulating evidence 
suggests a dysfunctional role for the coronary microvasculature 
during SARS-CoV-2 infections.24–27 In this review, we would discuss 
COVID-19 mechanisms in terms of imbalanced renin-angiotensin-
aldosterone systems (RAAS), systemic inflammation and immune re-
sponses, endothelial dysfunction, and coagulatory disorders. Based 
on these mechanisms, we will address the CMD pathogenesis within 
the context of COVID-19, from five perspectives, according to ex-
isting evidence.

2  |  COVID-­19 PATHOPHYSIOLOGICAL 
MECHANISMS

2.1  |  RAAS imbalance

RAAS is an important hormonal system that modulates blood pres-
sure and maintains fluid homeostasis. However, localized RAAS 
over-activation in organs and tissues augments cell growth, facili-
tating the proliferation and inflammation of organs and tissues.27,28 
A major component of RAAS is the glycoprotein metalloprotease, 
angiotensin I converting enzyme 2 (ACE2), which catalyses multiple 
substrates, including kinins, apelin, neurotension, dynorphin, ghre-
lin, angiotensins, and des-Arginin9-bradykinin.29,30 ACE2 mRNA is 
deemed to be expressed in all organs, whereas the ACE2 protein is 
abundantly expressed in the epithelium of the lungs and small intes-
tine, endothelial cells of arteries and veins, arterial smooth muscle 
cells, cardiomyocytes, and adipocytes.31,32

ACE2 downregulation stimulates a variety of ACE2-associated 
pathways in the lungs, including the Kallikrein-kinin system, which 
controls vascular permeability and vasodilatation, and assists RAAS 
with blood pressure regulation. Kallikrein-kinin system is also in-
volved in endothelial dysfunction, via the production of reactive 
oxygen species (ROS).33 However, pulmonary RAAS is most fre-
quently disturbed by ACE2 dysfunction. As ACE2  levels decrease, 
hyperactivity of angiotensin II (Ang II)/angiotensin II type 1 receptor 
(AT1R) axis occurs, whereas hypoactivity of ACE2/angiotensin 1–7 
(Ang(1–7))/Mas receptor axis also causes detrimental effects (eg, 
vasoconstriction, hypertrophy, fibrosis, proliferation, and increased 
ROS).34-36

Increasing Ang II levels also elevates aldosterone levels.37 This 
hormone is important for fluid maintenance as it promotes water 
and sodium retention and potassium excretion, leading to systemic 
electrolyte disturbance and arrhythmias. Hyper-aldosteronemia 
causes hypokalemia in COVID-19 patients.38 However, Ang II ele-
vation also triggers immune responses, promoting coagulatory and 
thrombosis states, and induces endothelial cells expressing tissue 
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factors and plasminogen activator inhibitor-1 (PAI-1) via AT1R, re-
sulting in imbalanced PAI-1/tissue-plasminogen activator, facilitating 
the hyper-coagulatory state.17

2.2  |  Systemic inflammation and 
immune responses

It is well acknowledged that inflammation is closely related to im-
mune responses. Non-specific immune cells such as phagocytes, 
dendritic cells, and natural killer cells express pattern recognition 
receptors which identify pathogen-associated or danger-associated 
molecular patterns. The protective effects of type I interferon 
(interferon-α and interferon-β) are potentially antagonized by SARS-
CoV (or SARS-CoV-2) via pattern recognition receptors. This leads to 
the release of danger-associated molecular patterns and cytokines 
from infected cells, excessive monocyte/macrophage expression 
and polymorphonuclear neutrophil infiltration and T-cell apoptosis, 
resulting in a hyper-inflammatory state.17

Immune responses appear to benefit the host hyper-
inflammatory state during the early stages of SARS-CoV-2 infec-
tion. It has been reported that plasma IL-6 levels are significantly 
increased in critically ill COVID-19 patients, whereas CD4+ T, CD8+ 
T cells, and natural killer cells are decreased, indicating an immu-
nosuppressive state (S. Wan, unpublished observations). With the 
exacerbation of infection, cytokine release becomes dysregulated, 
and the immune system becomes suppressed, generating second-
ary hemophagocytic lymphohistiocytosis. This state is characterized 
by fulminant cytokine release, primarily driven by viral infection, 
and reported in approximately 3.7–4.3% of sepsis cases.39,40 A re-
cent retrospective study demonstrated that levels of IL-1β, IL-6, 
IL-8, and soluble tumor necrosis factor receptor 1 were positively 
correlated to COVID-19 severity, respectively.41 The release of IL-6 
and granulocyte-macrophage colony-stimulating factor by T lym-
phocytes and monocytes, respectively, was concluded as central to 
viral-induced cytokine syndrome.42

2.3  |  Endothelial dysfunction and 
coagulatory disorders

Autopsy and/or biopsy findings have implicated endothelial dys-
function as a key component in COVID-19 pathogenesis.15,43,44 It 
is speculated that when SARS-CoV-2 invades the host, immune re-
sponses are triggered, causing pro-inflammatory cytokine release, 
leading to a pro-inflammation state. This causes acute injury to both 
epithelial and microvascular endothelial cells.45 Upon endothelial 
cell edema and apoptosis, and concomitant permeability in alveolar 
microvessels, SARS-CoV-2 enters the blood stream, causing vascular 
RAAS derangement, invoking viremia or sepsis, finally culminating 
in multi-organ damage. SARS-CoV-2 entry into the blood stream 
is key to its dissemination throughout the host, with the heart be-
lieved to be the first destination of pulmonary circulation outflow.46 

Sepsis is defined as severe endothelial dysfunction syndrome and 
is generated in response to endo- and exo-vascular infections. The 
infections may cause reversible or irreversible injury to the microcir-
culation, finally leading to septic shock, multiple organ failure, and 
even death.47 About 20–35% of COVID-19 patients were with septic 
shock.48 Microvasculature dysfunction is an important characteristic 
in septic shock. Cardiogenic shock, from imbalanced oxygen supply 
and demands of the heart, is also reported in COVID-19 patients.49

Overexpressed monocytes/macrophages and polymorphonu-
clear neutrophils can derive tissue factors, neutrophils, and extra-
cellular traps, respectively, triggering the endo-  and exo-genetic 
coagulation pathway and causing imbalance between inflammation 
and coagulation. The complement system is an essential component 
of the innate immune system and is activated mainly via three path-
ways (ie, canonical, alternative, and lectin pathways). The activation 
of the complement system induces a cascade of events, such as the 
generation of a variety of bioactive molecules, including C3a, C5a, 
and membrane attack complex, resulting in coagulatory dysfunction 
and thrombotic vasculopathy.17 Buja and colleagues described that 
pulmonary microthrombi were frequently observed in deceased 
COVID-19 patients at autopsy, with pulmonary thromboembolism 
as a common fatal complication.50 Electron micrographs of the lung 
tissues from COVID-19 patients revealed deformed and elongated 
capillaries, and damaged endothelial ultrastructure with the pres-
ence of intracellular SARS-CoV-2 viruses.51 Diffuse alveolar damage 
(characterized by endothelial cell damage, capillary leakage, activa-
tion of type II pneumocytes, formation of hyaline membranes, and 
accumulation of pulmonary macrophages) was confirmed at au-
topsy. Additionally, capillary endotheliitis and microthrombi were 
also identified in alveolar capillaries and small pulmonary vessels, 
authenticating pulmonary thrombotic microangiopathy.52,53 Ceceri 
et al. proposed that diffuse alveolar endothelial damage, leading to 
progressive endothelial pulmonary syndrome with microvascular 
thrombosis, could account for the COVID-19 pathogenesis in pa-
tients with ARDS.54

Coagulation dysfunction, as characterized by elevated levels of 
D-dimers and fibrinogen degradation products, is associated with 
COVID-19 morbidity and mortality. D-dimer levels are indepen-
dent risk factors and a prognostic marker for COVID-19 infection.55 
Elevated D-dimer levels, together with prolonged prothrombin 
times and thrombocytopenia in COVID-19 patients, indicate the 
occurrence of disseminated intravascular coagulation (DIC).14,56 
Approximately 71.4% of DIC was reported in deceased COVID-19 
patients.57 This condition may result from activated monocytes/
macrophages and endothelial cells, due to the release of cytokines, 
tissue factors, and von Willebrand factor (VWF, major protein com-
ponent in Weibel-Palade bodies in the endothelium). COVID-19 
patients reportedly presented with elevated VWF suggestive of 
massive endothelial stimulation and damage, and platelet activa-
tion.58 A recent cross-sectional study revealed a significant increase 
in VWF antigens and soluble P-selectin (a marker of stimulated en-
dothelial cells and platelets). In addition, soluble thrombomodulin 
(a specific marker of endothelial cell activation) was also shown to 
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be related to the in-hospital mortality of COVID-19 patients. These 
observations demonstrated endotheliopathy could be implicated in 
COVID-19 patients.59

3  |  THE ROLE OF COVID-­19 IN CMD

3.1  |  The relationship between COVID-­19 and 
CMD

Myocardial injury has been observed in severe COVID-19 pa-
tients requiring intensive care. According to prior reports, the dra-
matic elevation of troponin (a marker of acute myocardial injury) in 
COVID-19 patients may serve as an additional sensitive prognostic 
predictor associated with COVID-19 severity and mortality.60,61 
However, Atallah et al stated that troponin levels should not be used 
as an isolated indicator of myocardial injury, as such elevations could 
be related to non-coronary mechanisms,62 which was supported by 
cumulative findings in deceased COVID-19 patients with prior el-
evation of troponin levels in clinical scenario but mild pathological 
myocardial changes at autopsy.50

However, Vrsalovic and co-workers highlighted the role of 
coronary small-vessel disease in troponin elevation, due to a pro-
thrombotic state and endothelial dysfunction induced by SARS-
CoV-2. Troponin elevation was also identified in patients with 
previous asymptomatic CAD but subsequent type 2 myocardial in-
farction, as well as patients with cytokine storm-induced myocardial 
injury and myocarditis attributable to SARS-CoV-2 virus.63

Cardiovascular injury during a COVID-19 infection could lead to 
heart failure, as characterized by elevated brain natriuretic peptide 
(BNP) or N-terminal pro-BNP (NT-proBNP) levels. These elevations 
are associated with the increased in-hospital mortality of COVID-19 
patients.64,65 The ACE2 distribution would alter in the case of patho-
logic conditions. Guo et al. observed the ACE2 expression chiefly in 
the endothelial and smooth muscle cells in fibrotic lung tissues, but 
in type 2 alveolar epithelial cells (AT2) in normal lungs. During heart 
failure, ACE2 expression is detected in cardiomyocytes, rather than 
arterial vascular cells in the normal heart. These findings suggest 
that SARS-CoV-2 may invade the bloodstream by damaging alveolar 
systems and proceed into the heart.46

SARS-CoV-2 virus particles are generally spherical with some 
pleomorphism under electron microscopy, with a varied diameter 
(60–140 nm) and quite distinctive spikes (about 9–12 nm), and ren-
der virions a solar corona appearance. This morphology is consistent 
with the Coronaviridae family.66 Owing to the diameter of SARS-
CoV-2 virus of approximately 60–140 nm, such viruses can presum-
ably invade coronary microcirculation to cause CMD. Consistent 
with the conjecture, Fox and colleagues detected viral particles that 
were in accordance with the SARS-CoV-2 virus, in a coronary endo-
thelial cell, by electron microscopy.67 However, evaluation for SARS-
CoV-2 infection by electron microscopy is often unreliable as normal 
cellular structures are often reported as being virus. In addition, in 
two recent studies, endothelial cell infection by SARS-CoV-2 in the 

heart was validated by means of in situ hybridization and in the set-
ting of microvascular thrombosis.68,69 This provides potent evidence 
of coronary microvascular involvement in COVID-19, indicating di-
rect coronary small vessel injury. Despite the lack of consensus as 
to the CMD definition to date, it was described as perturbation of 
the function of coronary small-vessels or irregular coronary micro-
vascular resistance on account of injured coronary perfusion and 
detrimental coronary blood flow.70 Four major types of CMD have 
been classified, the mechanisms of which include luminal obstruc-
tion, vascular remodeling, endothelial dysfunction, smooth muscle 
cell dysfunction, automatic dysfunction, and extravascular compres-
sion (Table 1).71

3.2  | Age, gender, CMD, and COVID-­19

Cardiovascular symptoms are frequently observed in elderly 
COVID-19 patients as well as those with chronic diseases such as 
HTN, DM, established CVD, and chronic obstructive pulmonary 
disease.72 Critically, both aging and the gender of male per se are 
confirmed as independent risk factors for COVID-19 and are asso-
ciated with infection-related endothelial dysfunction.5,6,73 With in-
creasing age, coronary arteries decline in endothelial function and 
are characterized by reduced coronary flow reserves, and a diminu-
tion in vascular reactivity, however, baseline flow capacity remains 
intact.74,75 In addition, diminished cardiomyocytic population and 
cardiomyocytic hypertrophy were identified in aging murine heart, 
with reduction of capillary density and remodeling of microvessels, 
in compensation for the increased metabolic demand.76

Testosterone plays a negative role in the activation, survival, and 
differentiation of B cells (which is closely related to acquired immu-
nity in humans), whereas estrogen plays a beneficial role. Elderly 
men were more predisposed to atherosclerosis.77 Myocardiocytic 
senescence in healthy men often develops a decade earlier than in 
women, in contrast to the more rapid decline in vascular reactivity 
in postmenopausal women than their male counterparts. Estrogen 
receptor signaling exerts a protective role in female mice upon in-
fection.70,78 However, the majority of CMD patients are peri-  and 
postmenopausal women. These populations were more vulnerable 
to cardiovascular risk factors when compared with younger women, 
with similar or higher CVD incidence in postmenopausal women 
versus the males in the same age group.79,80 A plausible explana-
tion would be the reduction in estrogen levels and impairment of 
endothelial function in peri-menopausal women, attributable to in-
terrupted nitric oxide generation, augmented oxidative stress, and 
increased pro-inflammatory cytokines.70

Estrogen also activates endothelial nitric oxide synthase (eNOS) 
via the PI3K/Akt signaling pathway, thereby producing nitric oxide and 
dilating coronary arteries.81,82 Moreover, estrogen replacement ther-
apy has been reported to increase coronary blood flow, and reverse 
detrimental changes in coronary resistance vessels.83 In addition, es-
trogen could serve as an up-regulator of angiotensinogen, while down-
regulating renin, angiotensin-converting enzyme, and angiotensin II 
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type 1 receptor.84 These molecules are important for RAAS regula-
tion, while RAAS per se plays a critical part in HTN, CAD, and HF pro-
gression. SARS-CoV-2 invades the cell via ACE2 receptor. However, 
the ACE2 gene is an X-located gene, and ACE2 protein mainly mod-
ulates cardiac homeostasis (including cytobiology of cardiomyocytes, 
cardiac fibroblasts, and coronary endothelial cells) via RAAS.85,86

With age advance, both men and women suffer from decreased 
immunity, which facilitates SARS-CoV-2 infection. Similarly, changes 
in coronary microvessels mediated by senescence and declining go-
nadal hormone levels, generate a declining health status, which may 
predispose to a worsened COVID-19 prognosis in those with CVD 
or CVD risk factors.

3.3  |  Potential implications of COVID-­19 in CMD

Cardiovascular metabolic risk factors (ie, HTN, DM, obesity, and hy-
percholesterolemia) and CVD are all related to CMD.79 Responses of 
microvascular to cardiovascular risk factors include endothelial bar-
rier dysfunction, oxidative stress, vasomotor function impairment, 
microvessel density alteration, leukocyte-endothelial adhesion, 
and platelet recruitment or thrombosis, as well as microvascular 
remodeling.87–90 Chronic heart diseases can promote CMD progres-
sion. Conversely, CMD may also facilitate hypertrophy, fibrosis of 
cardiomyocytes as well as microvascular rarefaction in chronic heart 
diseases.91 Given the prominence of HTN, DM, obesity, and CVD 
in COVID-19 comorbidities, chronic CMD may play important roles 
during COVID-19 progression.92,93

Coronary microvessels may be directly injured by SARS-CoV-2 
second wave infection (eg, viremia, hyper-inflammation, ARDS-
induced hypoxia, RAAS imbalance, and automatic or sympathetic 
nerve activation), or indirectly by damage to perivascular cells (eg, 

cardiomyocytes edema and/or pericyte injury). However, the resul-
tant or consequent CMD would be a co-consequence of direct and 
indirect factors secondary to SARS-CoV-2 infection.

Coronary microvascular dysfunction may contribute to viremia, 
as part of systemic endothelial dysfunction. SARS-CoV-2 RNA has 
been confirmed to be present in coronary microvessels in a small 
number of studies and has also been detected in blood as well.94 
Observation of overtly elevated biomarkers such as VWF, D-dimer, 
and fibrinogen degradation products suggested endothelial acti-
vation and hypercoagulation state. In general, the evidence above 
strongly supports the likelihood of endothelial damage, as ACE2 
receptors are also expressed in endothelial cells.58,94–96 Hence, we 
might postulate that subsequent to primary attacks of the pulmo-
nary epithelial cells and damages to the perialveolar structure includ-
ing the epithelial-endothelial barrier, SARS-CoV-2 enters the blood 
circulation, including the heart and coronary microvessels. The re-
sulting viremia induces coronary microvascular endothelial injury, 
including endothelial cell activation, endothelial structural, and func-
tional changes, thereby resulting in hypercoagulation, microthrom-
bosis, and myocardial injury. Therefore, this evidence suggests that 
viremia/sepsis may contribute to the COVID-19 mechanisms in CMD.

3.3.1  |  Decreased coronary microvascular endothelial 
ACE2 levels

It has been shown that decreased local ACE2  levels in coronary 
microvessels led to increased AngII/Ang(1–7) ratios, resulting in a 
RAAS imbalance in coronary small-vessels. As AngII/Ang(1–7) ratios 
increase, the Ang II-AT1R pathway in the coronary small vasculature 
becomes overactive. It is accepted that AT1R activation induces 
vascular constriction, aldosterone production and release (followed 

TA B L E  1 Classification and pathogenic mechanisms of CMD

Type Underlying clinical condition Pathogenic mechanism

Type 1 (Primary): CMD in 
the absence of CAD and 
myocardial disease

Traditional coronary risk factors (smoking, HTN, 
hyperlipidemia, diabetes, and insulin-resistant states)

Structural
Vascular remodeling
Functional
Endothelial dysfunction SMC dysfunction

Type 2: CMD in the presence of 
myocardial disease

Primary cardiomyopathies Hypertrophic cardiomyopathy 
Dilated cardiomyopathy Secondary cardiomyopathies

Cardiomyopathy secondary to Anderson-Fabry's disease
Myocardial amyloidosis
Myocarditis
Aortic stenotic cardiomyopathy

Structural
Vascular remodeling Luminal obstruction
Functional
SMC dysfunction
Extravascular
Extramural compression

Type 3: CMD in the presence of 
obstructive CAD

Stable CAD
Acute coronary syndromes with or without ST-segment 

elevation

Structural
Luminal obstruction
Functional
Endothelial dysfunction SMC dysfunction

Type 4: Iatrogenic CMD Reperfusion injury (No-reflow phenomenon/ 
micro-embolization)

PCI-related micro-embolization Coronary artery grafting
Heart transplantation

Structural
Luminal obstruction
Functional
Autonomic dysfunction

Abbreviations: CAD, coronary artery disease; CMD, coronary microvascular dysfunction; HTN, hypertension; PCI, percutaneous coronary 
intervention; SMC, smooth muscle cell.
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by electrolyte disturbance, especially hyperkalemia, which is a 
mechanism in ventricular arrhythmia), vasopressin increase and 
cardiac hypertrophy, and autonomic nerve dysfunction.97 Similarly, 
imbalanced Ang II/Ang(1–7) decreases eNOS levels, which function 
as vasodilators and tissue factor downregulators, thereby increas-
ing NOX-2 activity and promoting ROS production.98 Additionally, 
the bradykinin system is responsible for vascular permeability and 
vasodilatation, and once activated, it would exacerbate endothelial 
dysfunction, thereby increasing ROS production.

In short, CMD is generated by the disarrangement of local RAAS 
and Kallikrein-kinin-system, resulting in coronary microvascular 
constriction, eNOS/NOX-2 imbalance, increased ROS, and vascular 
permeability.

3.3.2  | Obstruction by atherosclerotic fragments and 
microthrombi

Upon internalization and duplication of SARS-CoV-2 in epithelial 
cells, multiple cytokines and chemokines, for example, IL-6, INF-γ, 
and monocyte chemotactic protein 1, are released into the blood 
stream. As ACE2 levels decrease, vascular permeability increases, 
and vasodilation capacity decreases, due to the imbalanced brady-
kinin system. Systemic inflammation increases coronary blood flow, 
resulting in the activation and rupture of pre-existing atherosclerotic 
plaques, causing type 1 myocardial infarction.99 Moreover, inflam-
mation reduces coronary flow reserves and elevates microvascular 
resistance indices in patients with coronary syndrome X.100 Recently, 
autopsy findings frequently validate a mass of microthrombi in coro-
nary small arteries, which is strongly indicative of coronary micro-
vascular injury.101,102 Also, Tedeschi and colleagues reported a case 
of acute massive coronary thrombosis in a COVID-19 patient (aged 
60 years, male) without pre-existing coronary plaque (confirmed by 
coronary angiography), wherein inflammatory and pro-thrombotic 
markers were normal on admission but elevated overtly, indicating 
the contribution of the pro-inflammatory and pro-thrombotic state 
from COVID-19 to coronary thrombosis.103 However, despite the 
cardiac procedures in the patient, the Thrombolysis in Myocardial 
Infarction flow and Myocardial Blush Grade were still poor (grade 1–2 
and 0, respectively), and eventually the patient deceased. Therein, 
CMD resulting from SARS-CoV-2-mediated inflammation and coagu-
lation disorder, and no-flow phenomenon caused by microthrombi, 
might play a key role in the progression of coronary artery lesions.103

In general, CMD can be caused by atherosclerotic fragments and 
microthrombi generated by systemic hyper-inflammation and pro-
thrombotic state in coronary artery.

3.3.3  | Oxidative stress due to pneumonia/ARDS-
related systemic hypoxia

CMD could also result from oxidative stress in coronary microves-
sels and activation of cardiac sympathetic nerves by pneumonia/

ARDS-related systemic hypoxia. Pneumonia/ARDS-associated sys-
temic hypoxia triggers oxidative stress in endothelial cells or myo-
cardiocytes, stimulating several pathways for myocardium-vascular 
supply and demand mismatch, leading to type 2 myocardial in-
farction.65 ST-elevated myocardial infarction, without obstructive 
coronary artery disease, has been observed in 39.3% of COVID-19 
patients who required urgent angiography.104

Oxidative stress also augments sympathetic tone, mediating 
catecholamine elevation in the blood.105 Sympathetic activation is 
negatively correlated with coronary blood flow velocity (index of 
coronary microvascular function) in patients with hyperglycemia 
and atherosclerotic risk factors, indicating a causative role of sym-
pathetic activation in CMD progression.106 The inference is that 
coronary microvascular oxidative stress induced by SARS-CoV-2 
infection increases the sympathetic tone, thereby mediating cate-
cholamine release and leading to CMD and consequently, myocar-
dial toxicity results, finally leading to myocardial injury and ischemia 
in COVID-19 patients.

3.3.4  |  Autonomic nerve dysfunction

Sympathetic control of coronary vasomotor tone and coronary 
blood flow is functionally significant in patients with endothelial 
dysfunction. Increased tone in sympathetic adrenergic nerves leads 
to the vasoconstriction of coronary vasculature and oxygen demand 
of cardiomyocytes.107 However, cardiac sympathetic nerves are not 
only activated by oxidative stress, but also by other factors. DM is 
a risk factor for COVID-19, and chronic hyperglycemia affects car-
diac micro-environment, resulting in CMD.108 Cardiac autonomic 
dysfunction is related to cardiomyopathy and DM-induced myocar-
dial ischemia.106,109 In addition, several reports on Takotsube car-
diomyopathy in SARS-CoV-2 positive patients have highlighted the 
role of autonomic dysfunction, triggered by mental (ie, fear, anxi-
ety, grief), physical, or physiological stress in COVID-19-associated 
CMD.24–26,110

In summary, CMD in COVID-19 may result from autonomic nerve 
dysfunction mediated by COVID-19-related emotional, physical or 
physiological factors.

3.3.5  |  Compromise of perivascular cells in coronary 
microvasculature

Compromised perivascular cells (ie, myocytes, pericytes, and adipo-
cytes) also elicit coronary microvascular endothelial dysfunction. A 
recent study showed that engineered human capillary organoids con-
sisting of endothelial cells and platelet-derived growth factor recep-
tor β-positive pericytes can be infected with SARS-CoV-2, whereas 
the administration of recombinant human ACE2 has been shown to 
be effective against the infection.12 Pericytes or perivascular cells 
envelop the endothelial layers of microvessels in the body, including 
the heart, and maintain the tone and integrity of microvasculature, 
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as well as promoting angiogenesis. With an endothelial cell/pericyte 
ratio of 2:1–3:1, and a density of approximately 3.6 × 107 pericytes/
cm3, pericytes are the second most common myocardial cell type in 
the heart, followed by cardiomyocytes.111

In pericyte-deficient murine models, the production and release 
of VWF from microvascular endothelial cells are augmented, facil-
itating platelet aggregation and formation of a hypercoagulation 
state, resulting in thrombotic microangiopathy. He et al. observed 
pericyte-specific ACE2-expression, with absent ACE2 expression 
in endothelial cells, perivascular macrophages, and fibroblasts, 
suggesting a modulatory role for pericytes in endothelial cells re-
sponding to thrombotic risk. Accordingly, a “COVID-19-pericyte 
hypothesis” was proposed: as the microvascular endothelial bar-
rier is damaged, SARS-CoV-2 leaks out and infects pericytes. This 
enhances VWF production in neighboring endothelial cells and 

enhances platelet aggregation and fibrin deposition, eventually lead-
ing to vascular symptoms in some COVID-19 patients (L. He, unpub-
lished observations).

In postmortem histological analysis, Varga et al. observed apop-
totic cell bodies in tissue endothelium, including the lungs, heart, and 
small intestine. Their findings confirmed the presence of endothe-
liitis, which indicated direct viral injury of microvessels at different 
vascular beds. By electron microscopy, the authors observed viral 
particles in the endothelium, plus evidence of myocardial infarction 
rather than myocarditis.44 However, evaluation for SARS-CoV-2 in-
fection by electron microscopy is often unreliable as normal cellular 
structures are often misidentified as viruses. Recently, two studies 
have shown endothelial cell infection by SARS-CoV-2 in the heart by 
means of in situ hybridization.68,69 In addition, although rarely pre-
sented, viral particles were detected in the cardiomyocytes adjacent 

F IGURE  1 CMD mechanisms in COVID-19. 1. Coronary microvascular endothelial ACE2 levels decrease, causing microvessels 
constriction, eNOS/NOX-2 imbalance, and vascular permeability, therefore, leading to CMD; 2. Coronary microvessels obstruction caused 
by atherosclerotic fragments and microthrombi can also induce CMD; 3. Pneumonia/ARDS-related systemic hypoxia elicits oxidative stress 
in coronary microvessels, activating cardiac sympathetic nerves, and contributing to CMD; 4. Autonomic nerve dysfunction, mediated 
by COVID-19-associated mental, physical or physiological factors, elicits changes in coronary blood flow, resulting in CMD in COVID-19 
patients; 5. SARS-CoV-2 disseminates into perivascular cells of coronary microvessels, causing perivascular structural cell edema, causing, 
or intensifying CMD. CMV, coronary micro-vascular; RAAS, renin-angiotensin-aldosteron-system; KKS, Kallikrein-kinin-system; eNOS, 
endothelial nitric oxide synthase; NOX-2, reduced nicotinamide adenine dinucleotide phosphate oxidase 2; ARDS, acute respiratory 
syndrome; CMD, coronary microvascular dysfunction [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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to myofibrils in a case from Italy.112 Several other studies also re-
ported SARS-CoV-2 RNA in the heart without describing the specific 
location.94,113–115

The SARS-CoV-2 virus is transported from the blood stream, 
through the endothelial barrier to perivascular tissues such as peri-
cytes, myocytes, and epicardial adipocytes (which share the same 
microcirculation with myocardiocytes 116) due to the endothelial 
apoptosis and increased vascular permeability and leakage in the 
context of hyper-inflammation and immune dysregulation, rendering 
them to viral infection, causing perivascular tissues edema, which in 
turn oppresses the microvessels, resulting in CMD. Epicardial adi-
pocytes are also involved in the modulation of endothelial function, 
coagulation and inflammation, and secrete harmful inflammatory 
factors during pathologic conditions.116

In a word, dissemination of SARS-CoV-2 into perivascular cells 
of coronary microvessels via ongoing viremic blood stream and 
inflammation-induced endothelial apoptosis causes perivascular 
structural cell edema. These edematous cells in return oppress cor-
onary microvasculature, causing, or intensifying CMD. These mech-
anisms can aggravate pre-existing CMD, or induce new-onset CMD, 
thereby worsening heart conditions, causing different cardiovascu-
lar manifestations in some COVID-19 patients.

4  |  CONCLUSIONS

A priori, these CMD mechanisms in COVID-19 can be summarized as 
Figure 1 shows:
1.	 Decreased coronary microvascular endothelial ACE2  levels at-
tributed to SARS-Cov-2 entry causes disarrangement of local 
RAAS and Kallikrein-kinin-systems. This results in coronary mi-
crovascular constriction, eNOS/NOX-2 imbalance, and vascular 
permeability increase, therefore, leading to CMD.

2.	 Atherosclerotic fragments and microthrombi induced by COVID-
19-associated systemic hyper-inflammation and pro-thrombotic 
state, can obstruct coronary microvessels, causing CMD.

3.	 Pneumonia/ARDS-related systemic hypoxia can elicit oxidative 
stress in coronary microvessels, inducing myocardial-vascular 
supply and demand mismatch, activating cardiac sympathetic 
nerves, and contributing to CMD.

4.	 Autonomic nerve dysfunction, mediated by COVID-19-associated 
mental, physical or physiological factors, can elicit changes in cor-
onary blood flow, resulting in CMD in COVID-19 patients.

5.	 Dissemination of SARS-CoV-2 into perivascular cells of coronary 
microvessels via ongoing viremic blood stream and inflammation-
induced endothelial apoptosis causes perivascular structural cell 
edema. These edematous cells in return oppress coronary micro-
vasculature, causing, or intensifying CMD.

These mechanisms may perform consecutively or intertwin-
ingly, finally leading to CMD and manifesting as cardiovascular 
symptoms observed in COVID-19 patients. However, the under-
lying molecular pathogenesis remains to be elucidated, and data 

collection for indices involved in coronary microvascular function 
in COVID-19 patients (eg, coronary flow reserve, index of micro-
vascular resistance, and response to intracoronary acetylcholine) is 
of extreme urgency.

5  |  PERSPECTIVES

We present a state-of-the-art review of CMD pathophysiology in 
COVID-19 from five aspects. As SARS-CoV-2-like virus particles 
were detected in a coronary endothelial cells, and massive coronary 
small vascular microthrombi were found in deceased COVID-19 pa-
tients, we thought our review was meaningful for further studies on 
SARS-CoV-2 induced heart injury. However, there is a need for more 
and larger well-designed trials for future research.
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