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ABSTRACT

Motivation: In recent years, Markov clustering (MCL) has emerged
as an effective algorithm for clustering biological networks—for
instance clustering protein–protein interaction (PPI) networks to
identify functional modules. However, a limitation of MCL and its
variants (e.g. regularized MCL) is that it only supports hard clustering
often leading to an impedance mismatch given that there is often a
significant overlap of proteins across functional modules.
Results: In this article, we seek to redress this limitation. We
propose a soft variation of Regularized MCL (R-MCL) based on the
idea of iteratively (re-)executing R-MCL while ensuring that multiple
executions do not always converge to the same clustering result
thus allowing for highly overlapped clusters. The resulting algorithm,
denoted soft regularized Markov clustering, is shown to outperform
a range of extant state-of-the-art approaches in terms of accuracy
of identifying functional modules on three real PPI networks.
Availability: All data and codes are freely available upon request.
Contact: srini@cse.ohio-state.edu
Supplementary Information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Advances in technology have enabled scientists to determine,
identify and validate pairwise protein interactions through
a range of experimental approaches. Recently, several high-
throughput approaches have produced a large scale of protein–
protein interaction (PPI) datasets. These approaches include yeast
two-hybrid, protein co-immunoprecipitation followed by mass
spectrometry (MS), protein chip technologies and tandem affinity
purification (TAP) with MS. Such data have led researchers to
discover protein functions through PPI networks, in which a node
represents a protein and an edge mimics an interaction between two
proteins. A fundamental goal here is to discover functional modules
or protein complexes in order to predict the function of unannotated
proteins.

The fundamental concept of identifying functional modules is
that a pair of proteins interacting with each other has higher
probability of sharing the same function than two proteins not
interacting with each other. The dense sub-networks in a PPI
network can therefore be identified as functional modules. Thus,
identifying functional modules is similar to detecting communities
(clusters) in a network (graph). However, traditional community
detection algorithms are usually ‘hard’ clustering algorithms, i.e.
they produces non-overlapped clusters, whereas functional modules
are highly ‘overlapped’ (Li et al., 2010). As a result, a number of
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‘soft’ clustering algorithms have been recently proposed to identify
functional modules in a PPI network, and they can be grouped into
three categories.

The first category includes algorithms such as Peacock (Gregory,
2009), hub-duplication (Ucar et al., 2006) and DECAFF (Li et al.,
2007). These algorithms identify the bridge nodes at the beginning,
i.e. nodes belong to multiple clusters, and then either duplicate
or remove the bridge nodes from the network. A hard clustering
algorithm is then applied on the modified network. The problem with
this approach is that only the identified bridge nodes can belong to
multiple clusters, and it is conflicted with the literature (Ashburner
et al., 2000) that a large fraction of proteins belong to multiple
functional modules. For example, in the yeast network in BioGRID
database (Stark et al., 2011), there are 3085 proteins annotated by
low-level Gene Ontology (GO) terms, whose information content
(see Sec 4.1) is higher than 2.5, and 2392 of 3085 proteins are
annotated by at least two of these GO terms.

Algorithms in the second category adopt line-graph
transformation. These algorithms (Ahn et al., 2010; PereiraLeal
et al., 2004) first transform the input network into a line graph, in
which a node represents an edge in the original network. Then, a
hard clustering algorithm is applied on the line graph, so edges
are clustered instead of nodes. A node in the original network
belongs to multiple clusters if its incident edges are clustered
into different clusters. It has been pointed out in the literature
(Fortunato, 2010) that clustering edges has a similar issue as
clustering nodes: a ‘bridge edge’ that connects nodes of different
clusters can only be clustered into one cluster by the line-graph
technique. Furthermore, while functional modules are so highly
overlapped that an interaction might belong to multiple modules,
these algorithms cannot successfully identify all overlapped
functional modules.

Algorithms in the third category aim to find local dense sub-
networks instead of globally clustering a graph. Each node forms
a singleton cluster at the beginning, and then each cluster iteratively
adds a neighbor node according to different criteria. Algorithms in
this category include MCODE (Bader and Hogue, 2003), CFinder
(Adamcsek et al., 2006), DPClus (Altaf-Ul-Amin et al., 2006), IPCA
(Li et al., 2008), MoNet (Luo et al., 2007), CORE (Leung et al.,
2009), COACH (Wu et al., 2009), DME (Georgii et al., 2009),
RRW (Macropol et al., 2009), NWE (Maruyama and Chihara, 2011),
SPICi (Jiang and Singh, 2010), HUNTER (Chin et al., 2010) and
HC-PIN (Wang et al., 2011).

Although the resulting clusters could be highly overlapped, one
main drawback of those algorithms is that the criterion for adding
a node usually considers relatively local topology. Given that PPI
networks are estimated to be quite noisy (Brohee and Helden,
2006), these algorithms could add several nodes connected by noisy
edges.
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In addition to those in the above three categories, there are
some other algorithms, such as RNSC (King et al., 2004), principal
component analysis (PCA)-based consensus clustering (Asur et al.,
2007) and Markov clustering (MCL) algorithm (Dongen, 2000),
which have targeted identification of functional modules. The
detail of most above-mentioned algorithms can be found in recent
surveys (Fortunato, 2010; Li et al., 2010). MCL, which is based on
manipulation of transition probabilities or stochastic flows between
nodes of the graph, is shown to be particularly noise-tolerant as
well as effective in identifying high-quality functional modules
(Brohee and Helden, 2006; Vlasblom and Wodak, 2009). Several
studies, such as (Friedel et al., 2009), (Moschopoulos et al., 2008)
and (Srihari et al., 2009), have adopted MCL as a base algorithm
to produce more accurate results. Recently, (Satuluri et al., 2010)
propose an efficient and robust variation of MCL, called Regularized
MCL (R-MCL). They show that R-MCL’s regularize operation
and balance parameter can improve the accuracy of identifying
functional modules. Nevertheless, MCL and R-MCL only generate
non-overlapped clusters, and they always assign all proteins into
clusters while not all proteins are functionally annotated. As a result,
MCL and R-MCL usually produce more false-positive clusters than
other algorithms (Brohee and Helden, 2006; Li et al., 2010).

In this article, we redress the limitation of R-MCL and propose
a new variation called ‘Soft’ R-MCL (SR-MCL), which produces
overlapped clusters. The intuition of SR-MCL is to produce
overlapped clusters by iteratively re-executing R-MCL while
ensuring the resulting clusters are not always the same. In order
to produce different clusterings in each iteration, the stochastic
flows are penalized if they flow into a node that was an attractor
node in previous iterations. Since iteratively re-executing R-MCL
would produce several redundant and low-quality clusters, a post-
processing is applied to remove those clusters. Only a cluster that
is not removed by the post-processing is predicted as a functional
module, so not all proteins are assigned into clusters.

We have conducted a series of experiments on three networks in
Saccharomyces cerevisiae. Based on the gold standard annotation,
GO terms (Ashburner et al., 2000), we find that SR-MCL
has significantly higher accuracy than R-MCL. SR-MCL also
outperforms a range of algorithms on these three networks. Since
it has been pointed out that there are different scales of potential
functional relevance within a PPI network (Lewis et al., 2010),
we also demonstrate that R-MCL is capable of identifying both the
parent module as well as the child module in the GO hierarchy.

2 TERMINOLOGY
Let G= (V ,E) denote a PPI network, which is an undirected graph
excluding self-loops, where V is the set of nodes (proteins), E is
the set of edges (interactions) and n=|V |. Each edge is denoted by
(vi,vj), vi,vj ∈V . w((vi,vj)) is the weight of an edge (vi,vj), which
represents the confidence level of the interaction in a weighted PPI
network. If the network is unweighted, the weight of an edge is
always 1. Let A be the adjacency matrix of the graph such that

A(i,j) =
⎧⎨
⎩

w(vi,vj) if (vi,vj)∈E
maxx �=i w(vi,vx) if vi =vj
0 else

.

A column stochastic matrix M is a n by n matrix that can be
interpreted as the matrix of the transition probabilities of a random

walk (or a Markov chain) defined on the graph. Specifically, M(i,j)
represents the probability of a transition from vj to vi . We also refer
to the transition probability from vi to vj as the flow from vi to vj . The
canonical flow matrix MG is defined as MG(i,j) = A(i,j)/

∑n
x=1A(x,j).

3 METHOD

3.1 Prior work on Markov clustering
MCL and R-MCL are graph clustering algorithms based on a simulation of
stochastic flows on the graph. MCL consists of two operations on a stochastic
matrix: ‘Expand’ and ‘Inflate.’ The Expand operation is simply M =M ×M ,
and the Inflate operation raises each entry in the matrix M to the inflation
parameter r (r >1, and typically set to 2) followed by re-normalizing the
sum of each column to 1. These two operations are applied in alternation
iteratively, starting with M =MG, where MG is the canonical flow matrix.
In R-MCL, Expand is replaced by ‘Regularize’, which is M =M ×MG.
The Expand and Regularize operations spread the flow out of a vertex to
potentially new nodes. This has the effect of enhancing within-cluster flows
as there are more paths between two nodes that are in the same cluster than
between those in different clusters. At the start of this process, the distribution
of flows out of a node is relatively smooth and uniform; as more iterations
are executed, all the nodes within a tightly linked group of nodes will start
to flow to one node within the group. This allows us to identify all the nodes
that flow to the same ‘attractor node’ as belonging to one cluster. (Satuluri
et al., 2010) additionally introduce a balance parameter into R-MCL. For a
complete description of MCL and R-MCL, the reader is referred elsewhere
(Dongen, 2000; Satuluri and Parthasarathy, 2009; Satuluri et al., 2010).

3.2 Overlapping MCL
Although R-MCL is effective and efficient in hard clustering, it has three
issues in identifying functional modules, which are usually hierarchical and
highly overlapped. First, R-MCL usually merges functional modules sharing
the same (bridge) node(s).Abridge node usually interacts with a large number
of nodes in a PPI network, so it is likely to become an attractor node. As
shown in Figure 1a, two modules are clustered together by R-MCL with the
bridge node v5 being the attractor node. Second, R-MCL cannot identify
modules with large overlaps since it is a hard clustering algorithm. For
example, R-MCL cannot produce any cluster similar to the green module
in Figure 1b. Third, again, because R-MCL is a hard clustering algorithm,
R-MCL is unable to identify hierarchical modules. As shown in Figure 1c,
R-MCL only produces two clusters matching the two children (blue and red)
modules, while no cluster can match the parent (green) module.

In order to overcome these three issues, we propose a variation, SR-MCL.
The intuition of SR-MCL is to iteratively re-execute R-MCL while ensuring
the clusters produced are not always the same. Thus, the resulting clusters
can be overlapped if clusters produced in all iterations are incorporated. The
clustering produced in each iteration is differentiated by ‘penalizing’ the

clusters with the
same bridge node(s)

highly overlapped
modules

hierarchical
modules

(c)(b)(a)

Fig. 1. Three toy examples pointing out the problems of R-MCL. All edges
have the weight 1 except that the thin edges in (c) have weight 0.5. The
color of the nodes represents the result of R-MCL, and the red/blue numbers
indicate the attractor nodes w.r.t. the red/blue clusters. The dash circles
indicate functional modules
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Algorithm 1 SR-MCL

Input: The canonical flow matrix MG , the balance parameter b, the inflation
parameter r, the penalized ratio β and the number of iterations t.

Output: A set of clusters C.
1. C={}
2. count ={0,0....,0} //An array with n values initialized to zero
3. for iter =1→ t do
4. repeat
5. MR =RegularizationMatrix(M ,MG,b)
6. M =M ∗MR //Regularize operation
7. M = Inflate(M ,r,count,β) //Introducing penalty on attractor

nodes
8. M =Prune(M )
9. until M converges //iter-time execution of R-MCL

10. Titer =attractors(M ) //Resulting attractor nodes from iter-time
execution of R-MCL

11. for all vi ∈Titer do
12. count[i]=count[i]+1
13. Citer =clusters(M ) //Resulting clusters from iter-time execution of

R-MCL
14. C=C∪Citer

15. C= post-process...(C)

attractor nodes, i.e. decreasing the flow to a node that has been an attractor
node in previous iterations. Specifically, the penalty is introduced as follows:
in the Inflate operation, the flow to a node that has been an attractor node
x times in previous iterations is raised to r×βx , where β >1 is the user-
specified penalty ratio. Therefore, if a node has not been an attractor node,
the flow to it is still raised to the inflation parameter r, and more times
a node has been an attractor node, more severe penalty is introduced to
it. The penalty results in possibly different attractor nodes and therefore
possibly different clusters. Moreover, since the bridge node is likely to be the
attractor in R-MCL, by penalizing attractor nodes, we can correctly produce
clusters sharing the same bridge node. For example, in Figure 1a, R-MCL
only identifies one cluster in the first iteration, but in the second iteration,
the attractor node v5 is penalized so SR-MCL could produce two clusters
matching the two modules.

The procedure of SR-MCL is shown in Algorithm 1. Line 4 to Line 9
are the same as R-MCL except introducing the penalty ratio β [the detail of
R-MCL, including the usage of parameters r and b, is illustrated elsewhere
(Satuluri et al., 2010)]. In the Inflation operation, each entry Mij in the matrix
M is raised to r×βcount[i], and then the sum of each column is re-normalized
to 1. Count[i] is the number of times that vi has been an attractor node, and t is
the number of times that R-MCL is executed. Since R-MCL is very efficient
(only takes less than 1 s in a modern dual-core machine) in clustering a PPI
network, which typically contains less than 10 000 nodes and 100 000 edges,
and the difference between clusterings produced by each iteration should be
so slight that every possible cluster is produced, we suggest that t is set to
a large number from 10 to 50 and β is set to a relative small number (1.25
in default). Although this setting would result in several redundant clusters,
the post-processing, which will be introduced in the next section, can filter
out those clusters.

3.3 Post-processing
As the resulting clustering from iterative execution of R-MCL could contain
several redundant and low-quality clusters, those clusters should be removed.
The pseudo code of our post-processing is shown in Algorithm 2. First, we
use one of three simple quality functions, ‘density, clustering coefficient’, and
density multiply by the square root of size (denoted by density×sqrt(size)), to
evaluate the quality of each cluster. The reason of using density×sqrt(size) is
that a PPI network is usually relatively sparse, so simply adopting density as
the quality function might result in a huge number of too small clusters. Note
that other quality functions, such as those discussed by (Lewis et al., 2010),

Algorithm 2 post-processing

Input: A set of clusters C={c0,...ck }, the quality function qf , the quality
threshold ω and the overlap threshold p.

Output: A set of qualified clusters C
1. for i=0→k do
2. if qf (ci)<ω or size(ci)≤2 then
3. Remove ci from C
4. Sort C in descending order of qf values
5. for i=0→k do
6. if ci was not removed from C then
7. for j= i+1→k do
8. if NA(ci,cj)>=p then
9. Remove cj from C

can also be applied. Here, we aim to show that a simple quality function can
make SR-MCL produce clusters accurately matching functional modules.
The chosen quality function is denoted by qf . We remove all clusters whose
qf value is below a user-specified threshold ω. The value of ω depends on
qf and the network’s property. Furthermore, all clusters whose size is ≤2
are also removed.

After removing low-quality clusters, we examine whether each cluster
is redundant or not in the descending order of its qf value. A cluster cj is
removed if there exists a cluster ci that qf (ci)>=qf (cj) and NA(ci,cj)>p,
where p is another user-specified threshold and NA is neighborhood affinity
(Bader and Hogue, 2003):

NA(ci,cj)= |ci ∩cj|2
|ci|∗|cj| . (1)

Thus, p is used to control the degree of overlap among clusters. The higher
p produces higher overlapped clusters and vice versa. As the functional
modules are highly overlapped, we suggest that p is set from 0.3 to
0.8. If ω becomes larger and p is decreased, the post-processing removes
more clusters, so the remaining high-quality clusters can precisely match
functional modules, but more functional modules could not be identified. On
the other hand, less ω and larger p result in more clusters, so the resulting
clusters can identify more functional modules; however, the result contains
relatively redundant and low-quality clusters, so a number of resulting
clusters cannot precisely match functional modules.

4 RESULTS

4.1 Datasets and metrics
We report results on three PPI networks of S. cerevisiae extracted
from DIP (version October 27, 2011) (Salwinski et al., 2004),
BioGRID (version 3.1.81) (Stark et al., 2011) and WI-PHI (Kiemer
et al., 2007), respectively. DIP and BioGRID are unweighted
networks and WI-PHI is a weighted network. The weight of WI-
PHI is adjusted by min-max normalization. All self-loops are
removed, and for BioGRID, we only extracted low-throughput
experiments that were used since these interactions have higher
precision (Paccanaro et al., 2005). In order to evaluate the functional
modules identification result, we used GO (Ashburner et al., 2000)
as the gold standard clusters for ground truth validation. GO terms
is a set of hierarchical annotations, in which low-level (general)
terms contain most proteins in a network. As most functional
modules identification algorithms produce small clusters which can
be identified as high-level (specific) GO terms, we aim to evaluate
the results only based on high-level GO terms. Therefore, for each
network, we only use the GO terms whose information content
(IC) is higher than 2. The information content of a GO term g is
defined as IC(g)=−log(|g|/|root|), where root is the corresponding
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Table 1. Information of the three yeast networks used in the experiment

Name |V | |E| |V ∈GO| avg(GO) |GO|

BioGRID 4364 25464 3771 10.73 3033
DIP 4995 21875 3822 11.30 3038
WI-PHI 5953 49607 4338 12.19 3262

|V ∈GO| is the number of proteins annotated by any GO term we used; avg(GO) is the
average GO term size and |GO| is the number of GO terms.

GO category (biological process, molecular function or cellular
component) of g. We moreover remove GO terms annotating 2 or
less proteins. The detail of these three networks are shown in Table 1.
Except comparing with existing algorithms that can only be applied
on unweighted networks, we mainly show the results on WI-PHI,
since the edge weight is useful for all weighted network clustering
algorithms, including MCL and R-MCL.

We adopt the widely used metric F-measure (Li et al., 2010) to
evaluate the accuracy of clusters produced. F-measure can evaluate
not only the accuracy of the clusters matching functional modules
but also the accuracy of functional modules matching the clusters.
Given a clustering result C ={c1,c2,...,ck }, in which singleton
clusters are removed and the gold standard clusters (e.g. GO terms)
G ={g1,g2,...,gl}, F-measure, based on neighborhood affinity (1),
is the harmonic mean of precision and recall, which are defined as

precision= |{ci ∈C|∃gj ∈G,NA(ci,gj)≤θ}|
|C| (2)

recall= |{gj ∈G|∃ci ∈C,NA(ci,gj)≤θ}|
|G| , (3)

where θ is set to a typically value 0.25. We moreover propose a
new version of F-measure which does not require the threshold
θ . The equations of new precision and new recall are shown in
Supplementary. (The performance of these new metrics is shown in
Supplementary.)

The usage and the suggested range of each parameter are listed in
Supplementary Table 1. Generally, only r, p and ω need to be tuned
and the parameter tuning is straightforward. The parameters (r, b, t,
β, p) of SR-MCL were set to default values (2.0,0.5,30,1.25,0.6),
respectively, in all experiments unless otherwise noted.

4.2 The choice of quality function
We compared the three quality functions mentioned in Section 3.3:
density, clustering coefficient and density × sqrt(size). For each
quality function, we varied the quality threshold ω in order to
yield different clusterings in various ‘coverages’, which are the
numbers of nodes assigned to any cluster. The result is shown in
Figure 2a. Since a too large coverage yields very small precision,
and a too small coverage yields very small recall, all quality
functions obtain maximal F-measure when the coverage is ∼2000
to 3500. It is clear that clustering coefficient produces the worst
result and density×sqrt(size) produces the best. As mentioned in
Section 3.3, purely using density along has slightly lower F-measure
as it is biased towards small clusters, since the PPI networks are
generally sparse. For simplicity, in the following experiments, we
use density×sqrt(size) as the quality function.
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Fig. 2. The comparison of F-measure on WI-PHI

4.3 Comparison with MCL and R-MCL
In this section, we report the benefit of iterative executing R-MCL
with penalty on attractor nodes. We use density × sqrt(size) as
the quality function to prune the results of MCL, R-MCL, and
SR-MCL. The parameters r of MCL and (r, b) of R-MCL are
set to the same values as SR-MCL. Again, we varied ω to yield
different clusterings with various coverages. As can be seen in
Figure 2b, SR-MCL always yields significantly higher F-measure
than R-MCL, while R-MCL’s F-measure is higher than MCL’s.
Drilling down, we observe that the improvement primarily stems
from corresponding improvement of recall and to a lesser extent
precision (see Supplementary Figs. 1 and S2). This demonstrates
that the clusters produced by SR-MCL can more accurately match
functional modules as attractor nodes are penalized.

4.4 Comparison with state-of-the-art algorithms
We compare SR-MCL with MCL (Dongen, 2000), MCODE (Bader
and Hogue, 2003), RNSC (King et al., 2004), CFinder (Adamcsek
et al., 2006), DPClus (Altaf-Ul-Amin et al., 2006), IPCA (Li et al.,
2008), CORE (Leung et al., 2009), COACH (Wu et al., 2009),
RRW (Macropol et al., 2009), HUNTER (Chin et al., 2010), R-
MCL (Satuluri et al., 2010), SPICi (Jiang and Singh, 2010), Link
Community (LinkCom) (Ahn et al., 2010) and NWE (Maruyama and
Chihara, 2011). RRW, NWE, HUNTER and SPICi are designed for
weighted networks, so we compared SR-MCL with them on WI-
PHI. LinkCom can be applied on both unweighted and weighted
network, so all three networks are used. The rest of these algorithms
can only be applied on unweighted networks, so they are compared
with SR-MCL on DIP and BioGRID. We tuned each algorithm to its
best parameter setting but generally found that the default parameter
setting generates the best results. The values of each algorithm’s
parameters are reported in Supplementary Table S2. For R-MCL
and MCL, here we show the results without using any quality
function to prune out their results. For SR-MCL, we set p to 0.8
in this experiment, and we choose 0.4 and 1.2 as ω for WI-PHI and
BioGRID/DIP, respectively, since these parameters generally yield
the best F-measure. Finally, we prune out all clusters whose size is
less than or equal to 2 in all algorithms’ clustering results.

The information of all clustering results is reported in Tables 2
and 3. Since other algorithms generally produce smaller clusters than
SR-MCL with above parameter setting, we additionally evaluated
the results based on a set of smaller GO terms GOspec, which
contains GO terms whose information content is higher than 2.5.
Detailed information can be found in Supplementary Table S3. For
GOspec, we changed the inflation parameter r of SR-MCL to 4.5,
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Table 2. The information of clusters produced by SR-MCL and other weighted network clustering algorithms on WI-PHI. avg(C) is the average size of
clusters

Algorithm RRW NWE HUNTER SPICi LinkCom MCL R-MCL SR-MCL

# clusters 1014 442 46 127 4219 649 897 1828
avg(C) 6.22 5.85 34.80 7.82 4.93 8.33 5.82 9.54
coverage 3523 2134 1370 994 3467 5407 5217 3118

Table 3. The information of clusters produced by SR-MCL and other unweighted network clustering algorithms on BioGRID and DIP

Algorithm CFinder COACH CORE DPClus IPCA MCODE RNSC LinkCom MCL R-MCL SR-MCL

BioGRID

# clusters 816 1248 615 591 1526 81 579 3160 475 559 2611
avg(C) 6.57 9.37 7.38 6.54 8.79 14.89 4.51 3.71 8.08 7.18 9.59
coverage 2959 2764 2696 2976 2414 1206 2615 3048 3838 4018 3381

DIP
# clusters 609 903 772 827 989 63 549 949 623 848 1038
avg(C) 6.18 8.90 5.30 5.28 8.80 19.00 3.89 4.00 6.57 5.25 9.84
coverage 2135 1999 2471 3258 1525 1032 2133 1412 4096 4456 2047
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Fig. 3. F-measure of each weighted network clustering algorithms on
WI-PHI

which results in smaller clusters. For example, in BioGRID, the
average cluster size is reduced from 9.59 to 7.23 if r is increased
from 2.0 to 4.5.

SR-MCL has the highest precision among all algorithms except
SPICi (See Supplementary Figs. 4 and 7), since SPICi produces
less clusters that are only in dense subgraphs. With regard to
recall, among all weighted network clustering algorithms, SR-
MCL is the highest; and among all unweighted network clustering
algorithms, SR-MCL and LinkCom are the highest on BioGRID, but
RNSC is higher than SR-MCL on DIP (see Supplementary Figs. 5
and 9). This is simply because RNSC has much higher coverage
(>4000) than SR-MCL (∼2000), and therefore more GO-terms are
identified. Nevertheless, as shown in Figures 3 and 4, SR-MCL
has the highest F-measure among all existing algorithms on either
unweighted or weighted networks. This is probably because SR-
MCL has high precision due to the original design of R-MCL and the
post-processing, and SR-MCL generally has high recall because it
produces overlapped clusters after executing R-MCL multiple times
with penalizing attractor nodes.

Moreover, we have following observations about other
algorithms: (i) HUNTER and MCODE’s coverage are much smaller
than other algorithms and their clusters are too large to identify
small functional modules, resulting in extremely low (<5%) recall.

Although MCODE’s precision is higher than other algorithms except
SR-MCL, its F-measure is lower than most other algorithms. SPICi
also has very small coverage, but its clusters size is moderate,
resulting in very high precision and low recall, and the F-measure
is slightly lower than most of other algoirthms. (ii) CORE, DPClus,
RNSC, MLC and R-MCL all have higher coverage and produce
more and smaller clusters on the sparser network DIP than the
denser network BioGRID. However, since the average size of
gold standard are roughly equal in different networks and high-
quality clusters are rarer in a sparser network, a functional modules
identification algorithm should have lower coverage and produce
less and roughly equal-size clusters on a sparser network. As a
result, these algorithms have a relatively (compared with COACH
and IPCA) lower F-measure on DIP than on BioGRID with regular-
size GO terms. (iii) LinkCom clearly outperforms other algorithms
except SR-MCL on BioGRID, but, LinkCom is just above average
on DIP. This is because BioGRID is a denser network than DIP, and
LinkCom can identify highly overlapped clusters in a denser network
due to the line-graph transformation. (iv) RNSC, which is a hard
clustering algorithms, surprisingly has average F-measure among
all unweighted network clustering algorithms. Although RNSC’s
poor performance were previously reported by (Li et al., 2010),
after simply removing clusters containing two or less proteins, it
can still have average performance, so it might be also interesting
to extend RNSC into a soft clustering algorithm.

4.5 Identifying hierarchical annotations
In this section, we demonstrate that SR-MCL is capable of
identifying hierarchical functional modules by showing two top
cases. Each case contains two clusters matching a parent GO term
and its child GO term.

In the first example, shown in Figure 5, the large nodes are all
annotated by the child term ‘holo TFIIH complex’ (GO:0005675),
and all of the medium nodes and the large nodes are annotated by
the parent term ‘TFIIK complex’ (GO:0070985). SR-MCL produces
two clusters matching these two terms. In an earlier iteration, a large
cluster roughly matching the parent term with the attractor node
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Fig. 4. F-measure of each unweighted network clustering algorithms on BioGRID and DIP

Fig. 5. Two clusters matching GO:0005675 and its child term GO:0070985
in WI-PHI. The thickness of an edge represents the weight. The size of a
node indicates the GO term annotation: The large nodes are annotated by
GO:0070985 (and thus GO:0005675); the medium nodes are only annotated
by GO:0005675; and the small nodes are are not annotated by either of these
two terms. The color indicates the clustering result: All nodes form a cluster
matching GO:0005675, and the dark green nodes form a cluster matching
GO:0070985

RAD3 is produced. In a later iteration, after several nodes including
RAD3 being penalized, a small cluster consisting of RAD3, TFB3,
KIN28 and CCL1 is produced, where TFB3, KIN28 and CCL1 are
the only three nodes annotated by the child term in WI-PHI.

The second example is presented in Figure 6. The large nodes are
all annotated by the child term ‘U4/U6 × U5 tri-snRNP complex’
(GO:0046540), and the medium nodes and the large nodes are
all annotated by the parent term ‘small nuclear ribonucleoprotein
complex’ (GO:0030532). SR-MCL produces two clusters matching
these two terms: The cluster containing the green nodes and the
blue node, named Cluster A, can roughly match the child term
(GO:0046540), and the cluster containing the yellow nodes and the
green nodes, named Cluster B, can roughly match the parent term
(GO:0030532). Cluster A is produced in an earlier iteration with
the attractor node LSM2; in a later iteration, as some other nodes
in Cluster A were penalized in previous iterations, PRP6, which is
roughly the center of nodes annotated by GO:0030532, becomes the
attractor node of Cluster B.

5 CONCLUSIONS
In this article, we proposed a new approach for identifying functional
modules in PPI networks—SR-MCL. We empirically found that
SR-MCL outperforms a range of extant algorithms in terms of its
accuracy in identifying functional modules. As part of future work,
we are interested in auto-tuning some of the parameters of SR-MCL

and adopting SR-MCL for TAP data (Gavin et al., 2006; Krogan
et al., 2006).
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