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Abstract: Neuropathic pain is well known to occur after damage to the somatosensory system.
Aryl hydrocarbon receptor (AhR) has neuroprotective effects when the central nervous system is
subjected to internal and external stimulations. However, the exact mechanism by which AhR
regulates neuropathic pain is poorly understood. Nerve explant culture and the chronic constrictive
nerve injury (CCI) model in wild or AhR-knockout mice were used in this study. In the nerve
explant culture, the ovoid number increased in the AhR−/− condition and was decreased by
omeprazole (AhR agonist) in a dose-dependent manner. Increased nerve degeneration and the
associated inflammation response appeared in the AhR−/− condition, and these changes were
attenuated by omeprazole. High expression of AhR in the injured nerve was noted after CCI. Deletion
of AhR aggravated nerve damages and this was restored by omeprazole. Deletion of AhR increased
NGF expression and reduced axon number in the paw skin, but this was attenuated by omeprazole.
A highly expressed inflammation reaction over the dorsal spinal cord, somatosensory cortex, and
hippocampus was noted in the AhR-deleted animals. Administration of omeprazole attenuated not
only the inflammatory response, but also the amplitude of somatosensory evoked potential. Deletion
of AhR further aggravated the neurobehavior compared with the wild type, but such behavior was
attenuated by omeprazole. Chronic constrictive nerve injury augmented AhR expression of the
injured nerve, and AhR deletion worsened the damage, while AhR agonist omeprazole counteracted
such changes. AhR agonists could be potential candidates for neuropathic pain treatment.

Keywords: aryl hydrocarbon receptor; neuropathic pain; chronic constriction injury

1. Introduction

Neuropathic pain is a sustained and nonreversible condition, typically a direct after-
effect of a lesion or disease of the somatosensory system. By definition, it is the pain initiated
or caused by a primary lesion or dysfunction of the nervous system [1,2]. Epidemic surveys
show that 8% of the general population experience neuropathic pain, which may markedly
affect their lives psychologically, physically, and socially. This extraordinary pain typically
responds poorly to analgesics like anti-inflammatory and opiate drugs [1]. Therefore,
neuropathic pain remains quite a substantial challenge for scientists and clinicians. In
general, neuropathic pain is difficult to treat and responds poorly to current therapies.
Due to its complexity, neuropathic pain does not respond to traditional analgesics, such
as anti-inflammatory antagonists and opiates. Today, no completely effective treatment is
available for neuropathic pain [3,4].
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Aryl hydrocarbon receptor (AhR) is a protein in the PAS (Per-ARNT-Sim) family, with
a basic helix–loop–helix domain. AhR is present in the cytoplasm of many vertebrate
cells as part of a complex. The complex contains a dimer of the chaperone heat shock
protein (HSP) 90, an immunophilin-like protein called X-associated protein (XAP) 2 or
AIP1, the phosphoprotein p23, and the non-receptor protein tyrosine kinase (also known as
pp60src) [5]. AhR regulates neural functions, implicated mainly by effects of xenobiotics
and through the AhR ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), which affects
neuronal proliferation, differentiation, and survival [6]. AhR expression is characterized in
animal models based on evidence from immunohistochemistry and in situ hybridization [7].
Specific temporal and spatial patterns of the AhR messenger RNA (mRNA) are expressed
in brain regions of the mouse-like cortex, hippocampus, cerebellum, olfactory bulb; the
rostral migratory stream, and brain stem; and in the hypothalamus/pituitary axis [8,9].
Astrocytes and endothelial cells isolated from the murine blood–brain barrier also express
the AhR protein, indicating that the expression is not restricted to neuronal progenitors or
neurons [10,11]. AhR is also expressed in glial cells [12], and is integrated itself in neuronal
survival [13]. AhR expressions in the brain also exhibit chrono-periodicity and periodic
variations in the level of the AhR mRNA at the murine suprachiasmatic nucleus [14,15].
Regulation of AhR expression in the brain depends not only on internal stimuli, but also on
external stimulation such as traumatic brain injury (TBI) or strokes [16–18].

The initiation and maintenance of neuropathic pain involve not only intrinsic neuronal
pathways but also the peripheral immune system [19]. Upon nerve injury, inflammatory
responses occur from the skin to the spinal cord and even the somatosensory cortex [20–22].
External stimuli caused by chronic constrictive injury likely contribute to widely distributed
AhR expressions from the skin to the brain, leading to neuropathic pain. Thus far, few
studies have been published concerning the role of AhR in regulating neuropathic pain.

In search of a pharmaceutical strategy to reduce neuropathic pain, we investigate
putative AhR-activating pharmaceuticals. One class of drugs having pleiotropic effects
linked to the AhR pathway is the proton pump inhibitors (PPIs). PPIs are widely used
in treating gastroesophageal reflux disease (GERD) and peptic ulcers [23]. Omeprazole
(Prilosec) is a benzimidazole derivative and an AhR activator and ligand [24–26]. In this
study, we investigated specifically the AhR agonist omeprazole in reducing neuropathic
pain through activation of AhR expression.

Here, we continue to use our reported animal model of chronic constriction nerve
injury [20,22,23]. First, we conducted the nerve explants culture to determine the potential
role of omeprazole in rescuing nerve degeneration in wild-type and AhR-knockout mice.
Second, both wild-type and AhR-knockout mice were subjected to chronic constrictive
nerve injury and ten were treated with AhR agonist (omeprazole). These animals were
finally examined in terms of neurobehavior (Von Frey, Hot plate, Catwalk gait analysis)
and electrophysiology. Animal tissues analyzed with immunohistochemistry included
the paw skin, crush nerve, dorsal root ganglion, dorsal spinal cord, and cerebral cortex
or hippocampus.

2. Results
2.1. Modulation of AhR Expression Related to Nerve Degeneration and Regeneration

To assess nerve degeneration, the ovoid number in nerve explant culture is an essential
method. Sciatic nerves from the C57BL/6J were resected into 3 mm-long segments for nerve
explant culture. We found significantly increased ovoid numbers on day-1, 3 and 7 after CCI.
When cultured with omeprazole (at concentrations of 0 to 40 µM), ovoid numbers showed
dose-dependent decreases with a plateau at 30 µM, but no further increase in protection
even at the maximum dose of 40 µM (Figure 1A,B). Omeprazole at 30 µM was taken as
the optimal dosage for the remaining study. To assess the protective role of AhR in nerve
degeneration, we conducted the nerve explant culture either from wild-type (C57BL/6J),
AhR-knockout (AhR−/−) animals, or those intervened by AhR agonist omeprazole of
30 µM, and the results were assessed on day-3.
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AhR−/− animals treated with omeprazole. To assess AhR in modulating nerve degenera-
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associated proteins (such as S-100 and neurofilament) in wild-type animals, and a further 
escalated drop in animals with AhR knockout, but such changes were attenuated by 
omeprazole. We also observed no definite improvement of S-100 and neurofilament in 
groups of AhR−/− treated with omeprazole (Figure 2C,D). Figure 2E,F shows the recipro-
cal expressions in NGF and TNF-α in the wild-type animals, and further escalation in 
AhR−/− animals, and such changes were alleviated by omeprazole. Again, there was no 
protection effect of omeprazole on AhR−/− animals in NGF and TNF-α expression. 

Figure 1. Assessment of AhR agonist (omeprazole) in preventing nerve degeneration in the nerve
explant culture. The main trunk of the sciatic nerve was harvested from C57BL/6J mice with an age
of one week and resected to 3 mm in length for culture. The nerve explant culture was subjected to
different dosages of omeprazole and the ovoid numbers were calculated at the different time profiles
to assess the protective effect. (A) The illustration of ovoid formation in different concentrations of
omeprazole observed at different time points. (B) The quantitative analysis of ovoid number in the
different treatment groups and time points. N = 3, Bar length = 100 µm; *: p < 0.05; ***: p < 0.001.

Figure 2A shows increased ovoid numbers in wild-type animals, and further incre-
ments in AhR−/− animals, but such changes were attenuated with omeprazole treatment.
The omeprazole had no effect in protection in AhR−/− animals. Figure 2B shows the
increased expression of AhR in nerve degeneration (wild type) compared with sham.
There was only a subtle expression of AhR in Ah−/− and a mild increase in AhR in
wild-type animals treated with omeprazole. There was no definite increase in AhR ex-
pression in AhR−/− animals treated with omeprazole. To assess AhR in modulating
nerve degeneration based on immunohistochemistry, we found significantly fewer nerve-
regeneration-associated proteins (such as S-100 and neurofilament) in wild-type animals,
and a further escalated drop in animals with AhR knockout, but such changes were attenu-
ated by omeprazole. We also observed no definite improvement of S-100 and neurofilament
in groups of AhR−/− treated with omeprazole (Figure 2C,D). Figure 2E,F shows the
reciprocal expressions in NGF and TNF-α in the wild-type animals, and further escalation
in AhR−/− animals, and such changes were alleviated by omeprazole. Again, there was
no protection effect of omeprazole on AhR−/− animals in NGF and TNF-α expression.
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scope related to different treatments. (B) Representatives of AhR in different treatments. (C) The 
expression of S-100 in different treatment groups. (D) The expression of NF-II in the different 
treatment groups. (E) The expression of NGF in different treatment groups. (F) The expression of 
TNF-α in different treatment groups. (G) The quantitative analysis of the target proteins in the 
different treatment groups. N = 3, Bar length = 100 μm, omeprazole concentration: 30 μM, *: p < 
0.05; **: p < 0.01; ***: p < 0.001 indicated the value related to the group of Wild type-CCI. Wild type-

Figure 2. Modulation of AhR either by deletion or AhR agonist (omeprazole) in the nerve explant
culture. Nerve explant either from wild or AhR-deleted mice was harvested and subjected to different
treatment profiles observed on day-3. (A) Representatives of ovoid number in a light microscope
related to different treatments. (B) Representatives of AhR in different treatments. (C) The expression
of S-100 in different treatment groups. (D) The expression of NF-II in the different treatment groups.
(E) The expression of NGF in different treatment groups. (F) The expression of TNF-α in different
treatment groups. (G) The quantitative analysis of the target proteins in the different treatment groups.
N = 3, Bar length = 100 µm, omeprazole concentration: 30 µM, *: p < 0.05; **: p < 0.01; ***: p < 0.001
indicated the value related to the group of Wild type-CCI. Wild type-sham; Wild type-CCI; AhR
(−/−)-CCI; Wild type-CCI-omeprazole; AhR (−/−)-CCI-omeprazole: see text. # and ## indicated
the value of wild type-CCI-omeprazole realtive to wild type-CCI.
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2.2. Omeprazole Interacts with the Molecular Surface Representation of the AhR Binding
Site (Ser36)

We used ligand–protein-docking simulations to study molecular recognition. Molecu-
lar docking modeling uses PyMOL, which is an in silico analysis employed to determine
possible binding of macromolecules or small compounds in their interaction with a receptor,
thereby revealing their molecular interplay. Based on the above approach, results from
animating 3D structures indicate omeprazole is a direct target of the AhR binding site
(Ser36) site (Figure 3A–C). LIGPLOT further generates a schematic 2-D representation of
protein–ligand complexes, supporting omeprazole’s direct interaction with AhR at site
Ser36 (Figure 3D).
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Figure 3. Omeprazole activated the AhR (Ser36) site by a molecular docking simulation. The chemical
structure of omeprazole revealed binding modes in the AhR (Ser36) site by virtual screening. General
and local overviews of the best interaction after automated docking of binding omeprazole (red) to the
active site of AhR are shown. (A) Surface representation of the ligand–receptor binding. Omeprazole
(red) and AhR are shown in surface representation. (B) Local interaction positions of the AhR (Ser36)
active site (blue). The cave entrance of the zoom-in binding mode of AhR and omeprazole (red) is
shown. (C) The molecular structure of human AhR with Ser 36 is depicted as a ribbon diagram, with
helices and loops. A molecular surface representation of the binding mode of AhR and omeprazole
is shown targeting Ser36 representation. The 3D representation of the interactions of omeprazole
binding to the AhR active site was generated by PyMOL. (D) LIGPLOT generates schematic diagrams
of 2D ligand–protein interaction diagrams. The interactions shown are those mediated by hydrogen
bonds and by hydrophobic contacts.

2.3. Knockout of AhR Aggravates Neurobehavior and Effects Attenuated by AhR Agonist

For the assessment of neuropathic pain, mechanic or cold allodynia and thermal
hyperalgesia were generally used [20,21,27]. In animal models of neuropathic pain, both
the Von Frey and hot plate tests are used to assess mechanical allodynia and thermal
hyperalgesia, respectively, based on our previous investigation. In animal models of neuro-
pathic pain, both the Von Frey and hot plate tests are used to assess mechanical allodynia
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and thermal hyperalgesia, respectively. Chronic constriction injury caused an elevated
and persistent mechanical allodynia and thermal sensitivity. The lowered threshold to
mechanical allodynia in wild-type animals 7 days after CCI persisted for >28 days. In
the AhR (−/−) group, compared with the wild-type group, further threshold lowering of
mechanical allodynia was noted on day-7, with this trend compared with the wild type,
persisting up to 28 days following nerve injury. The deterioration of a higher pain threshold
was attenuated by omeprazole treatment (Figure 4A). The lowered withdrawal threshold
for thermal sensitivity appeared in wild-type animals 7 days after the surgery, persisting
for 28 days. The effect on thermal sensitivity threshold was further reduced on day-7 in
the AhR (−/−) animals, when compared with the wild-type animals, and such an effect
progressively increased towards day-28. Omeprazole treatment attenuated this response
(Figure 4B). AhR knockout therefore predisposed the development of neuropathic pain,
and such an effect was attenuated by the AhR agonist.
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Figure 4. The assessment of neurobehavior by Von Frey and hot plate tests in CCI allocated to
different treatment groups related to different time points. (A) Quantitative analysis of the paw
withdrawal threshold by a Von Frey test in the different treatment groups related to different time
points. (B) Quantitative analysis of paw thermal withdrawal threshold by hot plate tests in the
different treatment groups related to different time points. N = 6, Wild type-sham; Wild type-CCI;
AhR (−/−)-CCI; Wild type-CCI-omeprazole: see text. *: p < 0.05; **: p < 0.01; ***: p < 0.001.

The Catwalk gait analysis is a useful measurement of altered gait after CCI [21]. Our
results of the Catwalk test are shown in Table 1. After CCI, we found shortened standing
time (stand phase in msec), and deletion of AhR further reduced standing time, while
omeprazole attenuated the effects. In the swing phase analysis, we found the opposite
results. The data of printed area, single stance, and maximum contact maximum intensity
showed the same trends as in the standing phase.



Int. J. Mol. Sci. 2022, 23, 11255 7 of 18

Table 1. Outcomes of various Catwalk gait analysis parameters at different time points in the various
treatment groups.

Day
p Value

0 7 14 21 28

Stands
(msec)

Wild type-sham 245.2 ± 5.1 248.8 ± 6.1 253.5 ± 8.7 257.7 ± 3.9 255.2 ± 6.6

<0.001
Wild type-CCI 244.2 ± 8.4 141.3 ± 11.1 162.2 ± 9.1 178.5 ± 11.5 186.8 ± 6.9

AhR(−/−)-CCI 244.7 ± 12.1 119.2 ± 5.4 125.7 ± 6.2 135.8 ± 6.4 142.2 ± 7.2

Wild type-CCI-
omeprazole 246.2 ± 6.1 164.5 ± 8.4 183.1 ± 8.7 195.2 ± 3.9 216.8 ± 3.6

Swings
(msec)

Wild type-sham 115.8 ± 4.8 118.1 ± 3.1 117.8 ± 4.5 117.8 ± 3.3 116.5 ± 3.2

<0.001
Wild type-CCI 114.2 ± 5.4 210.5 ± 2.1 192.7 ± 5.1 180.3 ± 9.3, 157.8 ± 2.9

AhR(−/−)-CCI 112.2 ± 4.8 319.8 ± 8.9 282 ± 8.1 238.7 ± 12.1 210.1 ± 9.7

Wild type-CCI
omeprazole 115.1 ± 6.1 184 ± 6.6 162.2 ± 8.7 150.8 ± 9.9 135.3 ± 5.1

Max Contact
Max Intensity

(Green
Intensity)

Wild type-sham 235.2 ± 5.4 238.8 ± 8.4 237.8 ± 2.8 238.5 ± 1.9 236.8 ± 3.5

<0.001

Wild type-CCI 235 ± 3.1 188.5 ± 3.2 197.8 ± 3.3 240.5 ± 4.2 214.7 ± 2.1

AhR(−/−)-CCI 236.2 ± 5.4 175.8 ± 6.2 178.8 ± 4.2 187 ± 2.4 195.3 ± 2.9

Wild type-CCI-
omeprazole 237.3 ± 3.8 198.2 ± 3.4 210.5 ± 1.2 218.8 ± 3.3 228 ± 3.2

Printed area
(cm2)

Wild type-sham 0.315 ± 0.09 0.317 ± 0.08 0.318 ± 0.03 0.32 ± 0.03 0.319 ± 0.02

<0.001

Wild type-CCI 0.319 ± 0.07 0.078 ± 0.01 0.138 ± 0.02 0.186 ± 0.02 0.247 ± 0.06

AhR(−/−)-CCI 0.318 ± 0.08 0.051 ± 0.002 0.094 ± 0.03 0.152 ± 0.03 0.194 ± 0.03

Wild type-CCI-
omeprazole 0.320 ± 0.09 0.115 ± 0.01 0.180 ± 0.01 0.214 ± 0.04 0.282 ± 0.03

Single
Stance
(msec)

Wild type-sham 125.2 ± 4.1 124.3 ± 3.6 123.8 ± 4.2 123.3 ± 2.9 126 ± 2.2

<0.001
Wild type-CCI 125.8 ± 4.2 71 ± 2.9 78.3 ± 1.2 85.9 ± 2.8 91.8 ± 3.9

AhR(−/−)-CCI 126.7 ± 3.6 64 ± 1.8 67.8 ± 1.9 73.2 ± 2.2 79.5 ± 2.1

Wild type-CCI
omeprazole 126.2 ± 6.3 83.5 ± 3.9 89.3 ± 3.3 93.3 ± 3.1 104.8 ± 5.5

The data are presented as mean ± standard errors. Wild type-sham; Wild type-CCI; AhR (−/−)-CCI; Wild
type-CCI-omeprazole: see text.

The muscle weight is an indirect index of nerve degeneration. After CCI, muscle
weights in wild-type animals (wild type-CCI) significantly dropped (0.082 ± 0.003 gm) as
compared with sham animals (wild type-sham) (0.16 ± 0.006 gm) (p < 0.001). In AhR−/−
animals (AhR (−/−)-CCI), their muscle weights dropped further to 0.057 ± 0.003 gm
(p < 0.001), and this change was attenuated by omeprazole (wild type-CCI-omeprazole)
(0.11 ± 0.003 gm) (p < 0.001).

2.4. Histomorphology of Crushed Nerves from CCI and in AhR-Knockout Animals and the
Attenuation Effect by AhR Agonist

In studies on AhR expression after traumatic brain injury or stroke, elevated expres-
sions of AhR occur in the injured nervous system [16–18]. In the analysis of nerve tissues
obtained after CCI, wild type-CCI animals showed a marked increase in AhR expression
compared with wild type-sham. The AhR (−/−)-CCI animals showed a minimal expres-
sion in AhR, and this level change was attenuated by omeprazole (wild-CCI-omeprazole)
(Figure 5A,B).

In our previous study, we found higher expressions of CD 68, NGF, and TNF-α with a
reciprocal decrease in neurofilament, and these findings suggested nerve degeneration [20,21].
We harvested distal ends of nerve for analysis, and we found higher expressions of CD 68,
NGF, and TNF-α following injury in wild-type animals and further elevation in AhR−/−
animals, while omeprazole attenuated such changes. However, the expression of neu-
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rofilament showed the opposite trends (Figure 6A–D). Statistical results are detailed in
Table 2.
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Figure 6. The expression of nerve degeneration and the associated inflammatory proteins in animals
subjected to CCI 28 days after injury. (A) The expression of CD 68 in the distal end of nerve measured
in different treatment groups. (B) The expression of neurofilament in different treatment groups.
(C) The expression of NGF in different treatment groups. (D) The expression of TNF-α in different
treatment groups. N = 6, Bar length = 100 µm; Wild type-sham; Wild type-CCI; AhR (−/−)-CCI;
Wild type-CCI-omeprazole: see text.
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Table 2. Expression of regeneration and associated proteins in the distal end of neve.

Wild Type-Sham Wild Type-CCI AhR(−/−)-CCI Wild Type-CCI-Omeprazole p Value

CD 68 3 ± 0.5 95.3 ± 3.3 143.7 ± 3.3 50.7 ± 2.9 p < 0.001

NF 981 ± 16.5 426 ± 13.1 287 ± 19.7 604 ± 57.4 p < 0.001

NGF 12.7 ± 1.2 399.3 ± 10.3 583 ± 16.6 180.3 ± 15.5 p < 0.001

TNF-α 7 ± 1.2 778 ± 22.2 830.3 ± 20.6 183 ± 16.5 p < 0.01

The data are presented as pixels and the method is depicted in the text. Wild type-sham; Wild type-CCI; AhR
(−/−)-CCI; Wild type-CCI-omeprazole.

2.5. Increased Pain Threshold in the Somatosensory System after CCI and in Ahr-Knockout
Animals and the Attenuation Effect by AhR Agonist

CCI induced neuropathic pain with the characteristic of altered histomorphology in
structures from the paw skin to the somatosensory cortex [20–22]. No NGF expression
appeared at the paw skin in the sham group. CCI induced a significant increase in the
wild-type group. Further escalation was found in the AhR−/− group. Such a rise in
NGF level in the wild-type group was not found in the omeprazole group (Figure 7A–D).
In contrast, in the sham group, PGP 9.5 appeared extensively at the epidermal–dermal
junction. CCI induced a marked reduction in PGP 9.5 expression in the wild-type group
and a further reduction in the AhR−/− group. PGP 9.5 expression was restored in the
omeprazole group (Figure 7E–I).
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Figure 7. Assessment of the alteration of inflammation and regeneration in paw skin after CCI by
modulation of AhR. Either wild or AhR-deleted mouse received CCI injuries and then were subjected
to omeprazole treatment. (A) The expression of NGF in the sham group. (B) The expression of NGF
in the wild group. (C) The expression of NGF in the AhR−/− group. (D) The expression of NGF in
the wild+ omeprazole group. (E) The expression of PGP 9.5 in the sham group. (F) The expression of
PGP 9.5 in the wild group. (G) The expression of PGP 9.5 in the AhR−/− group. (H) The expression
of PGP 9.5 in the wild+ omeprazole group. (I) The quantitative analysis measured by pixel in the
different treatment groups. Blue: DAPI; N = 6; Wild type-sham; Wild type-CCI; AhR (−/−)-CCI;
Wild type-CCI-omeprazole: see text; bar length-100 µm; **: p < 0.01; ***: p < 0.001.
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The dorsal root ganglion is a relay center in the development of neuropathic pain
as measured by the expression of NGF, TNF-α, and synaptophysin. These proteins were
minimally expressed in the sham group. Significant expressions of NGF, TNF-α and
synaptophysin at the dorsal root ganglion were found in the wild-type group (Figure 8A–C).
Wild type-CCI animals showed a marked increase in AhR expression compared with
wild type-sham. The AhR (−/−)-CCI animals showed a minimal expression in AhR,
and this level change was attenuated by omeprazole (wild-CCI-omeprazole) (Figure 8D).
Detailed statistical results are shown in Table 3. In summary, AhR deletion sped up and
escalated these inflammation-associated protein expressions, while AhR agonist alleviated
this response.
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Figure 8. The alteration of the inflammatory response and AhR over the spinal dorsal root ganglion
in a CCI model modulated by AhR. Either wild or AhR-deleted mouse received CCI injuries and
then were subjected to omeprazole treatment. The dorsal root ganglion was obtained for the analysis
28 days after CCI. (A) Expression of NGF in the different treatment groups. (B) Expression of TNF-α
in the different treatment groups. (C) Expression of synaptophysin in the different treatment groups.
(D) Expression of AhR in the different treatment groups. Bar length = 100 µm; N = 6; Wild type-sham;
Wild type-CCI; AhR (−/−)-CCI; Wild type-CCI-omeprazole: see text.

Table 3. Expression of the inflammatory proteins in the dorsal root ganglion.

Wild Type-Sham Wild Type-CCI AhR(−/−)-CCI Wild Type-CCI- Omeprazole p Value

NGF 19 ± 1.2 244.3 ± 14.5 429.3 ± 12.4 147.7 ± 14.8 p < 0.001

TNF-α 9 ± 1.1 188.7 ± 5.5 477 ± 14.2 103.1 ± 4.1 p < 0.001

Synaptophysin 12.1 ± 0.6 155.2 ± 6.9 241.1 ± 4.9 89.2 ± 6.1 p < 0.001

AhR 102.7 ± 3.8 298.7 ± 6.4 14.1 ± 4.6 347.3 ± 14.5 p < 0.001

The data are presented as pixels and the method is depicted in the text.
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TNF-α expression over the somatosensory cortex, hippocampus, and dorsal spinal
cord was the typical presentation in response to CCI. The sham group showed only minimal
expressions of TNF-α over the somatosensory cortex, hippocampus, and dorsal spinal cord.
A high expression of TNF-α was noted in the wild-type group. Further elevated expression
was found in the AhR−/− group. Such changes were attenuated by omeprazole treatment
(Figure 9A–D).
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treatment. The amplitude in the wild-type group was >1.7-fold larger compared with the 
sham group (p < 0.01). The AhR−/− animals showed a further amplitude increase to 2.1-
fold (p < 0.001). Omeprazole treatment lowered it to 1.3-fold (p < 0.001) (Figure 10A,B). 
These findings indicated that the CCI of the peripheral nerve caused significant alterations 
in the electrophysiology of the sensorimotor cortex, and AhR knockout further aggravated 
the change, while omeprazole attenuated this response.  

Figure 9. The expression of inflammatory cytokines in the central nervous system in CCI subjected
to the modulation of AhR. Either wild or AhR-deleted mouse received CCI injuries and then were
subjected to omeprazole treatment. The somatosensory cortex, hippocampus, and dorsal spinal cord
were obtained for analysis 28 days after injury (A) Expression of TNF-α in the somatosensory cortex
in the different experimental groups. (B) Expression of TNF-α in the hippocampus in the different
experimental groups. (C) Expression of TNF-α in the dorsal spinal cord in the different experimental
groups. (D) Quantitative analysis of TNF-α in different groups. Magnification box indicates the
imaging fusion of TNF-α and Neu-N (green). DAPI = blue; Bar length = 100 µm; N = 6; **: p < 0.01;
***: p < 0.01. Wild type-sham; Wild type-CCI; AhR (−/−)-CCI; Wild type-CCI-omeprazole: see text.

In our previous study, we found that an increase in somatosensory evoked potential is
highly correlated with the severity of neuropathic pain [21]. Our current study found that,
after CCI, evoked potential increased in amplitude in the wild-type group. Further increase
was noted in AhR (−/−) animals and such changes were attenuated by omeprazole
treatment. The amplitude in the wild-type group was >1.7-fold larger compared with the
sham group (p < 0.01). The AhR−/− animals showed a further amplitude increase to
2.1-fold (p < 0.001). Omeprazole treatment lowered it to 1.3-fold (p < 0.001) (Figure 10A,B).
These findings indicated that the CCI of the peripheral nerve caused significant alterations
in the electrophysiology of the sensorimotor cortex, and AhR knockout further aggravated
the change, while omeprazole attenuated this response.



Int. J. Mol. Sci. 2022, 23, 11255 12 of 18Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 13 of 20 
 

 

 
Figure 10. Alteration of somatosensory evoked potential in CCI in the different treatment groups. 
Either wild or AhR-deleted mouse received CCI injuries and then were subjected to omeprazole 
treatment. The somatosensory evoked potential was measured 28 days after CCI. (A) A representa-
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Figure 10. Alteration of somatosensory evoked potential in CCI in the different treatment groups.
Either wild or AhR-deleted mouse received CCI injuries and then were subjected to omeprazole
treatment. The somatosensory evoked potential was measured 28 days after CCI. (A) A representative
of somatosensory evoked potential in the different treatment groups. (B) The quantitative analysis of
the amplitude of evoked potential in the different groups. N = 6; Wild type-sham; Wild type-CCI;
AhR (−/−)-CCI; Wild type-CCI-omeprazole: see text. **: p < 0.01; ***: p < 0.001.

3. Discussion

Our principal finding is that the modulation of AhR appeared to play a significant role
for the development in neuropathic pain. The deletion of AhR significantly contributed
to the occurrence of neuropathic pain while AhR agonist counteracted such an effect.
Significant expression of AhR in the injured nerve was observed in the wild-type animals,
either in the in vitro or in vivo study. AhR agonist (omeprazole) exerted a protection effect
by attenuating the associated inflammatory response. In this study, we first used both the
nerve explant culture and AhR-knockout mice to assess the role of AhR in the modulation
of neuropathic pain. Our results justify the application of AhR agonist (omeprazole) in the
treatment of neuropathic pain in the future.

In our previous investigation, we found that AhR regulated the energy balance, insulin
sensitivity, and glucose metabolism in the diabetes condition involved in the regulation of
the VEGFβ- and TGFα pathway [28,29]. The modulation of VEGF-β and TGF-α by AhR
also contributed to the development of nerve injury and neuropathic pain [30,31]. The
expression of the AhR has been studied in several animal models based on immunohisto-
chemistry and hybridization in situ [7]. Specific temporal and spatial patterns of the AhR
messenger RNA (mRNA) expression were reported in the mouse cortex, hippocampus,
cerebellum, olfactory bulb, and rostral migratory stream [6,8,9]. The regulation of the AhR
expression in the nervous system depends not only on internal stimuli, but also on external
stimulation due to traumatic brain injury (TBI) or stroke [18]. AhR provides a potential
therapeutic target for treating depression induced by chronic pain. Modulation of AhR
signaling could be a valuable approach to alleviate the comorbidity of chronic pain and
depression [32]. Chronic constrictive nerve injury is known to cause significant alteration
in inflammatory response from the skin to the spinal cord, as well as the somatosensory
cortex [20–22]. In this study, nerve injury caused significant elevation of AhR expression in
the injured nerve, implicating a protective effect on nerve injury. Deleting AhR in vitro or
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in vivo caused further nerve degeneration. The external AhR ligand (omeprazole) exerted
a protective effect. AhR expression took place in response to nerve injury, and it is essential
for nerve protection.

Omeprazole (Prilosec) is a benzimidazole derivative and an AhR activator and lig-
and [24–26]. It is known to have anti-inflammatory effects in models of lung injury and
neuropathic pain [7,26,33]. AhR agonists, either omeprazole or statin, prevent the release of
proinflammatory cytokines, and maintain the structural integrity of the sciatic nerve from
CCI-induced or crush nerve injury [33,34]. However, no investigation has yet been reported
on how this involves AhR. In this study, the docking experiment found that omeprazole
interacted with the AhR site (Ser36). In the nerve explant culture or CCI model, AhR
deletion aggravated nerve degeneration, while AhR restored the nerve damage. Our results
further confirmed that AhR plays a crucial role in the modulation of nerve injury.

It is now recognized that NGF plays a key role in nociception by sensitizing nociceptors
in the peripheral nervous system [35,36]. The expression of NGF in the paw skin is highly
correlated to the severity of nerve injury [21]. The administering of NGF antiserum at
the site of injury alleviates the onset of hyperalgesia [37]. Reduced expression of PGP 9.5
in axons of the epidermis and dermis is associated with neuropathic pain [35], and the
restoration of PGP 9.5 fibers reflects the recovery of neuropathic pain [20]. In this study, an
elevated expression of NGF was found in the wild-type animals, and it further increased
after AhR deletion, but it was restored by administering AhR agonist. On the contrary,
PGP 9.5 was reduced in wild-type animals, and it was further lowered after AhR deletion,
but it was recovered by the AhR agonist. It further confirmed the hypothesis that AhR
contributes to the development of neuropathic pain.

Dorsal root ganglion cells are located in the intervertebral foramen of the spinal cord
and involve sensory neurons. These cells respond to peripheral nerve injury. The increased
expressions of TNF-α, NGF, and synaptophysin we found reflected the intensity of the
neuropathic pain in either the in vitro or in vivo study. Attenuations of these inflammatory
cytokines parallel reduced neuropathic pain [20–22,38]. In this study, we found that CCI
induced significant expressions of TNF-α, NGF, and synaptophysin at the dorsal ganglion
cells, and deletion of AhR further aggravated the inflammatory response. Administering
the AhR agonist attenuated the inflammatory effects. These data of inflammatory response
at the spinal dorsal root ganglion intervened by AhR deletion or AhR ligands supported
the hypothesis that AhR plays a crucial role in regulating neuropathic pain.

Persistent chronic pain not only leads to sensory dysfunction, but also various brain
disorders, involving cortical or subcortical dysfunction [39]. The physiology and struc-
tural remodeling of the learning circulatory of the hippocampus are reported with stress
or chronic pain [40]. In our previous studies, we reported that the severity of chronic
constriction injury is highly correlated with the intensity of the inflammatory response at
the hippocampus. Additionally, attenuation of the neuropathic pain is associated with a
lowered expression of the inflammatory response at the hippocampus [8,21,22,38]. In addi-
tion, altered evoked potentials at the cerebral cortex and dorsal spinal cord reflect neural
plasticity and response to nerve damages [41]. In our previous study, the graded amplitude
increases of evoked potential were highly correlated with the severity of nerve damage [21].
The attenuation of the injury is associated with reduced evoked potential [20,22,38]. In
this study, high expressions of TNF-α from the dorsal spinal cord and hippocampus to the
somatosensory cortex were demonstrated in the wild-type animals, but they were further
escalated after AhR deletion. These effects were attenuated by omeprazole treatment. In
addition, the changes in evoked potential at the somatosensory cortex we found are in line
with the severity of neuropathic pain and related to both behavior and biochemistry [21].
Both electrophysiological and molecular biology data are in support of the fact that AhR is
critically involved in the regulation of neuropathic pain.

The initiation and maintenance of neuropathic pain are mediated through the neuronal
intrinsic pathways as well as the peripheral immune system [19]. After tissue injury, inflam-
mation is generated by activating innate immune cells and glial cells. The immune-active
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substances, including cytokines, neurotrophic factors, and chemokines, as released from the
immune cells, generate local actions leading to a more serious generalized immune response
and sensory nerve sensitization [42,43]. A key feature of the microglial response to nerve
trauma is microgliosis, which involves microglial changes in morphology and proliferation.
Following peripheral nerve injury, apart from morphological changes, spinal microglia
proliferate within 2 to 3 days, reaching a maximal level in 4 to 7 days [44].Normally, mi-
crogliosis after nerve injury is a brief and self-limited event, and microglia return to the
normal level within weeks. Microgliosis induced by nerve injury occurs concomitantly with
the development of pain hypersensitivity. Accordingly, blocking microgliosis attenuates
pain behaviors [45–47]. AhR is widely expressed in several brain cell types, mostly neurons,
with some expression in astrocytes and microglial cells [6]. A limitation of this study was
that we did not assess the spatial and temporal effects of microglia affected by AhR, which
might contribute to pathological development of neuropathic pain.

4. Materials and Methods
4.1. Sciatic Nerve Explants Culture from Mice

We obtained C57BL/6 mice (4–5 weeks old, 20–22 g) from the National Applied Re-
search Laboratories (NAR labs, Taipei, Taiwan), and AhR-knockout mice (B6.129Ahrtm1Bra/J)
(6–8 weeks old, 18–22 g) from the Jackson laboratory (Bar Harbor, ME, USA). The sciatic
nerve was first harvested from both wild-type and AhR (−/−) C57BL/6J mice, and then
3 mm-thick nerve sections were cultured in calcium/magnesium-free Hank’s buffered
solution (HBSS). Under a microscope, the nerve tissue was isolated from the surrounding
connective tissues, and only single nerve bundles were analyzed. To determine the effects
of AhR agonist, at doses on the explant nerves, omeprazole (doses from 0 to 40 µM) was
added to the sciatic nerve cultures. The culture medium was DMEM with 10% FBS and
5% PS, at the condition of 5% CO2 and 37 ◦C for 1 to 7 days. Finally, nerve tissues were
fixed in 4% paraformaldehyde for 6 h, and observed under a light microscope. The ovoid
number in each 500 µm length of nerve was calculated for statistical analyses. The nerve
explant cultures were categorized into Wild type-sham, Wild type-CCI, AhR (−/−)-CCI,
Wild type-CCI-omeprazole, and AhR (−/−)-CCI-omeprazole.

4.2. Animal Model

To create the CCI rat model, the animal was put under gas anesthesia (4% isoflurane
induction, 1–2% isoflurane for maintenance). Each animal was given a single loose surgical
ligation around the left sciatic nerve. The surgical wound was closed with 4-0 silk sutures in
layers, and the animal allowed to recover. The 4 groups of animals were: Wild type-sham,
Wild type-CCI, AhR (−/−)-CCI, and Wild type-CCI-omeprazole. Omeprazole (Cayman
chemical, Ann Arbor, MI, USA) was given orally (50 mg/kg/day) one day after CCI, and
continued until day 14 [33]. After surgery, food and water were provided ad libitum before
and after experiments. Animals were kept in a temperature-controlled room (20 ◦C), and
they were exposed to a controlled light/dark cycle of 12/12 h. All animals were treated
and cared for in accordance with the guidelines of the Institutional Animal Care and Use
Committee or Panel of Taichung Veterans General Hospital.

Animals received the following behavioral tests: mechanical allodynia, thermal hyper-
algesia, and CatWalk XT system gait analysis 3 days before surgery to establish baseline
measurements, and then on a weekly basis until the end of experiments. Thereafter, animals
underwent evoked potential recordings each month following CCI. They were also used
for studies 4 weeks after CCI, on histomorphology and inflammatory responses from the
skin to the brain.

4.3. Mechanical Allodynia and Thermal Hyperalgesia

A technician blinded to the animal grouping evaluated the thermal hyperalgesia and
mechanical allodynia. During the mechanical allodynia test, a mouse was placed on a
customized platform fixed in a transparent acrylic chamber (dimensions: 20 × 20 × 20 cm3).
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The customized platform was 20 × 20 cm2 and made of 5 mm-thick acrylic plate. It
contained 2 mm-diameter holes in a 5 mm grid of perpendicular rows covering the entire
area of the platform. A test trial consisted of applying a single Von Frey hair (Touch-Test
Sensory Evaluator, North Coast Medical, Inc., Morgan Hill, CA, USA) to the hind paw
at 5 s intervals 5 times, with the hind paw placed appropriately on the platform. If the
hind paw withdrawal did not occur during the repeated 5 applications of a hair, a hair of
a larger caliber was applied. When the hind paw had been withdrawn from a particular
hair for either 4 or 5 times out of the 5 applications, the hair pressure calibrated in grams
was considered to be the withdrawal threshold force. Thermal hyperalgesia was tested
with our previous method using the hot plate (TSE Systems). The paw withdrawal latency,
defined as the time from the paw in contact with the 52 ◦C hot plate to its withdrawal, was
recorded with a timer. To prevent tissue damage, the maximum test time was 20 s [20].

4.4. CatWalk Automated Quantitative Gait Analysis

We used the published method on CatWalk gait analysis [21]. In brief, the CatWalk XT
system consisted of a high-speed digital camera (sampling rate: 100 frames/second). The
captured digital images were stored in a computer through an Ethernet connection.

The Illuminated Footprint enabled the detection of intensity differences (gray levels
from 0 to 255, color-coded) across an animal’s 4 paws. The 3D footprint intensity tab plots,
on a 3D chart, the print intensity of the 4 paws for each frame during which the paws
were in contact with the underlying glass plate. The 3D chart was able to be rotated in
any direction. Quantitative analysis of the data from the CatWalk XT system included the
following parameters: step sequence distribution, regularity index, print area, duration of
swing and stance phases, and maximum contact intensity (intensity at maximum contact of
a paw).

4.5. Electrophysiological Study

One month after CCI injury, sensorimotor evoked potentials were studied one day
before euthanizing the animals. In brief, under anesthesia, the cerebral cortex was exposed
on both sides, and two recording electrodes were each placed on the dural surface overlying
the somatosensory area bilaterally (3 mm lateral, 2 mm posterior to the bregma). At the
sciatic nerve, one cm proximal to the injured site, an electrical stimulus (a 20 mA pulse)
was delivered through an active stimulating electrode. The reference needle electrode was
positioned 2 cm from the recording electrode. The conduction latency and evoked potential
were recorded. The frequency of recording was 20 to 200 Hz. To adjust for the effect of
anesthesia, we converted the data of conduction latency and evoked potential to a ratio of
the injured side divided by the normal side [21].

4.6. Immunohistochemical Analyses

Animals were anesthetized and perfused first with phosphate-buffered saline, and
then with a 4% paraformaldehyde fixative. We then resected the following: the brain
(cerebral cortex and hippocampus), spinal cord dorsal horn, dorsal root ganglia (bilateral
L-4 to L-6 dorsal root ganglia), sciatic nerves (middle of the crushed site), and foot skin
(hindlimb paw skin). They were then placed in 4% paraformaldehyde for 4 h before
submerging in 30% sucrose at 4 ◦C overnight. Samples were subsequently embedded in
Tissue-Tek O.C.T. Compound (Sakura) and rapidly frozen.

Serial 8 um-thick sections of all samples (skin, sciatic nerve, dorsal root ganglion,
dorsal spinal cord, and brain) were cut on a cryostat and mounted on Superfrost Plus slides
(MenzelGlaser, Braunschweig, Germany). Sections were subjected to immunohistochemical
examination after reactions with antibodies against the following: AhR (Gene Tex, 1:250
dilution, Alton Pkwy Irvine, CA, USA), Neu-N (Millipore, 1:500 dilution, Burlington, MA,
USA), NGF (Chemicon, 1:300 dilution, Osaki, Japan), PGP 9.5 (Abam, 1:500 dilution, Istan-
bul, Turkey), Neurofilament (Millipore, 1:500 dilution), CD68 (Chemicon, 1:200 dilution),
S100 protein (Neomarkers, 1:400 dilution, Portsmouth, NH, USA), synaptophysin (Abcam,
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1:200 dilution), and TNF-α (Abcam, 1:300 dilution). These antibodies were designed to
detect, respectively, the following: inflammatory cells, Schwann cells, small neurosecretory
vesicles, and inflammatory cytokines. Immunoreactive signals were visualized using goat
anti–mouse Immunoglobulin G (fluorescein isothiocyanate, Jackson; 1:200 dilution) and
anti–mouse Immunoglobulin G (rhodamine, Jackson; 1:200 dilution). Six tissue specimens
in each group were cut into 8 mm-thick sections and stained with the antibody. All the
fluorescent imaging was performed with the same laser power and exposure time by the
Olympus BX40 Research Microscope (Hicksville, NY, USA). The IHC images were quanti-
tatively analyzed by Image J and UN-SCAN-IT gelTM (Gel & Graph Digitizing Software
Version 6.1, Provo, UT, USA). Areas occupied by the stained tissues were highlighted and
measured for each section of sciatic nerve (n = 6 per group) and expressed in terms of the
density (pixel) of all the resected tissue [20,21].

4.7. Molecular Docking Modeling

PyMOL is a widely popular macromolecular visualization system that uses the
OpenGL Extension Wrangler Library (GLEW) and Free OpenGL Utility Toolkit (FreeGLUT).
PyMOL uses a cross-platform widget toolkit (Tk) for the GUI widgets and can produce
high-quality movies and images of macromolecules in different representations such as
ribbon, cartoon, dot, surface, sphere, stick, and line. PyMOL can also extend to the protein–
ligand modeling, molecular simulations (MS), and virtual screening (VS) unities in PyMOL.
The computational drug discovery function of PyMOL has been successfully applied to
find new drug candidates for various targets [48].

4.8. Statistical Analyses

Data were presented as mean ± standard error. Student’s t-test and repeated-measures
ANOVA were used to compare inter-group differences. Statistical analyses were conducted
using SPSS software (version 12, Chicago, IL, USA). Statistical significance was set at
p < 0.05.

5. Conclusions

High expressions of AhR occurred in response to chronic constriction nerve injury, and
AhR deletion aggravated the effect. The AhR agonist omeprazole alleviated such changes.
We speculate that AhR agonist is a potential candidate for treating neuropathic pain.

6. Patents

There are patents resulting from the work reported in this manuscript.
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