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Introduction

More than 795 000 individuals have a stroke each year in 
the United States.1 Based on data from multiple cohorts,2-6 
up to 77% will have persistent upper-extremity (UE) impair-
ment. Yet the development of markedly effective treatments 
has been slow7,8 and uncertain.9,10 An important reason for 
the lack of efficacy findings in clinical trials is the lack of a 
direct measure of the outcome of interest: productive func-
tional use of the UE in everyday life. Without such a mea-
sure, clinicians and clinical trialists simply cannot know for 
certain if their treatments worked. Current approaches settle 
for use of proxies: self-report of UE use11,12 (with its atten-
dant biases) and motor performance measures in the labora-
tory and clinic13,14 (with uncertain correspondence to 
everyday life). Thus, there is a clinical and research need for 
a quantitative, objective, and psychometrically sound mea-
sure of UE productive use in the community.

There is now a large body of work on wearable sensors 
that can track UE activity, with the majority of studies 
using wrist-worn accelerometers and the “counts thresh-
old method” for detecting movement.15-18 This method 
estimates the total amount of time the UE is in motion. 
Several studies have reported that the counts threshold 
method often correlates significantly with other clinical 
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Abstract
Background. Wrist-worn accelerometry provides objective monitoring of upper-extremity functional use, such as reaching 
tasks, but also detects nonfunctional movements, leading to ambiguity in monitoring results. Objective. Compare machine 
learning algorithms with standard methods (counts ratio) to improve accuracy in detecting functional activity. Methods. 
Healthy controls and individuals with stroke performed unstructured tasks in a simulated community environment (Test 
duration = 26 ± 8 minutes) while accelerometry and video were synchronously recorded. Human annotators scored 
each frame of the video as being functional or nonfunctional activity, providing ground truth. Several machine learning 
algorithms were developed to separate functional from nonfunctional activity in the accelerometer data. We also calculated 
the counts ratio, which uses a thresholding scheme to calculate the duration of activity in the paretic limb normalized by 
the less-affected limb. Results. The counts ratio was not significantly correlated with ground truth and had large errors  
(r = 0.48; P = .16; average error = 52.7%) because of high levels of nonfunctional movement in the paretic limb. Counts 
did not increase with increased functional movement. The best-performing intrasubject machine learning algorithm had an 
accuracy of 92.6% in the paretic limb of stroke patients, and the correlation with ground truth was r = 0.99 (P < .001; 
average error = 3.9%). The best intersubject model had an accuracy of 74.2% and a correlation of r =0.81 (P = .005; average 
error = 5.2%) with ground truth. Conclusions. In our sample, the counts ratio did not accurately reflect functional activity. 
Machine learning algorithms were more accurate, and future work should focus on the development of a clinical tool.
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scales.19-22 However, the correlations reported are often 
weak. For example, the largest sample was collected as 
part of the EXCITE clinical trial (n = 169), and the 
reported r value was only 0.52 between accelerometry and 
the Motor Activity Log (MAL).23 Responsiveness to 
change is mixed: some studies report changes in acceler-
ometry that parallel change in clinical scores,24-29 whereas 
other studies have reported no changes in accelerometer-
based metrics even as clinical scores improved.30-33

There are significant differences in what is measured 
by self-report scales of functional use (MAL) and  
acwcelerometry.34 Accelerometry measures both func-
tional activity (ie, reaching to grasp, gesturing, balancing 
functions) and nonfunctional movements associated with 
gait and whole body movements. A bus ride will lead to 
many instances of acceleration not associated with func-
tional movement. The effects of nonfunctional movements 
are thought to be eliminated by normalizing duration of 
movement in the paretic limb by duration in the less-affected 
limb, referred to as the counts ratio. However, there have 
been no prior studies to confirm that this normalization is 
effective. In fact, there have been surprisingly few attempts 
to quantify if any of the accelerometry-based metrics actu-
ally measure functional use accurately. Early attempts at 
validation focused only on confirming that the duration of 
movement via the thresholding method correlates with video 
annotation35 or examined the correlation between duration 
of movement within 15-minute blocks and a video-based 
metric that combined the amount of functional and nonfunc-
tional movements into a single average score.36

We have developed machine learning algorithms for 
directly measuring amount of functional movement using 
accelerometry. In previous work, we determined the accu-
racy of a single machine learning algorithm during a session 
of unstructured activities using ground truth from a video-
based method that provides frame-by-frame scoring of the 
activities.37 In this study, using the same data set, we inves-
tigated several alternative machine learning algorithms to 
find generalizable models for our application and have 

improved accuracies compared with previous reports. We 
have extended the analysis of this data set by directly com-
paring the counts threshold method and our machine learn-
ing algorithms against ground truth from video annotation. 
Furthermore, we also analyzed data collected from the 
dominant limb of controls and the less-affected limb of 
stroke participants (not analyzed previously), so that ratio 
metrics could be studied. Most important for neurorehabili-
tation, we present the first study to separate activity mea-
sured by the counts threshold method into functional and 
nonfunctional categories and present machine learning 
algorithms to automatically identify periods of functional 
movement from accelerometer data.

Methods

Participants

Data collection procedures were described previously.37 A 
total of 10 healthy controls (4 male, 6 female; 43 ± 15.9 
years old) and 10 individuals with stroke (8 male, 2 female; 
56 ± 10.4 years old) participated (Table 1). The controls 
had no self-reported injuries that would alter or impair 
their use of either UE. Inclusion criteria for the stroke par-
ticipants were the following: (1) ischemic or hemorrhagic 
stroke; (2) Mini-Mental Status Examination score >2438; 
and (3) no UE conditions that limited use prior to the 
stroke. Participants were excluded if they exhibited 
neglect during a clinical examination. All controls and 
stroke patients (prior to stroke) were right-hand dominant 
(Edinburgh Inventory39).

Measures

A custom-designed wrist worn inertial measurement unit 
(IMU) was developed that collected linear acceleration in 3 
axes at 200 Hz.40 The standard counts method we adopted 
only uses linear acceleration, so the machine learning was 
applied only to the acceleration data from the IMU. This 

Table 1.  Stroke Participant Demographic Data.

Participant no. Age (years) Sex Affected limb Stroke Location Months poststroke ARAT

1 77 M Right Embolic Cerebrum 23 41
2 35 M Left Embolic Not available 35 23
3 56 M Left Ischemic Basal ganglia 17 19
4 49 F Left Ischemic Basal ganglia 19 20
5 57 M Right Hemorrhagic Basal ganglia 104 16
6 63 M Right Ischemic Temporal lobe, thalamus 77 32
7 47 F Right Ischemic Pontine 1 33
8 50 M Right Ischemic Not available 53 15
9 66 M Right Ischemic Corona radiata 69 5
10 65 M Right Hemorrhagic Frontal and occipital lobes 20 31

Abbreviations: ARAT, Action Research Arm Test; F, female; M, male.
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guaranteed that any advantage of the machine learning 
was not a result of a larger input data set that included 
data from the gyroscope and magnetometer on the IMU. 
This also allows application of the machine learning to 
other accelerometry data sets that do not include the gyro-
scope and magnetometer data. Sensors were placed on 
both wrists. The machine learning algorithms were based 
only on 1 IMU, but data was collected on both wrists to 
allow comparison between limbs and to calculate ratio 
scores. The Action Research Arm Test (ARAT)41 was 
used to assess the functional limitations of the paretic 
limb of stroke participants (mean = 23.5 ± 10.7).

Procedures

To obtain a realistic environment for data collection, we 
used the Independence Square facility at MedStar National 
Rehabilitation Hospital. The facility includes a completely 
functional kitchen, bedroom, a store for shopping activities, 
and a car to practice transfers. Participants were instructed 
to perform 4 typical instrumental activities of daily living. 
(1) In the laundry activity, participants moved clothes from 
a closet, placed them in a washer, moved the clothes to the 
dryer, and folded or hung the clothes on hooks in the closet. 
(2) In the kitchen activity, participants loaded and unloaded 
the dishwasher, cut an apple, picked up items on the floor, 
and used a broom to sweep the floor. (3) In the shopping 
activity, participants transferred into and out of the car, 
gathered grocery items from the store and placed them into 
the car, then removed them from the car. (4) In the bed mak-
ing activity, participants removed the sheets and pillow-
cases from a bed and then replaced them. Participants were 
instructed to perform activities as they would naturally do at 
home or in the community. No specific instructions were 
given as to which arm to use for any task. The only excep-
tions were that participants were instructed to gather gro-
ceries with 1 hand and move a large box with 2 hands. 
Between these 4 activities, participants sat and experiment-
ers engaged them in conversation or walked around the 
facility (approximately 10 minutes of walking). There was 
no set time limit to complete the activities. Participants 
wore the sensors throughout the experiment, which was 
also videotaped (30 Hz). The device weighed less than 0.5 
lb, and none of the participants noted that the device inter-
fered with the activities. An occupational therapist observed 
all of the data collection and reported that the device did not 
interfere with activities.

Data Analysis

The video was annotated using a method described previ-
ously.37 Briefly, 3 annotators unrelated to the study were 
trained on the Functional Arm Activity Behavioral 
Observation System (FAABOS).36 Annotators watched the 

video in real time, and when an arm movement was seen, 
the video was stopped and rewound to mark the start and 
end of the movement. All frames between the start and end 
frame of each movement were labeled according to the 5 
FAABOS categories. We subsequently collapsed these into 
3 categories: functional, nonfunctional, or unknown by 
each annotator. The functional category included gestur-
ing, reach to grasp, pushing open a door, and so on. The 
nonfunctional category included arm movements associ-
ated with gait, sit-to-stand, or other whole body movement 
that did not include a functional arm movement. The no-
movement periods between these periods of arm move-
ment were also labeled nonfunctional. Arm swing is 
important for balance during gait, but we elected to dele-
gate these movements as nonfunctional in order to create a 
contrast with volitional prehensile movements, which are 
the traditional targets of UE rehabilitation. Additionally, 
detection of arm swing during gait is a common criticism 
of the counts thresholding method, with some researchers 
adding a sensor on the leg to detect gait movements so that 
gait-related arm movements can be neglected.31 A major 
goal was automatic separation of whole body and gait-
related movements from reach and grasp movements. The 
final categorization was determined by majority vote. 
About 3% of the data were labeled as unknown because the 
arm was occluded in the video or there was no majority 
consensus across the annotators.

The accelerometry and video data streams were synchro-
nized at the start of collection, and we performed spot 
checks to make sure synchrony was maintained throughout 
by checking rest periods, which are easy to visually spot in 
both streams. Each 4-s block of accelerometer data was 
given a ground truth label (functional, nonfunctional, 
mixed, or unknown) based on the corresponding video 
frame annotations. Blocks with a majority of unknown 
frames were excluded from analysis. Mixed blocks had a 
combination of functional and nonfunctional video frames 
and were labeled based on the majority of frames in the 
block. We then computed 11 features from each 4-s epoch 
of sensor data. The mean and variance across the epoch 
were computed for x, y, and z acceleration components. The 
Euclidean norm was calculated across the 3 dimensions at 

each sample point ( x y z2 2 2+ + ). The mean, variance, 
minima, and maxima of the Euclidean norm across the 4-s 
period were also computed. The Shannon entropy was cal-

culated as −
=
∑
i

N

i ip p
1

log( ), where N is the number of sample 

points in the 4-s block and pi is the probability of occur-
rence of each value in the block, based on a kernal density 
estimator applied to all values in the 4-s block with a 
Gaussian smoothing function. Higher entropy implies more 
uncertainty or unpredictability in the data. These features 
were chosen because of their simplicity and were proven in 
our prior study to give good results.
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Feature normalization using min-max scaling was per-
formed before classification. We investigated the unsuper-
vised K-means clustering algorithm and 4 supervised 
algorithms: K-Nearest Neighbors (KNN), Random Forest, 
Linear Support Vector Machine (SVM), and Radial Basis 
Function SVM (RBF SVM). Because of the heterogeneity 
of stroke survivors, we believed that the ensemble method 
(Random Forest) would perform well. SVM is considered 
one of the most robust and accurate classification algo-
rithms, whereas KNN tends to perform well when the num-
ber of data points per subject is large and the number of 
features is small. We also tested if performing principal 
component analysis (PCA) on our feature data set affected 
the classification results. Given an expectedly high variabil-
ity between limbs in stroke patients and between stroke 
patients and controls, different models were built for each 
limb: dominant control, nondominant control, paretic 
stroke, and less-affected stroke. Both intersubject and intra-
subject models were built for each limb. For the intrasubject 
models, stratified 5-fold cross-validation was used. For the 
intersubject models, leave-one-out cross-validation (ie, 
10-fold in our case) was used because it is approximately 
unbiased and is the best choice when the number of subjects 
is small.42 Note that the mixed blocks were excluded during 
the training to improve the model performance but included 
during the testing phase to reflect the real-world situation. 
For each machine learning algorithm, there are model 
hyperparameters, such as C, kernel, and gamma for SVM.43 
Exhaustive grid search was conducted to determine the 
optimal set of hyperparameters for each algorithm (Python 
programing language with Scikit-learn, Pandas, and 
Matplotlib libraries).43 For example, the RBF SVM grid 
search parameters were C [1, 10, 100, 1000] and gamma 
[0.001, 0.0001]. Parameters are defined in the user manual 
of Scikit-learn.

For each algorithm, the classification accuracy was 
defined as the percentage of the data correctly classified 
into functional or nonfunctional categories using the human 
annotation as the ground truth. For each limb, we also cal-
culated the %functional, defined as the total duration of 
time in functional movement, normalized by the total dura-
tion of the trial. This metric was calculated directly from 
video annotations and using both the intersubject and intra-
subject algorithms. For these calculations, the mixed blocks 
were included.

Counts Threshold Method

As a comparison method, we processed the data via the 
counts threshold method first proposed by Uswatte et al35 
and later detailed by Urbin et al.27 The ActiGraph family of 
wrist worn sensors are used, which samples acceleration at 
30 Hz. An offline proprietary filter reduces the data into 
“counts” over each 1-s epoch. The filter removes the effects 

of gravity and higher frequencies not present during human 
movement.44 The counts unit is proportional to the accelera-
tion magnitude within that period. The data sampling rate 
was reduced from 200 to 30 Hz via interpolation and for-
matted so that the ActiLife software would accept the data 
and calculate the counts metric. The 3 axes were combined 
via the Euclidean norm into a single counts value for each 
1-s epoch.27 Metrics calculated included the following: (1) 
usage: sum of 1-s epochs where the counts were >1, nor-
malized by the total number of epochs in the trial; (2) usage 
ratio: usage in the paretic arm normalized by usage in the 
less-affected arm. ActiGraph is the accelerometer most 
commonly used in research studies,45 and code is now avail-
able to calculate ActiGraph counts from raw accelerometer 
data from any sensor.46

To better understand the differences between functional 
and nonfunctional movements, the counts threshold method 
was used to mark 1-s epochs as active (counts > 1) or non-
active. After neglecting the nonactive epochs, we calculated 
the duration of functional and nonfunctional movement 
using the frame-by-frame annotation data. The movement 
count value from each active 1-s epoch was assigned to all 
video frames within that epoch. This then allowed calcula-
tion of the average acceleration amplitude (in counts) for 
functional and nonfunctional movement. Repeated-
measures ANOVA was used to analyze these data. The 
within-subject factors were limb (dominant, nondominant) 
and movement type (functional, nonfunctional). Separate 
ANOVAs were performed for the stroke group and the con-
trol group. Significant effects were examined with t-tests 
with Bonferroni correction.

Results

Table 2 shows the classification accuracy of the machine 
learning algorithms. For the nondominant limb of con-
trols, best accuracies were 96.0% and 91.1% for intrasu-
bject and intersubject modeling, respectively. For the 
paretic limb of stroke patients, best accuracies were 92.6% 
and 74.2% for intrasubject and intersubject modeling, 
respectively. Random Forest performed better in intrasu-
bject modeling, and RBF SVM performed better in the 
nondominant or paretic limb (intersubject modeling). 
Overall, the results from Random Forest and RBF SVM 
were comparable. PCA did not improve the results. To cal-
culate %functional use for each limb, we selected only the 
Random Forest algorithm.

Figure 1A compares the results of the counts threshold 
method and the Random Forest machine learning algo-
rithm. The ground truth %functional use values are avail-
able from the video annotation. When considering only the 
paretic limb of stroke participants, the intrasubject model 
estimates of %functional were highly correlated with 
ground truth video; the correlation coefficient was r =0.99 
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(P < .001), and the error magnitude was 3.9% (Table 3). 
For intersubject modeling, the correlation dropped to  
r =0.81 (P = .005) and the error increased to 5.2%. Figure 1A 
also shows that usage calculated from the counts threshold 
method is a very poor representation of %functional; despite 
large variability across participants in %functional use as 
determined by video ground truth, the usage metric measured 
almost no differences across participants. The correlation of 
usage with %functional (video) was not significant (r = 0.57; 
P = .085), and the error magnitude was 52.7%.

Calculating the ratio of usage between the paretic and 
less-affected limb (“usage ratio”) is a common approach to 
reduce the effects of nonfunctional movements, such as arm 
swing during gait and whole body movements. The results 
did not change significantly when metrics were normalized 
by metrics from the less-affected limb (Figure 1B). The 
intrasubject model again had the highest correlation with 
ground truth and lowest error, and the usage ratio continued 
to grossly overestimate the amount of functional movement 
(see Table 3 for complete details).

One participant did very poorly in intersubject modeling 
of the paretic limb, suggesting that their movement patterns 
differed from those of the other stroke participants. Figure 2 
shows the ground truth and predictions from the intersub-
ject modeling of this participant using the Random Forest 
algorithm. From these data, we flagged instances of false 
positives (predicted functional movement when there was 
none) and false negatives (missed instances of functional 
movement). There were large incidences of false negatives, 
which contributed to the underestimation of functional use 
in this participant. Figure 2 also shows the results of the 
intrasubject modeling applied to this same participant using 
the same algorithm. The intrasubject modeling greatly 
reduced the false negatives in the prediction and improved 
the accuracy.

Table 2.  Classification Accuracy.

Algorithms

Intrasubject (percentage ± SD) Intersubject (percentage ± SD)

Control Stroke Control Stroke

Nondominant or paretic limb
  K-Nearest Neighbors 95.17 ± 1.05 89.32 ± 7.53 90.45 ± 3.14 65.90 ± 8.54
  Random Forest 96.05 ± 1.22 92.61 ± 3.51 88.27 ± 4.35 68.35 ± 8.08
  Linear SVM 92.28 ± 1.95 85.52 ± 9.16 88.61 ± 3.59 70.41 ± 13.92
  RBF SVM 94.59 ± 1.36 89.23 ± 6.83 91.07 ± 3.63 74.24 ± 11.43
  K-means clustering 73.94 ± 4.52 67.80 ± 8.66 72.63 ± 5.62 59.12 ± 17.83
Dominant or less-affected limb
  K-Nearest Neighbors 95.18 ± 1.47 92.80 ± 7.22 91.18 ± 3.25 84.10 ± 11.39
  Random Forest 96.64 ± 1.00 94.64 ± 4.57 90.52 ± 4.87 83.32 ± 12.05
  Linear SVM 92.97 ± 2.19 91.29 ± 7.57 89.86 ± 4.45 84.90 ± 10.18
  RBF SVM 93.38 ± 1.81 92.45 ± 7.35 90.83 ± 4.72 84.76 ± 12.02
  K-means clustering 76.78 ± 4.02 83.20 ± 10.98 75.80 ± 4.68 83.05 ± 10.77

Abbreviations: RBF SVM, Radial Basis Function Support Vector Machine.

Figure 1.  A. The %functional use from machine learning  
(ML) and usage from the counts threshold method compared 
with %functional use from video annotation. The paretic  
and nondominant limbs of controls are represented. The  
solid line is a reference line representing perfect correlation 
with ground truth. B. The %functional use ratio and usage ratio 
compared with %functional use ratio from video. Paretic limb 
values were normalized by values from the less-affected limb.  
In healthy controls, the nondominant limb was normalized by 
the dominant limb. The counts method used a 1-s epoch,  
and the machine learning was Random Forest using a 4-s  
epoch.
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Because the usage metric appears to be detecting large 
amounts of nonfunctional movement, we explored the pos-
sibility that increasing the threshold in the counts threshold 
method might improve the result by rejecting slower move-
ments, which might be biased toward nonfunctional move-
ments. The error magnitude between usage and ground 
truth %functional movement does decrease with higher 
thresholds; however, the correlations with ground truth also 
decrease because of increased scatter in the data (see Table 3 
for complete details). All correlations remained nonsignifi-
cant after increasing the counts threshold.

Combining the video annotation and the counts data 
allows elimination of periods where there was no move-
ment (counts < 1). Figure 3A shows the percentage of 
time in functional and nonfunctional movement (after 
eliminating no movement periods) in both limbs of stroke 
and control participants. For stroke participants, the 
repeated-measures ANOVA reported a significant inter-
action between limb and movement type (P < .001).  

For controls, the ANOVA reported a significant effect of 
movement type (P < .001). A series of within-subject t-tests 
(with Bonferroni correction) found the following differ-
ences. The %nonfunctional movement was significantly 
lower than %functional movement in the less-affected limb 
of stroke participants (P = .001) and in both limbs of con-
trols (P < .001). In contrast, the %nonfunctional move-
ment was significantly higher than %functional movement 
in the paretic limb (P = .007). When comparing across 
limbs in the same participant, the %nonfunctional move-
ment was significantly higher in the paretic limb compared 
with the less-affected limb (P < .001), whereas %func-
tional movement was significantly lower in the paretic limb 
compared with the less-affected limb (P < .001). There 
were no differences between limbs in controls (P > .99).

We also calculated the average amplitude (counts) 
when the arm was in motion. Nonfunctional movements 
were slower than functional arm movements in the less-
affected arm of stroke participants and both arms of 

Table 3.  Correlations and Errors of Metrics Versus Functional Use From Video (Stroke Data Only).

Metrics

Paretic limb Ratio of paretic/less-affected limb

r Value P Error r Value P Error

%functional (Intrasubject) 0.99 <.001 3.9% 0.99 <.001 5.1%
%functional (Intersubject) 0.81 .005 5.2% 0.78 .008 9.6%
Usage (1 count)a 0.57 .085 52.7% 0.48 .16 53.0%
Usage (20 counts) 0.46 .18 26.6% 0.37 .30 29.7%
Usage (40 counts) 0.27 .45 15.0% 0.34 .34 19.6%

acount refers to the threshold used to separate movement from rest.

Figure 2.  Intrasubject and intersubject model predictions (based on Random Forest) from the stroke participant with the worst 
intersubject model. Intersubject model errors are mostly false negatives (marked by red squares), which are reduced by the 
intrasubject modeling.
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controls (P < .001; Figure 3B). This was not true for the 
paretic limb, where there were no differences in accelera-
tion amplitude between functional and nonfunctional 
movements (P > .99). This explains the inability of the 
thresholding method to separate functional and nonfunc-
tional movements in the paretic limb, even as the thresh-
old was varied. When comparing the 2 limbs from the 
same participants, accelerations were lower in the paretic 
limb compared with the less-affected limb for both func-
tional (P < .001) and nonfunctional (P = .007) move-
ments. In contrast, there were no differences in acceleration 
between limbs in the controls (P > .99).

Using the stroke data only, we calculated the correlations 
between ARAT scores and the ratio metrics. Using the video 

annotations, there was a significant correlation between the 
%functional use ratio and ARAT scores (r = 0.72; P = 
.019). Using the machine learning intrasubject modeling, 
there was a significant correlation between %functional use 
ratio and ARAT scores (r = 0.79; P = .007). However, the 
usage ratio calculated from the counts threshold method 
was not correlated with ARAT scores (r = 0.36; P = .31).

The machine learning results were not sensitive to our 
parameter selections. The Random Forest analysis was 
repeated for epoch lengths of 5, 4, 3, 2, and 1 s. In the intra-
subject analysis, the highest accuracy was with a 4-s epoch 
and the lowest accuracy, with the 1-s epoch, but the differ-
ence was only 0.7% ± 1.8% (P = .85). Intersubject analy-
sis also found no difference in accuracy between 4- and 1-s 
time epochs (Difference = 0.6% ± 1.3%; P = .89). After 
reducing the sample rate to 30 Hz, the accuracy of the 
Random Forest model increased by only 0.1% ± 0.9% (P 
= .98).

Discussion

We compared machine learning for extracting the amount 
of functional UE movement to the counts threshold method 
of detecting the amount of movement (usage). An important 
and novel result from this study is that the counts threshold 
method detects more nonfunctional movement than func-
tional movement in the paretic limbs of stroke participants. 
The reverse was true for the less-affected limb and for both 
limbs of controls, where a much larger percentage of the 
movement detected was functional. As a result, the duration 
of movement from the counts threshold method is grossly 
higher than the amount of functional movement determined 
from video annotation. Normalizing by usage in the less-
affected limb did not change these results, which refute the 
assumption that increased movement recorded via the 
counts threshold method is an objective measure of 
increased functional limb use. If present in a larger valida-
tion cohort, this result has importance in studies of UE 
recovery and suggests that the counts threshold method 
leads to substantial errors. We also further developed 
machine learning algorithms that extract functional move-
ment patterns from the accelerometry data. K-means clus-
tering performed poorly compared with the supervised 
algorithms. The assumptions that all features have equal 
importance for every cluster and that clusters are spherical 
and evenly sized might not be appropriate for this applica-
tion. The supervised intrasubject modeling produced good 
results with estimates of %functional use that correlated 
strongly with ground truth. If usability can be improved, 
these machine learning algorithms can be an objective tool 
for measuring real-world UE use.

Whereas most accelerometry studies have focused on 
movement duration, acceleration magnitude could have 
interesting features. The density plot method developed 

Figure 3.  (A) Percentage of time spent and (B) average of 
accelerometry counts in nonfunctional and functional movement 
in stroke participants and controls. Periods of no movement 
were removed before this analysis.
Abbreviation: dom, dominant.
*Significant difference, P < .05.
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by Bailey et al47 showed that in both healthy controls and 
individuals with stroke, the most common movements 
were bilateral with fairly low acceleration magnitudes. 
Simultaneous UE activity made up 67% (7.2/10.7 hours) 
of total UE activity in nondisabled adults and 49% 
(4.1/8.4 hours) in individuals with stroke. Asymmetries in 
density plots and lower magnitudes were characteristic of 
individuals with stroke, indicating a shift toward less-
affected arm use and slower movement speeds. These 
methods provide a rich data set that can be used to char-
acterize the real-world behavior of individuals. The addi-
tion of machine learning algorithms could extend these 
methods by eliminating movement not associated with 
functional limb use.

The counts threshold method was pioneered by Uswatte 
et al.35 In their seminal article, they reported a 98% agree-
ment when 2-s epochs were tested for movement duration 
by the counts threshold method and by human observers 
of synchronous video in stroke patients performing 15 
minutes of Activities of Daily Living (ADL).35 However, 
the authors noted that duration of movement may not 
reflect duration of functional movement, which is more 
clinically relevant. Subsequent work from this group 
reported high test-retest reliability (r = 0.86) and an 
increase of 8% in the usage ratio after Constraint-Induced 
(CI) therapy.28 This group also attempted to validate the 
usage ratio metric with video annotation using the 
FAABOS scoring method.36 Participants performed activi-
ties in the home or clinic without any special instruction 
while being videotaped and wearing accelerometers. The 
correlation across participants between mean FAABOS 
rating over randomly selected 15-minute blocks and mean 
accelerometry ratio metric was r =0.55. Although this 
does provide some evidence of convergent validity 
between the usage ratio and a course assessment of amount 
of functional use (mean FAABOS score over the 15-min-
ute period), there are important distinctions with our study 
that should be noted. We used the FAABOS scoring 
method to annotate each frame of the video as functional 
or nonfunctional, so that the total duration of functional 
movement could be determined from the video instead of 
relying on mean FAABOS score. This allows calculation 
of ground truth on %functional use for comparison to the 
accelerometry. Our machine learning algorithms separate 
functional and nonfunctional arm movement from the sen-
sor data directly without the need for human observation. 
We are not aware of any comparable methods that have 
demonstrated this capability.

Several studies have reported relatively poor or nonex-
istent correlations between accelerometry metrics and 
clinical scales of function.30-33 Function measured in the 
clinic is only one of many factors that can affect how and 
when the paretic limb is used in real-world settings. Other 
studies have reported that accelerometry metrics correlate 

weakly or not at all with self-report scales of UE use.23,34 
This might be a result of self-report bias or differences 
between the domains of total movement and functional 
use. Our results suggest that another factor in these poor 
correlations is the large amount of nonfunctional move-
ment detected by the counts threshold method. Note that 
the usage ratio metric based on the counts threshold 
method did not correlate with ARAT scores in our sample, 
but the %functional from video annotation and machine 
learning both correlated significantly with ARAT scores.

Limitations

The usage and functional use percentages reported here 
should not be extrapolated to 24-hour recording periods. 
Our activity script has a higher percentage of activities 
than what would be expected from a full day of recording 
where more periods of inactivity or rest would be expected. 
This might explain why the usage ratio we observed is 
>80% in all participants, whereas this ratio has been 
reported to be 56% in other studies.23 Additionally, it is 
unknown how the machine learning will respond to activi-
ties not in our activity script. Although we believe that our 
selected activities are a good representation of a fairly wide 
range of activities, the algorithm accuracy may decrease 
with untested activities. Tasks such as typing might be 
missed and better captured by devices that record finger 
movement directly.48,49 The intrasubject models performed 
the best, but they represent a significant burden because 
our activity script is long (mean = 33 minutes), and a total 
of 6.9 person-hours were required to fully annotate the 
movements of each participant. We are researching if a 
reduced activity script is sufficient. The intersubject mod-
eling had 1 clear outlier. This outlier had the most func-
tional ability of the stroke patients, with an ARAT score of 
41, whereas the remaining participants had ARAT scores of 
33 or less. Qualitative examination of the video from this 
participant found that his shoulder and elbow movements 
seemed normal when compared with controls, likely lead-
ing to the poor intersubject models. We are currently inves-
tigating if intersubject model accuracy can be improved by 
incorporating the functional level of patients.

Conclusions

The error associated with the standard counts threshold 
analyses of accelerometric data obtained in stroke par-
ticipants may be much larger than previously thought. 
We advise caution when using the counts threshold 
method, which detects large amounts of nonfunctional 
movement in the paretic limb during activities. Machine 
learning algorithms based on intrasubject modeling can 
accurately measure the amount of functional movement 
during unscripted ADL.
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