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Abstract

We analysed an 11-year dataset (1998–2009) of Influenza-Like Illness (ILI) that was based on surveillance of &23% of Israel’s
population. We examined whether the level of synchrony of ILI epidemics in Israel’s 12 largest cities is high enough to view
Israel as a single epidemiological unit. Two methods were developed to assess the synchrony: (1) City-specific attack rates
were fitted to a simple model in order to estimate the temporal differences in attack rates and spatial differences in
reporting rates of ILI. The model showed good fit to the data (R2 = 0.76) and revealed considerable differences in reporting
rates of ILI in different cities (up to a factor of 2.2). (2) A statistical test was developed to examine the null hypothesis (H0)
that ILI incidence curves in two cities are essentially identical, and was tested using ILI data. Upon examining all possible
pairs of incidence curves, 77.4% of pairs were found not to be different (H0 was not rejected). It was concluded that all cities
generally have the same attack rate and follow the same epidemic curve each season, although the attack rate changes
from season to season, providing strong support for the ‘‘Israel is one city’’ hypothesis. The cities which were the most out
of synchronization were Bnei Brak, Beersheba and Haifa, the latter two being geographically remote from all other cities in
the dataset and the former geographically very close to several other cities but socially separate due to being populated
almost exclusively by ultra-orthodox Jews. Further evidence of assortative mixing of the ultra-orthodox population can be
found in the 2001–2002 season, when ultra-orthodox cities and neighborhoods showed distinctly different incidence curves
compared to the general population.
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Introduction

Influenza epidemics have been a major challenge for health care

systems around the world year in year out [1]. Although influenza

illness is usually limited to several days of relatively minor

symptoms, it is not uncommon that influenza leads to pneumonia,

mostly among children and the elderly, which might lead to

hospitalization and even death [2]. The annual number of

influenza cases worldwide is estimated at &1 billion, with 3–5

million of these developing severe illness and 300,000–500,000

cases ending in death [3].

In the temperate regions influenza is predominantly seasonal,

with epidemics occurring every winter, but the severity of the

epidemic and the exact timing of the outbreak vary substantially

between years. Figure 1A, for example shows these dynamical

features for seasonal influenza time-series collected in Israel. The

spatio-temporal characteristics of influenza epidemics including

synchrony have been studied at different geographical scales from

the global scale [4,5] through the scales of continents and large

countries such as Europe, the US and Brazil [6–8] to midsize

countries like Italy, Japan and France and smaller countries as

Israel [9–12]. These studies identified different spatial patterns

including waves of influenza incidence [6–8,10] and varying levels

of synchrony, depending, to a degree, on the geographical scale

[4,5,7,9]. Analyses of this nature are important to understand how

influenza spreads on a broad spectrum of geographical scale.

We propose to study the synchrony of influenza in a range of

Israeli cities based on a high quality long-term database that has

become available from Israel’s Maccabi Health Service providers

[12,13]. Figure 1A shows the weekly incidence of influenza-like

illness (ILI) between the years 1998–2009 in Israel’s two main

cities, Tel Aviv and Jerusalem. The epidemics in both cities exhibit

an extraordinary degree of similarity both in their timing and their

magnitude, as shown in previous work on influenza epidemics in

Israel [12]. Tight synchrony between different cities raises the

question as to whether Israel is small enough to be considered as a

single epidemiological unit where influenza is concerned – we refer

to this as the ‘‘Israel is One City’’ hypothesis. This possibility is

supported by Israel’s small size and the fact that over 40% of its

population lives in the Dan metropolitan area. However, there are

cases in which pronounced differences can be seen in the timing

and/or magnitude of influenza epidemics in different cities in

Israel. This can be attributed to real differences between the

epidemics in Israel’s cities, to weaknesses in the data, or variation

in the rate of reporting of ILI in different cities. The latter feature

was noted by London and Yorke [14] in their study of measles,
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chickenpox and mumps data in the US. To further improve our

understanding of the spatial spread of influenza we examine the

‘‘Israel is One City’’ hypothesis more formally using two different

approaches. First, we present a statistical method to investigate

whether the attack rates of ILI over an epidemic outbreak are the

same for all cities in each season, up to a scaling factor of the

reporting rate. Second, based on daily incidence data, we present a

statistical method that compares the epidemic curves of two cities

and determines whether or not they are essentially identical over a

single season.

Data
This work is based on an ILI dataset supplied to by Maccabi

Health Services (MHS), Israel’s second-largest health maintenance

organization which serves close to a quarter of Israel’s population.

(During the period of the research Maccabi’s market share

increased from 20.8% in 1998 to 24.8% in 2009.) The dataset

includes all ILI cases diagnosed in Israel by Maccabi’s doctors

every day between January 1st 1998 and May 31st 2009; a total of

11 influenza seasons. The doctors all made use of ILI ICD9

diagnosis code 487.1 for influenza, as well as several MHS internal

codes for influenza and influenza-like disease. In an analysis that

appears elsewhere, we have confirmed the relationship between

this ILI data and true influenza cases as based on serological data

([15], Appendix A). The dataset includes information about the

patients’ approximate place of residence. Cases of repeat ILI

diagnoses (i.e., ILI diagnoses which occurred less than 28 days

Figure 1. ILI incidence in several Israeli cities, 1998–2009. (A) Weekly number of ILI cases per 10,000 Maccabi Health Services members in Tel
Aviv and Jerusalem the two largest cities in Israel. Note the high spatio-temporal synchrony. (B) Weekly ILI incidence in Holon and Ashdod. Incidence
rates in Holon are generally much higher than Ashdod’s. (C) same dataset as in B after normalizing each city’s incidence by its calculated reporting
rate using the Attack Rate/Reporting rate linear model method results (Table 1). Note that after incorporating the relative reporting rates the
incidence curves look much more similar.
doi:10.1371/journal.pone.0091909.g001
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after a previous ILI diagnosis) for the same person, were excluded

from the dataset.

Most influenza seasons in this period were dominated by the

influenza A H3N2 virus, with the exceptions of 2000-1 and 2007-

8, which were dominated by a H1N1 strain, 2002-3 and 2005-6

when influenza B was dominant, and 2008-9 which had no

dominant strain (see table 1). Influenza A H3N2 seasons were

characterized by higher attack rates compared to other seasons

[12].

A large fraction of registered ILI cases are in fact not influenza

but other diseases with similar symptoms [16,17]. The fraction of

true influenza cases out of the ILI cases changes seasonally, since

during the summer most cases of ILI incidence are not cases of

influenza, while in the winter the fraction of true influenza cases is

much higher [18]. In order to obtain a better estimate of influenza

cases, ILI cases from before and after the influenza season were

eliminated. The Israeli Center for Disease Control sends samples

from sentinel clinics to laboratory tests for identification of

influenza strains, and the tests show that the length of influenza

season is between 14 and 19 weeks (data is available in Hebrew

weekly reports similar to [18] and on WHO’s FluNet website).

Therefore, a period of 120 days (&17 weeks) in each winter

containing the highest number of ILI cases, most of which are

influenza cases, was used to estimate the attack rate of influenza in

each season. Other definitions for an ILI season length, ranging

from 90 days to 180 days, were examined as well and gave similar

results.

Twelve cities were studied in this work, each having over 30,000

MHS members in 1998. Smaller cities were found unreliable

because it was found that cities with few doctors could have large

classification biases that introduced major surveillance errors.

Figure 2 shows the location of the twelve cities in Israel. With the

exception of the far north and far south, this set of 12 cities covers

most of Israel’s area. Seven of the 12 cities are located in the Dan

Metropolitan Area: Tel Aviv, Rishon LeZion, Bnei Brak, Holon,

Bat Yam, Ramat Gan and Petah Tikva. Three other cities are

located on the Israeli coastal plain, with Haifa and Netanya being

north of Tel Aviv (&80 km and &25 km, respectively) and Ashdod

being &33 km south of Tel Aviv. The remaining two cities are

Jerusalem, &50 km south-east of Tel Aviv and Beersheba,
&90 km south of Tel Aviv.

Results

1. Reporting Rate and Attack Rate Model (RR/AR)
Figure 1B displays the weekly ILI incidence curves of two cities

in Israel, Ashdod and Holon (34 km apart), over 11 years (1998–

2009). The two cities show a large degree of synchrony, but the ILI

incidence in Holon is consistently higher than in Ashdod.

However, upon multiplying the incidence curves by an appropri-

ate scale factor, the two cities have almost identical dynamics in

time (Figure 1C). The synchrony thus revealed is very similar to

that we have already seen for the time series of Jerusalem and Tel

Aviv in Figure 1A. This same manifestation of synchrony was

found to be widespread between most pairs of cities after

appropriate rescaling. There were, however, cases where the

property was unclear. Motivated by these interesting findings, we

were led to ask to what degree ILI epidemics in any pair of cities is

actually the same for each season, but the rate of reporting ILI

cases might be different in each city.

In the first test, rather than study the daily time series of each

city over the 11 year period, we restrict our study to the observed

seasonal attack rates. The attack rate of a single epidemic is

defined here as the proportion of people diagnosed with ILI during

a 120 day season out of the total number of Maccabi members in

that city in that season.

The reporting rate-attack rate (RR/AR) model rests on two

assumptions:

i) each influenza season (s) has the same attack rate as (s =

1…11) for all cities. The justification behind this assumption

Table 1. Estimates of the RR/AR model for the attack rate of
each season relative to the attack rate of season 1.

Season Attack rate (95% CI)

1 1

2 1.19 (0.98 1.46)

3 (H1N1) 0.83 (0.69 1.01)

4 1.16 (0.95 1.41)

5 (B) 0.46 (0.38 0.56)

6 0.80 (0.66 0.97)

7 1.02 (0.84 1.25)

8 (B) 0.49 (0.40 0.59)

9 1.07 (0.88 1.31)

10 (H1N1) 0.92 (0.75 1.12)

11 (NDS) 0.54 (0.44 0.66)

doi:10.1371/journal.pone.0091909.t001

Figure 2. A map of Israel and the 12 cities analysed in this
work.
doi:10.1371/journal.pone.0091909.g002
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relates to Figure 1 where we visually see this holding for the

two major cities, Tel Aviv and Jerusalem;

ii) that each city (c) has its particular reporting rate rc (c = 1…12)

which is constant throughout the 11-season period of the

dataset.

The observed attack rate ic,s in city c over season s is the product

of these two values ac rs. Any deviation from this product is

regarded as an independent random effect. The RR/AR model

may therefore be written as

ic,s~as
:rczec,s ð1Þ

where ec,s is residual stochastic noise having mean zero. The

Methods section details the model fitting technique. There we

estimate the best fitting attack rate parameters as and the reporting

rate parameters rc from the observed attack rates ic,s.

Note that an infinite number of sets of parameters a1…11 and

r1…12 can give an optimal fit to the data, since it is possible to

multiply all attack rates as by a constant and divide all values of rc
by the same constant to obtain the exact same fit. However, the

ratios between the cities’ reporting rates will remain the same, as

will the ratios between the seasons’ attack rates. These ratios of

attack rates are of interest since they give indication of the

differences in the epidemiological properties of the dominant

strain of influenza in each year (such as infectiousness and prior

susceptibility) and the ratios of reporting rates give indication of

each city’s reporting properties (e.g. the tendency of doctors to

diagnose diseases as ILI).

Table 1 and Table 2 present the attack rates (as) and reporting

rates (rc) respectively as found through fitting the model to the

observed data ic,s for the twelve cities in Israel over the years 1998–

2009. The attack rates are all relative to the first season (in 1998–

1999) having taken a1 = 1 and the reporting rates are relative to

Tel Aviv where rtel aviv = 1.

As shown in the Methods section, the above model explains a

surprisingly large 75.5% of the variance in the data indicating that

the estimates as and rc fit the data well, and corroborating the

validity of the model. Figure 3 shows the fits in more detail by

comparing the observed ic,s and the expected city-specific attack

rate (asrc) in each city for each season. Note that the expected

attack rate of each season is identical in all cities up to a scaling

factor, which is the reporting rate typical for each city, and the

differences in reporting rates of different cities are very

pronounced (see table 2).

While the attack rates table (table 1) can be estimated directly

from the observed attack rates of all of Israel in each season (and

indeed the two sets of results are very well correlated, r2 = 0.96, p

= 1.5 ? 1027), the table of estimated relative reporting rates

(table 2) supplies information which cannot be obtained directly

from the data, and might be of considerable importance for disease

management. The high reporting rates in Ramat Gan and Holon,

for example, might indicate that the doctors there have a higher

tendency to diagnose a disease as influenza compared to doctors in

other places, a problem which was discussed before [12,19].

Figure 1C shows the weekly incidence of ILI in Holon and

Ashdod after normalization for reporting rates obtained from

Table 1. The two curves are clearly more similar than their raw

(i.e., unnormalized) counterpart curves in figure 1B.

2. Comparison of Incidence Curves
In the previous section we tested and compared seasonal attack

rates of all cities. Here we investigate the "Israel is One City"

hypothesis with a more fine temporal scale analysis by checking

whether two individual epidemic outbreak curves are statistically

identical over a given period based on incidence data analysed on

a weekly time-scale. For example, Figure 4A shows the epidemic

outbreaks for Holon and Jerusalem in the same season 1999–2000,

and the two curves appear almost identical by eye. In Figure 4B,

however, the epidemic curves of Beersheba and Bat Yam for the

2008–2009 season appear to be significantly different: Bat Yam’s

ILI incidence rises above baseline level &25 days before

Beersheba’s incidence and peaks earlier. Towards the end of the

season, ILI incidence in Beersheba remains very high when Bat

Yam is already at baseline level.

In the Methods section, a statistical test is presented for

identifying whether the epidemic curves associated with two cities

are identical up to a scaling factor (reporting rate), with differences

between cities only due to random sampling effects. More

formally, by ‘identical epidemic’ we mean that individuals in both

cities have the same chance of getting infected for any specific day

t. This leads us to define the infection probabilities pt (1 # t # T) as

the probability that any person (in any city) becomes infected on

day t. The null hypothesis (H0) that we wish to test is therefore that

both cities share the same probabilities of infection pt.

The method calculates the expected number of ILI cases in each

day of the epidemic in each city, based on the total number of ILI

cases that day in both cities. If the population numbers of city k is

Nk, then the expected value for the number of new ILI cases on

day t in city k is

Ek,t~pt
:rk
:Nk ð2Þ

Here the reporting rate rk for city k (1 # k # n) is the probability

that a person who becomes infected goes to the doctor, and is

diagnosed with influenza.

Based on a maximum likelihood approach, the method is able

to estimate the T parameters pt and the two reporting rates r1 and

r2 from the ILI data for each of two cities. Once the Ek,t are

estimated it then becomes possible to simulate epidemics under the

null hypothesis that both cities share the same probabilities of

Table 2. Estimates for the reporting rate of each city relative
to the reporting rate of Tel Aviv (Relative Reporting Rate, RRR)
found using the RR/AR model (middle) and the incidence
curves comparison method (right).

City RRR, RR/AR model (95% CI) RRR, ICC method

Ramat Gan 1.69 (1.38 2.08) 1.68

Holon 1.53 (1.25 1.88) 1.53

Rishon LeZion 1.42 (1.17 1.73) 1.41

Petah Tikva 1.36 (1.11 1.66) 1.35

Bnei Brak 1.36 (1.12 1.65) 1.36

Bat Yam 1.15 (0.94 1.42) 1.15

Jerusalem 1.05 (0.86 1.28) 1.05

Beersheba 1.04 (0.85 1.28) 1.04

Tel Aviv 1 1

Haifa 0.95 (0.77 1.17) 0.95

Ashdod 0.77 (0.63 0.94) 0.79

Netanya 0.80 (0.66 0.97) 0.76

doi:10.1371/journal.pone.0091909.t002
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infection pt. The simulation of the epidemic is driven by a Poisson

model

ik,t ePoisson(Ek,t) ð3Þ

where ik,t is the number of newly infected individuals on day t in

city k. The null hypothesis is tested by comparing the likelihood of

the simulated epidemics to the likelihood of the observed data.

The procedure for testing the null hypothesis is outlined in the

following steps for a given pair of cities, say cities 1 and 2:

i) The parameters pt and rk are estimated from the ILI data of

the epidemic curves of the two cities (see Methods) for k =

1,2 and t = 1,2,…,T.

ii) One thousand simulated epidemics ik,t for both cities are

generated (k = 1,2; t = 1,2,…T) from Equation 3.

iii) The histogram of the log-likelihoods (Equation 21) of city

pairs is determined, as shown in Figure 4.

iv) One-sided 95% confidence limits (dashed red line in

Figure 4) are calculated for the log-likelihood distribution.

v) The null hypothesis is rejected if the log-likelihood of the

observed data falls outside the 95% confidence limit.

The log-likelihood histograms in Figure 4 illustrate the test in

practice. The null hypothesis (H0) that the epidemic curves of

Jerusalem and Holon are identical cannot be rejected since the

observed log-likelihood falls inside the 95% confidence limits. In

contrast the observed log-likelihood of the cities of Beersheba and

Bat Yam (2008-2009) falls outside the 95% confidence limits and

the null hypothesis must be rejected.

It is possible to analyse all city pairs in this fashion. For the 12

Israeli cities, there are
12

2

� �
~66 different pairs of cities over 11

influenza seasons, giving a total of 726 combinations of pairs of

cities in different seasons. Of these combinations, the null

hypothesis (H0) could not be rejected in 77.4% of the cases. The

fraction of city pairs with different incidence curves (i.e. pairs for

which H0 was rejected) in each season varied between 30 different

pairs in the 2008-2009 season (45.5% of all pairs in the season) and

5 different pairs in the 2002-2003 season (7.6%).

Considerable variance is also seen in the fraction of different

combinations which include specific cities (table 3). Netanya was

found to have a different incidence curve to the other city in just 7

out of 121 combinations (5.8%), followed by Jerusalem which had

different incidence curves in 14% of the combinations and Rishon

LeZion with 15.7%. The cities with the highest fraction of

differences were Bnei Brak with 43.8%, Beersheba with 37.2%

and Haifa with 33.9%. It can be argued that these three cities are

the three most disconnected cities in the 12-city set used here (see

Figure 2), since Beersheba and Haifa are geographically the

furthest cities from the Dan metropolitan area and Bnei Brak (an

ultra-orthodox city) is socially the most disconnected from most

other cities (see also Discussion).

Since this method estimates the reporting rate of ILI in each of

the two cities in a given season, we averaged all 121 estimated

Figure 3. Observed vs. expected attack rates. Reported attack rates in each city in each season (black) compared to expected results from
model fits (red) using equations 5–6. The expected attack rates in all cities are identical up to a scaling factor of the reporting rate. Note the good fit
between the expected and observed attack rates in most cities in most seasons.
doi:10.1371/journal.pone.0091909.g003
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reporting rates of each city and compared them to the average

reporting rate of Tel Aviv, in order to confirm the results of the

RR/AR method. Table 2 shows that the results of both methods

are very similar.

A correlation matrix of daily incidence rates was calculated as

an additional index of synchrony between all pairs of cities (table 4).

The average correlation between each pair of cities was 0.766.

The average correlation of each city with other cities was

calculated and most values were close to the mean, ranging

between 0.692 (Bnei Brak) and 0.828 (Tel Aviv). These high

correlations are to be expected in light of our analysis of the

epidemic curves between cities. The lowest correlations are

associated with Bnei Brak which was found to have the lowest

degree of synchrony by the epidemic curve comparison method as

well.

3. Ultra-Orthodox Population
An interesting phenomenon of a distinctly different influenza

epidemic in a sub-population of Israel, as compared to that

experienced by the rest of the country, can be seen in the 2001–

2002 season. The epidemics of most cities in Israel were well-

synchronized in this season and peaked around January 20th,

except Jerusalem and Bnei Brak. The latter cities peaked earlier in

January 11th and January 6th respectively and had very similar

incidence curves throughout the season. Even more unusually,

Ashdod had a double-peak incidence curve in that season, with the

first peak occurring on January 8th and the second peak on

January 22nd (Figure 5A). We find that these early epidemics

Figure 4. Comparison of Incidence Curves: two examples. Top (A,B): Jerusalem and Holon in the 1999–2000 season. Incidence time series
curves (A) are very similar. A period of 120 days containing the largest number of ILI cases (highlighted with a darker band) was used to calculate the
likelihood of the observed incidence curves. Histogram of log-likelihoods (B) of 1,000 simulated epidemics (equations 20–22) gives a one-sided 95%
confidence limit (dashed red line) and the log-likelihood of the real data (solid green line) is very high compared to those of simulated epidemics,
indicating that simulated epidemics are less similar than the observed data. Bottom (C,D): Beersheba and Bat Yam in the 2008–2009 season.
Dramatic differences in the shape of the incidence curves (C) translate to a very low log-likelihood of the observed epidemic compared to those of
simulated ones (D).
doi:10.1371/journal.pone.0091909.g004

Table 3. Fraction of combinations (two cities and a season) in
which incidence curves were found to be significantly
different, out of each city’s 121 combinations.

City % Different Combinations

Bnei Brak 43.8%

Beersheba 37.2%

Haifa 33.9%

Ramat Gan 28.1%

Petah Tikva 23.1%

Bat Yam 18.2%

Ashdod 17.4%

Holon 17.4%

Tel Aviv 16.5%

Rishon LeZion 15.7%

Jerusalem 14.0%

Netanya 5.8%

doi:10.1371/journal.pone.0091909.t003

Synchrony of Influenza in Cities across Israel
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Table 4. Correlation matrix of daily incidence rates in all city pairs in 1998–2009.

City TLV JER HFA RSN ASD BBK BSV HLN BYM PTV RMG NYA Mean

Tel Aviv 1.00 0.83 0.85 0.85 0.77 0.74 0.79 0.86 0.80 0.82 0.80 0.84 0.83

Jerusalem 0.83 1.00 0.78 0.76 0.69 0.70 0.74 0.77 0.74 0.73 0.75 0.74 0.77

Haifa 0.85 0.78 1.00 0.80 0.71 0.68 0.76 0.84 0.77 0.75 0.76 0.77 0.79

Rishon LeZion 0.85 0.76 0.80 1.00 0.71 0.74 0.73 0.81 0.77 0.79 0.74 0.78 0.79

Ashdod 0.77 0.69 0.71 0.71 1.00 0.61 0.69 0.77 0.70 0.72 0.68 0.73 0.73

Bnei Brak 0.74 0.70 0.68 0.74 0.61 1.00 0.59 0.63 0.65 0.68 0.65 0.62 0.69

Beersheba 0.79 0.74 0.76 0.73 0.69 0.59 1.00 0.81 0.73 0.70 0.72 0.73 0.75

Holon 0.86 0.77 0.84 0.81 0.77 0.63 0.81 1.00 0.83 0.78 0.78 0.78 0.81

Bat Yam 0.80 0.74 0.77 0.77 0.70 0.65 0.73 0.83 1.00 0.71 0.75 0.70 0.76

Petah Tikva 0.82 0.73 0.75 0.79 0.72 0.68 0.70 0.78 0.71 1.00 0.70 0.74 0.76

Ramat Gan 0.80 0.75 0.76 0.74 0.68 0.65 0.72 0.78 0.75 0.70 1.00 0.72 0.75

Netanya 0.84 0.74 0.77 0.78 0.73 0.62 0.73 0.78 0.70 0.74 0.72 1.00 0.76

doi:10.1371/journal.pone.0091909.t004

Figure 5. ILI incidence in the ultra-orthodox population during the 2001–2002 season. (A) ILI incidence in Jerusalem (red), Bnei Brak
(black), Ashdod (blue) and Israel’s main cities – Tel Aviv, Haifa, Rishon LeZion and Beersheba (dashed gray). Incidence curves were normalized by
dividing each incidence curve to its own maximum in order to equalize all maxima and emphasize the degree of synchrony. Note early January peak
in Jerusalem and Bnei Brak, a later January peak in all other cities, and a double peak in Ashdod. (B) ILI incidence in same season in the two different
population groups of Ashdod: Ultra-Orthodox (black) and the general population (red). The General population of Ashdod shows a similar incidence
curve to other non-Orthodox cities, while the ultra-orthodox parts of the city resemble the cities which large ultra-orthodox communities.
doi:10.1371/journal.pone.0091909.g005
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could well arise from the impact of significant religious ultra-

orthodox communities in these cities.

Jerusalem and Bnei Brak have very dominant ultra-orthodox

communities (e.g. in 2012 all but one elementary schools in Bnei

Brak are ultra-orthodox schools, and &62% of the Jewish

schoolchildren in Jerusalem attend ultra-orthodox schools [20]).

Since Ashdod has a significant ultra-orthodox population, the data

from Ashdod can be divided into "mainly ultra-orthodox " areas

and "general secular population" areas, based on an Israeli Central

Bureau of Statistics report [21]. A separate incidence curve was

thus created for each population type. It appears that the secular

population of Ashdod is well synchronized with the overall

population of Israel, while the incidence curve of the ultra-

orthodox population of Ashdod shows remarkable resemblance to

those of Jerusalem and Bnei Brak (Figure 5B). This might be an

indication for a separate outbreak of ILI in the ultra-orthodox

population, a phenomenon which was shown before in other

diseases such as measles [22] and mumps [23].

This result is supported by comparisons of the incidence curves

of pairs of cities in the 2001–2002 season. The pairwise incidence

curves of Jerusalem, Bnei Brak and Ashdod were found not to be

different. When compared to the other 9 cities in the dataset, Bnei

Brak’s incidence curve was found to be different to all other cities

in the dataset except Netanya. Jerusalem’s incidence curve was

found to be different to those of all cities except Netanya, Ramat

Gan and Petah Tikva. Ashdod was found not to have a different

incidence curve to any other city. Comparing the incidence plots

of the ultra-orthodox population and the general population in

other cities was not possible due to the lack of data regarding the

number of Maccabi members in each population group.

Discussion

In this work we explore the degree of spatio-temporal synchrony

of influenza in Israel using a high quality ILI dataset (see also [12]).

Perfect synchrony of ILI epidemics would be manifested in

identical attack rates and identically-shaped incidence curves in all

cities. Examination of both of these properties indicates that to a

surprisingly high degree, Israel’s ILI incidence can be seen almost

as a single, homogenous epidemic in all 12 cities analysed in this

work.

It was previously shown that some degree of synchrony of

influenza epidemics exists in all spatial scales up to the scale of a

hemisphere [4,5,11]. It appears, however, that distance reduces

the level of local synchrony. Closer US states show more

correlation in influenza timing and amplitude than states which

are further apart [7]. In addition it was previously shown that the

level of synchrony between Israel and France is high, nevertheless

it is lower than the level of synchrony between Tel Aviv and

Jerusalem which are 62 km apart [12]. Here we extend the study

to include 12 different cities to further investigate the degree of

synchrony of ILI epidemics in Israel. Israel’s small size

(&22,000 km2) combined with a high degree of population mixing

potentially lead to a high degree of synchrony, possibly to an

extent to which it can be regarded as a ‘‘single city’’. Additionally,

the fact that &40% of its population is concentrated in the Dan

Metropolitan Area, a small and dense region in central Israel

(&1,500 km2), further decreases the ‘‘effective area’’ of Israel

which should intensify the population mixing and affect the

epidemic synchronization between the cities in this area, which

contains 7 out of the 12 cities analysed in this work. Unlike

childhood infectious diseases (e.g. measles) in which transmission is

localized due to the contact patterns of children usually limited to

their schools, neighborhoods and close families [7], influenza is a

disease transmitted between individuals of all ages, which could be

a significant factor contributing to highly-synchronized epidemics.

On the other hand, some geographical, environmental and

social properties of Israel contribute to the de-synchronization.

Despite its small size, climate conditions in different areas of Israel

are quite different, in both temperature and humidity, both of

which are known to affect influenza transmission [15,24–27].

These differences in climate conditions are potentially substantial

enough to cause differences in the timing or magnitude of

influenza epidemics in different cities. There is also a considerable

degree of social heterogeneity in the Israeli population, e.g. regions

with concentrations of minority populations such as Arabs and

ultra-orthodox Jews. These sub-populations of the Israeli society

have distinctive social, demographic and economic characteristics

which are known to have effects on their mixing with the more

general population. For instance, during the pandemic in Israel it

was shown that the disease spread faster in soldiers and the

orthodox community [28].

In order to obtain a measure of the differences in the severity of

influenza epidemics in different cities we examined the variation in

ILI reporting rates in different cities using a simple linear model

(the RR/AR method), which explained 75.5% of the variance in

the data. The RR/AR model examines the assumption that attack

rates in all cities in a given season are the same. The model has a

built-in parallel assumption of constant, typical reporting rate in

each city that may differ between cities. Had these two

assumptions been absolutely correct, the model would explain

100% of the variance in the data. Although the result of 75.5% is

remarkably high, it also indicates that these assumptions are not

fully realized in practice and additional causes for differences in

attack rates, which are not incorporated in this model, might also

exist.

The assumption of common attack rate for each season might

be justified on the basis that with the exception of one season, each

influenza season is characterized by a single dominant influenza

strain [12,15]. Although it is known that on a larger geographical

scale there are local outbreaks of different subtypes of influenza

[29], no data exists for the exact dominant subtype of influenza in

each city in Israel. Since in 10 out of 11 seasons in the dataset

there was a single dominant subtype and the geographical spread

of the different subtypes in the remaining season is unknown, the

assumption of spatial homogeneity of influenza strains seems

reasonable. We have also assumed that the reporting rates of ILI

vary between different cities but are constant in time. The

reporting rates might differ between cities for at least two reasons:

population-related and influenza diagnosis related. Population-

related reasons include socio-demographic properties of cities,

such as age structure, household size and unemployment rates,

which can all affect the patients’ tendency to seek doctor

consultation when they have influenza symptoms. We assume,

for example, that unemployed people are less likely to visit a

doctor when they have ILI symptoms since they do not need illness

certificates. In order to test this assumption we checked the

correlation between the estimated reporting rate and the

employment rate of each city. Employment data is published

annually and is available for each year since 2002 [30]. Each city’s

mean employment rate in 2002–2009 was correlated against each

city’s reporting rate and was found to be positive and significant

(p = 0.031, R2 = 0.38). This finding is in agreement with those of

Charland et al (2011) who examined the relationship between

rates of influenza and level of material and social deprivation [31].

Influenza diagnosis affects the variance in reporting rates since

different doctors have different tendencies to diagnose a disease as

ILI. Influenza shares most of its symptoms with other diseases,
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such as common cold [16] RSV and parainfluenza [17]. It is

therefore possible that, especially in the smaller cities, a small

number of doctors who tend or don’t tend to diagnose diseases as

ILI may lead to a higher reporting rate of ILI, or vice versa (this is

known as a classification bias). These properties are assumed to

change at a slow rate, and therefore each city’s reporting rate is

assumed to be relatively constant over the 11-season period. Our

model shows that the differences between reporting rates of

different cities are quite dramatic, with a factor of 2.2 between the

highest and lowest reporting rates (see table 2). Although this

factor might seem large, it is actually similar to what London and

Yorke [14] noted for measles in the US.

The ‘‘shapes’’ of ILI incidence curves of all pairs of Israel’s 12

largest cities in each season were compared using a likelihood-

based test. The test was applied on 726 combinations of two cities

and a season, and found that in 77.4% of the combinations the

incidence curves are not distinctly different, again indicating a

high degree of spatial and temporal synchrony between the cities.

Additionally, this method shows that while some cities are well-

synced with other cities, a few typical cities show relatively poor

synchrony. Each city appeared in 121 pairs out of the total of 726

pairs, and some cities had more pairs that were significantly

different in terms of their incidence curves than other cities (i.e.,

‘‘out of sync’’ incidence curves). The cities with the largest fraction

of ‘‘out of sync’’ curves are Beersheba, the furthest large city from

the Gush Dan area located in the Negev desert (i.e., different

climate conditions and remoteness), and Bnei Brak, a city in the

heart of Gush Dan populated almost exclusively by ultra-orthodox

Jews (see table 3 for full results). The low synchrony of Bnei Brak

compared to other cities might indicate that the coupling between

Bnei Brak’s population with the general population of Israel is

lower than the coupling between the non-orthodox cities. Further

evidence that assortative mixing can lead to unique dynamics can

be found in the early outbreak of ILI in the ultra-orthodox

communities in 2001–2002 (Figure 5). This outbreak is charac-

terized by an ‘‘ultra-orthodox peak’’ which occurred ten days

before the general population but synchronized between the

‘‘ultra-orthodox cities’’. Nevertheless such dynamics are the

exception rather than the rule, and were not observed in any of

the other ten seasons.

Significantly different incidence curves between pairs of cities

might be the result of random effects. For example, an influx of a

few infectives in the early stages of the epidemic might be enough

to change the shape of the incidence curve to a degree that makes

it significantly different to the other city’s curve. However, these

cases seem to be uncommon. Excluding Bnei Brak and Beersheba,

the fraction of significantly different combinations drops from

22.6% to 14.5%. When Haifa, the third-least synchronized city in

the dataset (and the northernmost city in it) is excluded, the

fraction drops to 10.6% of the combinations.

Although ILI incidence data for the 2009–2010 ‘‘swine flu’’

pandemic was available for this analysis, it was not included in it

since this work focuses on seasonal influenza epidemics. However

since a 120-day period is used here for both calculating attack rates

and comparing incidence curves, the inclusion of the 2009–2010

season gives similar results. Israel had three waves of influenza

during the 2009–2010 pandemic. The first two waves, which

occurred in the summer and autumn, showed relatively low

synchrony [28]. However the third wave, which occurred in the

winter and had much higher incidence rates than the first two, had

similar degree of synchrony to seasonal flu epidemics. With the

2009–2010 season included, the RR/AR method explained 71%

of the variance in the attack rate data (compared to 75.5% in the

11-season dataset), the curves comparison method showed that

76.8% of the incidence curve pairs are not different (compared to

77.4%), and the average correlation between incidence curves of

two cities was 0.773 (compared to 0.766).

Overall, it seems that as a first approximation,Israel’s ILI

epidemics are similar enough in both shape and severity to be

considered as a ‘‘One City’’. Subtle differences can be found in the

incidence data, but these deviations from the ‘‘One City’’

hypothesis account for only &25% of the data in both the attack

rates and incidence curves. These differences appear to arise for

both geographical and social reasons.

Methods

1. Reporting Rates and Attack Rate Model
Given the observed attack rate data Ic,s (c = 1,2…,n, s =

1,2…m) for n cities over m seasons, we show how to estimate the

parameters as (s = 1…n) and rc, (c = 1…m) based on the model:

ic,s~as
:rc
:ec,s ð4Þ

Since there is no single best-fitting set of parameters to this

model (see below), we set the sum of all attack rates to unity, that isP
as~1. To find the typical reporting rate of each city, note:

Xm

s~1

ic,s~
Xm

s~1

rc
:as~rc

Xm

s~1

as~rc ð5Þ

The typical attack rate of each season is found usingPn
c~1 ic,s~n:as

P
c

rc

n
~n:�rr:as

where �rr~

Pn

c~1
rc

n
~
PP

rc,s~b, and thus

as~

Pn
c~1 ic,s

nb
ð6Þ

2. Comparing Incidence Curves of Two Cities
We present a bootstrap-based approach for testing the null

hypothesis that incidence curves of two cities are identical, after

taking into account that the cities may have different reporting

rates. Given influenza incidence data for two cities over T days,

with 1 # t # T, then our null hypothesis is that there is a vector pt

(1 # t # T) which gives the probability that any person, in any

city, is diagnosed with ILI on day t. The constant reporting rate rk
for city k (k = 1, 2) is the probability that an individual who

becomes infected develops symptoms, goes to the doctor, is

diagnosed with ILI, and that the case is reported.

Denote the population numbers of city k as Nk. By the above,

the expected value for the number of cases on day t in city k is

Ek,t~pt
:rk
:Nk ð7Þ

The probability that an individual in city k becomes infected

and is reported is ptrk, so that the number ik,t of reported new cases

is binomially distributed
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ik,t eBinomial(Nk,ptrk)

Since Nk is large, this distribution can be approximated by a

Poisson distribution

ik,t ePoisson(ptrkNk)~Poisson(Ek,t) ð8Þ

As shown shortly, the model parameters pt and rk can be

estimated from the data and the fit of the model to the data can be

tested.

As in the attack rate model above, if we multiply all values pt by

a constant c and divide all the values rk by the same constant, the

model is left unchanged. So there is no possibility to identify the

parameters uniquely. To overcome this indeterminacy, we set

arbitrarily

XT

t~1

pt~1 ð9Þ

The likelihood function (the probability of obtaining the data

ik,t, assuming model (2)), is given by:

L(p,r)~P
2

k~1
P

T

t~1

e
{PtrkNk

(PtrkNk)
ik,t

ik,t !

ð10Þ

hence the log-likelihood is given by

LL(p,r)~
X2

k~1

XT

t~1

½{ptrkNkzik,t log (ptrkNk){ log (ik,t!)� ð11Þ

To fit the parameters we maximize LL with respect to pt, rk.

Differentiating we have

LLPt (p,r)~
X2

k~1

{rkNkzik,t
1

pt

� �
ð12Þ

LLrk
(p,r)~

XT

t~1

{ptNkzik,t
1

rk

� �
ð13Þ

so the optimality conditions are

1

pt

X2

k~1

ik,t~
X2

k~1

rkNk ð14Þ

rkNk

XT

t~1

pt~
XT

t~1

ik,t ð15Þ

from (15) and (9) we have our maximum likelihood estimate

for rk

r̂rk~
1

Nk

XT

s~1

ik,s ð16Þ

Plugging (16) into (14) we get our maximum likelihood estimate

for pt

p̂pt~

P2
k~1 ik,tP2

k~1

PT
s~1 ik,s

ð17Þ

Note that r̂rk is simply the attack rate in city k (fraction of

population who got infected during that season). p̂pt is the total

number of reported cases (in both cities) on day t, divided by the

total number of reported cases in the season. Because of the

arbitrary normalization (4), these two parameters do not have their

original meaning of reporting rate and probability of being

infected, but as we noted above, this fact is of little importance,

since we are only interested in the product p̂ptr̂rk, which retains its

meaning as the probability that a person in city k on day t is

infected and reported.

From (16) and (17) we get that the expected number of cases in

city k on day t is

Ek,t~p̂ptr̂rkNk~

P2
l~1 il,t

� � PT
s~1 ik,s

� �
P2

l~1

PT
s~1 il,s

ð18Þ

Testing goodness of fit. If our model is consistent with the

data then we should have that ik,t is ‘close’ to Ek,t, for both cities

k = 1,2, for all t. This was tested by generating 1,000 simulated

epidemics for each one of the cities using the computed Ek,t values

by generating k,t randomly according to

~iik,t ePoisson(Ek,t) ð19Þ

Then, the log-likelihood of each of the simulated epidemics was

calculated:

LL(p̂ptr̂rk)~
Xn

k~1

XT

t~1

{Et,kz~iik,t log (Et,k){ log (~iik,t!)
� 	

ð20Þ

(note that the values Ek,t are computed using the real data, while

k,t are obtained from the simulated data). 95% confidence intervals

for LL(p̂ptr̂rk) were obtained by finding the 50th smallest value

computed out of the 1,000 simulations, and comparing this value

to the log-likelihood value computed for the real incidence data:

LL(p̂ptr̂rk)~
Xn

k~1

XT

t~1

{Et,kzik,t log (Et,k){ log (ik,t!)½ � ð21Þ

In other words, our H0 cannot be rejected if the log-likelihood

of the real incidence data is not significantly smaller than the
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log-likelihood of the simulated epidemics. H0 is rejected if the log-

likelihood of the real data is smaller than that of the 50th smallest

likelihood value of the simulated epidemics.

Since the raw data has a strong weekly cycle, with very few

reported cases during the weekends, the data was summed over

weeks and the incidence for each day was set to be 1/7th of the

total weekly incidence.
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