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To accurately perceive the world, people must efficiently combine internal beliefs and

external sensory cues. We introduce a Bayesian framework that explains the role of

internal balance cues and visual stimuli on perceived eye level (PEL)—a self-reported

measure of elevation angle. This framework provides a single, coherent model explaining

a set of experimentally observed PEL over a range of experimental conditions. Further, it

provides a parsimonious explanation for the additive effect of low fidelity cues as well as

the averaging effect of high fidelity cues, as also found in other Bayesian cue combination

psychophysical studies. Our model accurately estimates the PEL and explains the form

of previous equations used in describing PEL behavior. Most importantly, the proposed

Bayesian framework for PEL is more powerful than previous behavioral modeling; it

permits behavioral estimation in a wider range of cue combination and perceptual studies

than models previously reported.
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INTRODUCTION

On a daily basis, our bodies integrate millions of separate stimuli to enable our perception of
the world, ranging from visual and auditory stimuli to internal cues. Our brain integrates all
of these separate stimuli into what appear to be clear perceptions (Ernst, 2006). As a result, in
order to fully understand perception, we must understand how various stimuli are combined and
interpreted. Various methods have been used to accomplish this in previous research, such as
maximum-likelihood estimation (Hillis et al., 2004), modified weak fusion (Landy et al., 1995),
perturbation analysis (Young et al., 1993), and Bayesian analysis (Kersten et al., 2004). Importantly,
all these behavioral modeling approaches use relatively simple mathematical frameworks to explain
what can appear to be complex behavioral phenomena.

The use of Bayesian analysis in perceptual studies is well justified by previous models of
perceptual decision making. The Bayesian coding hypothesis assumes that the brain represents
information probabilistically (Knill and Pouget, 2004). Although, finding direct neural correlates of
these statistical distributions is not always readily apparent, the ability to simulate behavior using
these principles suggests this type of computation plays a substantial high-level role in perceptual
processing. Previous research has explored this type of Bayesian analysis for cue combination,
object perception (Kersten et al., 2004), spatial localization (Battaglia et al., 2003), and forms of
visual perception (Bridgeman, 2003).

Perceived eye level (PEL) is a self-reported measure of elevation angle interpreted from a
combination of visual and internal cues. Estimating PEL is important as having an accurate PEL
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plays a role in judging height, distance, elevation, and size of
objects. Different factors can confound our perception of eye
level, however, causing PEL to differ from the actual eye level.
These factors can be classified as internal factors, such as the
head’s position relative to gravity, or external factors, such as
strength of visual stimuli. Further, it is known that visual stimuli
can contribute to the error in perceiving eye level as we make a
wide variety of assumptions regarding the orientation of objects
relative to gravity. For example, we have a strong disposition to
assume near-vertical lines on a distant wall are truly vertical, and
observed visual pitches can be attributed to perspective above or
below the horizontal. Estimating this behavior can be structured
as a Bayesian cue-combination problem, modeling the effect of
multiple stimuli on the perception of eye level.

In this study, we use Bayesian analysis to derive a simple
framework that can be used to estimate perception frommultiple
sensory cues. This model provides a parsimonious explanation
of the additive effects of low fidelity cues, as well as the
averaging effect of high fidelity cues, previously documented in
other Bayesian cue combination psychophysical studies (Young
et al., 1993; Gu et al., 2008). Further, our model accurately
predicts PEL and provides the means of deriving an appropriate
analytical function that can describe behavior. We demonstrate
the Bayesian model as a principled approach in estimating PEL.

METHODS

Experimental Design
An experiment can be conducted to measure the effect of
multiple visual cues on PEL—we will follow the experimental
design from Matin and Li for comparison (Matin and Li,

FIGURE 1 | Perceived eye level using a Bayesian model with Gaussian priors and likelihoods. (A) The subject’s perceived eye level distribution in the dark

from proprioceptive and vestibular cues—the “body prior.” (B) Two-line stimuli of differing lengths and pitch angles. (C) The likelihood for eye level estimation from the

2-line visual stimuli, with means centered on the angle expected from a geometric interpretation and variances dependent on the length of the lines. (D) The resulting

posterior distribution, the combination of the internal stimuli and the visual stimuli, as determined by Bayes rule. (E) The means of the posterior distributions, the

expected reported value for perceived eye level, are then calculated, based on the Bayesian model.

2000). Subjects are seated upright with their heads stationary
on a chin rest, one meter away from a blackened wall with
pitched illuminated lines (visual cue). A laser point target is
shown on the wall, along the subjects’ midsagittal plane. The
subject is asked to identify where their eye level is located by
repositioning the laser target, without any visual cues present
in the room. The PEL of the subject, due to internal stimuli,
is recorded. After this initial measurement, a pair of vertical
illuminated lines of different lengths are introduced on the wall.
The subject is again tasked with lining up the laser target with
their eye level. The PEL of the subject is recorded. This would
be continuously repeated with the illuminated lines of different
pitches and lengths until multiple measurements are collected
for each subject. From this description, we apply a Bayesian
framework to derive amodel of PEL from first principles allowing
us to predict the form of PEL expected prior to performing the
experiment.

Gaussian Cue Combination
In order to use a Bayesian framework, we must define the
prior, likelihood, and posterior distributions. Our prior in
this experiment is the body-referenced mechanism for PEL
estimation—the internal cues are what originally structure our
belief about eye level before being presented with stimuli. We
approximate this prior as a Gaussian distribution with a mean
µb and standard deviation σb. There is also the estimate of
eye level that comes directly from a geometric interpretation
of visual information. In this case, lines can be pitched to give
the appearance of a particular tilt from vertical, assuming the
observed line is vertical but tilted due to geometric perspective.
This purely visual contribution to the perception is µvi for
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individual visual cues andµv for the combination of visual cues—
and similarly σvi and σv for the standard deviations. The posterior
distribution, or the effect of n visual stimuli and internal cues
on PEL, would be the combined effect of the body prior and
the visual likelihood, described by µp and σp. This posterior
distribution would then provide the estimate of the perceived
of eye level. These distributions and their final combinations are
demonstrated in Figure 1.

As a first step in deriving the equation for PEL in this
experimental condition, we first combine the likelihoods of
multiple pitched lines. Since we are using Gaussian distributions
for our likelihoods, we can achieve this by multiplying them
together. The resulting distribution is also Gaussian, with a mean
µv and variance σ 2

v :

µv =
[

∑n

i= 1

µvi

σ 2
vi

]

σ 2
v (1)

1

σ 2
v

=
∑n

i= 1

1

σ 2
vi

(2)

As σ 2
v is in both equations, we can simplify through substitution

to obtain the following likelihood estimate based only on visual
information. This is the composite likelihood function which will
be used in the derivation of µp.

µv =
[

∑n

i= 1

µvi

σ 2
vi

]

∗
1

∑n
i= 1

1
σ 2
vi

(3)

Estimating Variances for the Model
To use Gaussian distributions for the priors and likelihoods,
two variables are necessary for each stimulus—the mean and
variance. The means for the body and individual visual stimuli
can be assumed/easily measured and estimated based on
geometric interpretation, respectively. However, the variances
must be experimentally determined.

A common method to quantifying the effect of priors and
likelihoods in Bayesian analysis is to observe the change in the
percept as the mean of the likelihood is altered. When plotted, as
done in Figure 2, the slope indicates the relative strength of the
visual likelihood compared to the body-based prior. Analytically,
this slope is directly related to the ratio of the variances, as
shown in Equation (4). Using experimental data of true angle
versus perceived angle from Matin and Li this slope, m, can be
experimentally determined.

m =
σ 2
b

σ 2
b
+ σ 2

v

(4)

With only the two unknown variances in the above equation,
having one value will be sufficient for estimating PEL.
Fortunately, σ 2

b
, is readily available experimentally by recording

the standard deviation of the PEL estimates when there is
no visual information. Using this information, we can then
estimate the variance of the combined visual likelihood using
Equation (5).

FIGURE 2 | This graph depicts the experimental trends of average

perceived eye level based on pitch. The prior (black), the body-referenced

mechanism, is centered on the true eye level. The likelihood (blue), represents

PEL if only the visual information was used. The experimentally measured PEL

is shown for single short line (purple) and long line (green). The equation for the

short-line regression is y = 0.1415x − 1.869, whereas the equation for the

long-line regression is y = 0.3234x − 4.9429. These single line slopes are

used to solve for the variances in our model, as shown in Equation (5).

σ 2
v =

∣

∣

∣

∣

∣

σ 2
b

m
− σ 2

b

∣

∣

∣

∣

∣

(5)

RESULTS

Derivation of the Bayesian Model
Proceeding from Equation (3), if line length is constant, all visual
stimuli will have equal variance (σvi are equal for all values of i).
As such, σvi can be factored out of both summations and

∑n
i= 1 1

becomes n. Further, the likelihood mean from each line, µvi, can
be relabeled θi for clarity as the angle is known and does not
need to be estimated. This allows us to create a new estimated
likelihood mean based on visual cues of the same line length.

µv =
[

1

σ 2
vi

∑n

i= 1
θi

]

∗
1
n
σ 2
vi

(6)

We proceed to introduce the prior internal (“body”) mean, µb,
and variance, σ 2

b
(which are equivalent to the mean and variance

of PEL in complete darkness). Using the same, multiplication-
of-Gaussians approach to find the mean and variance of the
posterior, as discussed in the Methods Section, we arrive at the
following formulation for the mean PEL.
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µp =

[

µb

σ 2
b

+
1

σ 2
vi

∑n

i= 1
θi

]

∗
1

1
σ 2
b

+ n
σ 2
vi

(7)

This equation can be algebraically rearranged and simplified to:

µp =
µb

1+ n σ 2
b

σ 2
vi

+
∑n

i= 1 θi

σ 2
vi

σ 2
b

+ n
(8)

However, we note that σvi depends on line length, and we
would like a function independent of line length if possible.
If we assume each additional segment of line length provides
an independent sample to establish the slope of the line, we
can approximate the relationship between line length and visual
variance as an inversely proportional relationship. The validity
of this independence assumption is clearly more questionable
as line length increases, however, this approach provides a
theoretically-justifiable approximation to parametrically estimate
behavior when presented with variations in line lengths. Under
this assumption, the form of that relationship is then similar
to the standard error estimate from a sample mean, σvi =
σvl/

√
(l), where σvl is independent of line length. The result of

this substitution yields:

µp =
µb

1+ nσ 2
b
l

σ 2
vl

+
∑n

i= 1 θi

σ 2
vl

σ 2
b
l
+ n

(9)

This is our final model, however, we can make a few substitutions
to simplify use in an experimental setting. The first term in
Equation (9) can be simplified as a function based on line length,
abbreviated a(l), as given in Equation (11). Note, this indicates

than an increase in the number of lines or line length should

diminishes the value of a(l). Further,
σ 2
vl

σ 2
b

is composed of constants,

so it can be substituted as a constant, k, as shown in Equation
(12). This yields a simple form of the model to predict average
PEL, given in the follow set of equations:

µc = a(l)+
∑n

i= 1 θi
k
l
+ n

(10)

a
(

l
)

=
µb

1+ nl
k

(11)

k =
σ 2
vl

σ 2
b

(12)

Predictive Ability of the Bayesian Model
To test the validity of our derived Bayesianmodel in experimental
circumstances we used data from the experiment outlined in
Section Methods, performed by Matin and Li (2001). The
experiment was performed with 2 line lengths (short 12◦ and long
64◦) with pitches from −30 to 30◦ in 10◦ increments. According
the Bayesian model as pitch angle (θi) increases, the mean PEL
increases as well. However, PEL will never exceed the pitch angle.
This is demonstrated in Figure 2. As such, PEL lies between
estimates from internal cues (prior) and the pitch angle. Similarly,
as the strength (line length) of a visual input increases, so does
the influence of the visual stimuli on the perception of eye level,
as PEL moves away from the prior. Both of these phenomena are
demonstrated experimentally (Matin and Li, 2000, 2001).

The interpretation of multiple visual cues demonstrates an
interesting perceptual trend. When two separate visual cues
are observed independently, two distinct percepts of PEL are

FIGURE 3 | Experimental data, collected by Matin and Li. A linear regression for the data is displayed (black), as well as lines displaying the summation of

single-line PELs (red) and averaging of single-line PELs (blue). (A) This depicts long-line experimental data with m = 0.666, signifying a near-averaging relationship

between high-fidelity cues (blue dotted line). (B) This chart depicts short-line experimental data with m = 0.9998, signifying a summative relationship between

low-fidelity cues (red dotted line).
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obtained. When the cues are given together, the resulting PEL
appears to fall in two distinct regimes. Weak cues (e.g., short
lines) PELs are additive, while strong cues (e.g., long lines) are
averaging. This is a fact that have been observed and explained
in previous psychophysical studies (Young et al., 1993; Gu
et al., 2008) as well as neural cue integration (Fetsch et al.,
2013). This was also demonstrated experimentally, long-line
stimuli almost averaged in their influence on PEL and short-
line stimuli appearing to be summed in the determination of
PEL (Matin and Li, 1999, 2000). Figure 3 is an adaptation of
the result from Matin and Li demonstrating this phenomenon.
One can also observe from Equation (10) that as line length
increases, the denominator tends toward “n” thus approaching an
averaging effect, while shorter line lengths lead to the constant “k”
dominating the denominator which leads to a summation effect.
The compensatory effect of a(l) should be minimal given the
tendency of the body prior to be near 0. In this way, this observed
combination effect can be seen analytically in our model.

Note, this additive/averaging effect in cue combination
is well understood in Bayesian literature. Our model also
exhibits these effects straightforwardly by adjusting the likelihood
variances based on line length. Weaker, short line stimuli lead
to shallow, high-variance likelihoods which individually only
marginally move the posterior from the body prior, but together
the combined posterior moves farther than any one alone
(“additive”). With the strong, low-variance likelihoods from long
line stimuli, the posteriors are dominated by the likelihoods,
leading to a combined posterior between the likelihoods when
presented with two strong long line stimuli (“averaging”). The
visual demonstration of this effect using the Bayesian framework
is shown in Figure 4. The Bayesian approach successfully
explains the effects observed with multiple cues.

Comparison to Previous Model
From experimental results and fitting the behavioral data, a
model was previously developed to explain the effects of multiple
lines on the perception of eye level (Matin and Li, 2001).

Bayesian Model:

PEL = µp = a(l)+
∑n

i= 1 θi
k
l
+ n

(13)

Matin and Li Model:

PEL = a+
k1

∑n
i= 1 θi

k2
l
+ n

(14)

TheMatin and Li model is very similar to our model. The notable
difference between the previous model and the Bayesian model
is the existence of k1 in the Matin and Li model. Another small
difference remains, as a is defined as a constant in the Matin and
Li model, whereas it is derived as a function dependent on line
length in our model. Our framework also allows the model to be
derived for various different scenarios, such as for multiple lines
of different lengths, as well as has the ability to be extended to
other studies, perhaps even unrelated to PEL as studied here.

From experimental results shown in Figure 2 we calculated
variance estimates for single line cues from a linear fit of the

FIGURE 4 | A Bayesian interpretation of the “averaging” and “additive”

effects of multiple cues in PEL. Gaussian distributions of the internal priors

(dashed, red), likelihood of the individual visual lines (dashed, green and

(Continued)
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FIGURE 4 | Continued

purple), and the single-line posterior distributions/PELs for each visual cue

(solid, green and purple). The location of these PEL posterior means can be

compared to the combined-cue posterior (black) to note the averaging or

additive effect of combining multiple cues. This is shown for both long-line

cues (A) and short-line cues (B) and displays the “nearly averaging” and

additive effects, respectively, as seen in the data. Ideal, high-fidelity stimuli are

shown as well (C) demonstrating a clear averaging effect.

TABLE 1 | Standard deviation and mean estimates for single-line inputs

calculated from experimental data as discussed in Methods.

Bayesian model parameters

Parameter Value

Internal (prior) std dev ±2.08

Internal (prior) mean −0.622

Long line likelihood std dev (σvi ) ±3.01

Short line likelihood std dev (σvi ) ±5.12

TABLE 2 | Parameters obtained from previous work directly fitting to

behavioral data.

Matin and Li model parameters

Constant Short line values Long line values

a −0.29 −4.61

k1 0.51 0.51

k2 19.44 19.44

data. These results are presented in Table 1. With the prior and
likelihood distributions’ variance estimates, all necessary values
are known for a complete Bayesian model. The fitted constants
for Matin and Li’s behavioral model (Equation 14) are displayed
in Table 2. For each model we predicted the mean PEL given the
experimental condition. Using the standard error in estimation
we measured the accuracy of our predictions, displayed in
Table 3. Both models are accurate (no standard errors over 3◦)
with the Matin and Li model slightly more accurate for long-line
stimuli and the Bayesian model performing better with short-line
stimuli. This is fitting with the independence assumption for how
line segments contribute to variance estimates, which suggested
the Bayesian model may not hold as well for longer line stimuli.

DISCUSSION

Our Bayesian framework successfully derived a model to predict
PEL from first principles without the need for experimental data.
Whereas, the Matin and Li derived equation could only take into
account n visual stimuli of the same length, our framework can
be extended analytically to take into account n visual stimuli of
varying lengths, all from the same basic principles demonstrated
in this manuscript. The simplicity of the Bayesian framework
is also an indication of its latent power for prediction. This
framework can be analytically derived and expanded to multiple
studies in a straightforward way, including multiple lines of

TABLE 3 | Using variance estimates from Table 1 in our Bayesian model

and constant values from Table 2 in the Matin and Li Model, we predict

the effect of two short or long pitched-from-vertical line stimuli on

perceived eye level.

Model Short-12◦ SEE Long-64◦ SEE

Bayesian ±0.78 ±4.81

Matin and Li ±1.63 ±2.57

The predicted means were close to those observed experimentally, signified by a low
Standard Error of Estimation (SEE). Similar to the Matin and Li model, our predictions
were more accurate for short-line stimuli than long-line stimuli.

varying lengths, non-line visual stimuli, andmanipulations of the
body prior for PEL. The same tools can be applied to enable a
straightforward interpretation for combining these, or additional
stimuli, to estimate the percept.

It is important to stress that this Bayesian interpretation
does not preclude a more detailed, biophysical explanation. The
approach explains the computational principles likely involved,
but not how they are implemented, consistent with David Marr’s
levels of analyses (Marr, 1982). Marr categorizes all models
into three levels: the computational level, the algorithmic level
and the implementation level. Here, we only address the first
level, which constrains but does not conflict with other potential
models that explain this behavior. Matin and Li’s experimentally
justified creation of Equation (13) provides a succinct, high-level
summary of behavior; however, it should be apparent that such
fitting to the data may explain “what” is occurring, but a Bayesian
derivation adds a clearer picture of “why” such an equation
fits the data as presented. Again, this Bayesian interpretation
does not preclude other lower-level interpretations. For example,
Matin and Li in 2001 proposed a neurophysiological model to
explain this behavior. This is a separate level of analysis as the
Bayesian approach and should not be considered in conflict
with this, or other, potential algorithmic or implementation-level
explanations of observations.

Our Bayesian PEL model adds to the growing repertoire of
Bayesian perceptual papers addressing a wide range of perceptual
topics. Bayesian principles have explained visual illusions in
end-point occluded or low-contrast rhombus motion (Weiss
et al., 2002). Bayesian inference can predict the effect of visual
and vestibular cues in the determination of heading (Butler
et al., 2010). Bayesian integration has also successfully modeled
the effect of visual and auditory signals on spatial localization
(Battaglia et al., 2003). Our PEL Bayesian analysis and Bayesian
framework adds to this body of knowledge further demonstrating
the power of Bayesian techniques in perceptual studies.

We have successfully demonstrated a Bayesian framework
to model cue combination in a perceptual study of PEL.
Using the approach we derived a model for PEL from
first principles which matched the experimentally determined
behavior demonstrated by researchers Matin and Li. Further,
this model explains trends and phenomena associated with
PEL, providing a straightforward, parsimonious explanation
of the “summing” and “averaging” effects on PEL when
combining weak and strong visual cues. Most importantly, the
Bayesian approach is more amenable to incorporate different
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experimental conditions, such as varied line lengths or additional
stimulus types. This framework is more parsimonious, and
subsequently more powerful, further enabling other perceptual
studies.
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