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Abstract

High-dimensional datasets on cultural characters contribute to uncovering insights about factors 

that influence cultural evolution. Because cultural variation in part reflects descent processes with 

a hierarchical structure – including the descent of populations and vertical transmission of cultural 

traits – methods designed for hierarchically structured data have potential to find applications in 

the analysis of cultural variation. We adapt a network-based hierarchical clustering method for use 

in analysing cultural variation. Given a set of entities, the method constructs a similarity network, 

hierarchically depicting community structure among them. We illustrate the approach using four 

datasets: pronunciation variation in the US mid-Atlantic region, folklore variation in worldwide 

cultures, phonemic variation across worldwide languages and temporal variation in first names 

in the US. In these examples, the method provides insights into processes that affect cultural 

variation, uncovering geographic and other influences on observed patterns and cultural characters 

that make important contributions to them.
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Introduction

In recent years, increasingly available large-scale datasets on aspects of variation across 

human cultures and within cultures over time have provided rich information about 

fine-scale details of human cultural variation and the factors that influence its dynamics 
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(Mesoudi, 2016; Kolodny et al., 2018). For example, investigations of variation in folktales 

among cultures have identified interactions of cultural diffusion and demic diffusion in the 

spread of folklore and mythology (Bortolini et al., 2017; Thuillard et al., 2018). A study 

of design features of traditional canoes across Polynesian societies has suggested a faster 

rate of cultural change in canoe traits that were less significant to functional performance 

of the watercraft, in line with the faster evolution that occurs for non-functional rather than 

functional genetic variants (Rogers & Ehrlich, 2008). Studies of variation in the presence 

and absence of linguistic characters across languages have uncovered influences of ancient 

migrations on patterns of language variation observed today (Atkinson, 2011; Creanza et al., 

2015).

The analysis of complex data to reveal features of cultural variation makes use of a 

variety of statistical methods designed for high-dimensional data analysis more generally. 

Such methods include analyses of distance matrices based on cultural traits of interest 

(Rogers & Ehrlich, 2008; Creanza et al., 2015; Bortolini et al., 2017; Thuillard et al., 

2018), multivariate analysis techniques such as principal components analysis (Creanza et 

al., 2015), correlations involving spatial statistics and geographic maps (Atkinson, 2011; 

Creanza et al., 2015; Bortolini et al., 2017) and hierarchical tree-based clustering (Creanza et 

al., 2015; Thuillard et al., 2018).

Viewed in relation to their underlying generative processes, different forms of cultural 

variation often possess shared features (Cavalli-Sforza & Feldman, 1981; Boyd & 

Richerson, 1985). Different cultural entities might possess a shared variant, as a result 

of processes such as the independent origin of functionally significant variants, random 

recurrence of non-functional variants or cultural exchange. Salient among the forces 

contributing to patterns of cultural variation is shared descent, so that even if independent 

origins and cultural exchange are important in specific settings, hierarchical or geographic 

structure can often contribute to features of cultural variation.

Owing to the importance of shared descent in influencing cultural variation, tools for 

analysing cultural variation data can employ methods suited to the analysis of genetic 

data, which also possess signatures of shared descent; thus, many statistical methods used 

in cultural data analysis are similar to those used for genetic data (Bromham, 2017; 

Gray et al., 2010; Pagel, 2009). Recently, we have introduced a method, NetStruct, for 

use in understanding genetic variation data that result from hierarchical genetic structure 

(Greenbaum et al., 2016, 2019). The method, employing ideas from network analysis, 

produces a distinctive form of visualization of hierarchical population relationships. It has 

been seen to detect subtle patterns that have been overlooked using earlier forms of data 

analysis.

The NetStruct method consists of three main steps: construction of similarity matrices 

between entities; community detection in similarity matrices; and hierarchical visualization 

of communities. The method is general beyond genetic data, as the form of the data 

contributes only to the choice of similarity function. It can thus be modified for use with 

other types of data that result from distinct but related generative processes, including data 

on cultural variation.
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Here, we adapt the NetStruct method for use in the study of cultural evolution. We 

examine a variety of datasets on different forms of cultural variation, considering geographic 

variation in English pronunciation, variation across cultures in folklore, phonemic variation 

across languages and temporal variation in frequencies of first names. Using each of the 

four forms of cultural data, we illustrate the potential of the method as an exploratory 

tool to reveal features of geographic and temporal structure in cultural phenomena and to 

extract patterns that can inspire hypotheses about underlying mechanisms. Each example 

additionally highlights a different aspect of the hierarchical analysis: analyses at different 

levels of detail in the hierarchy, identification of characters that are important in driving the 

partitioning, analysis of outliers and the relationship of the hierarchy to features of entities 

beyond those used in its construction.

Results

Generalizing the NetStruct pipeline

In the first step of the NetStruct method, for a set of entities, each having a value for each 

of a series of characters, we construct an n × m data matrix A with n rows corresponding to 

entities and m columns corresponding to characters. Entry Aij gives the value of character 

j for entity i; this value can be either categorical or quantitative, depending on the type of 

character.

The similarity between two entities i1 and i2, denoted si1,i2, is computed by a function 

applied to rows i1 and i2. We normalize pairwise similarities so that they take on values 

in [0,1]. The resulting n × n similarity matrix S then becomes the adjacency matrix of a 

similarity network. The similarity function is chosen based on a particular application of 

interest.

In a network, community structure exists when high concentrations of edges occur within 

certain groups of nodes in the network and low concentrations occur between these groups 

(Girvan & Newman, 2002). In the second step of NetStruct, we iteratively remove edges 

with lower weights from the network to reveal the finer-scale structure within coarser 

communities. NetStruct uses a community-detection Louvain algorithm (Blondel et al., 

2008) together with an iterative edge-pruning method (Greenbaum et al., 2019). The 

Louvain algorithm maximizes a ‘modularity score’ for each community, quantifying the 

difference between the actual density of edges within the community and the expected 

density if all edges in the network were distributed at random while preserving the degree 

distribution of the network. The Louvain algorithm starts by assigning each node to its own 

community, sequentially merging nodes into communities in a manner that produces the 

greatest modularity increase – until no further increase occurs. NetStruct iteratively removes 

edges below a weight threshold of increasing value and applies community detection in each 

subdivided community at each iteration, generating hierarchical structure at multiple levels.

Finally, in the last step, the communities detected at each iteration are assembled to form 

the output hierarchy, which can be visualized as a hierarchical tree coded by a colouring 

scheme. Because clustering is hierarchical, each entity can belong to multiple communities, 
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or clusters, at different hierarchical levels; that is, each cluster can have finer-scale ‘child’ 

clusters.

NetStruct visualizes community structure using a diagram that depicts hierarchical 

relationships among clusters. Each cluster is assigned an interval representation of a colour 

gradient; the root node is assigned the unit interval. Child clusters are assigned equal 

portions of the interval associated with their parental node. Clusters are coloured by the 

midpoint of the associated interval, such that at each hierarchical level, child clusters of 

the same parent have colours that are more similar than are those of different parents. 

The colour scheme facilitates interpretation, as the original entities can be labelled by the 

finest-scale cluster to which they are assigned in the diagram.

To generalize the use of NetStruct beyond genetic data, we require a function that describes 

similarity between pairs of entities of interest. Many similarity measures are possible, and 

NetStruct is applied to the similarity matrix after it has been constructed. For a given dataset 

of interest, the similarity function is chosen in a manner suited to the application. We follow 

Greenbaum et al. (2016, 2019) in choosing frequency-weighted similarity measures that 

emphasize shared rare values of a character.

Variation in pronunciation across locations

For our first example, we examined data on individual variation in pronunciation. Local 

variation in communication variants has the potential to provide insight into cultural 

transmission and spatial patterns of distinctiveness and interaction in a population 

(Nerbonne & Kleiweg, 2003; Rendell & Whitehead, 2005; Aplin, 2019). To understand 

the relationship between geography and individual-level pronunciation of a shared human 

language, we applied NetStruct to data on English pronunciation variation in the middle and 

south Atlantic region of the US.

LAMSAS pronunciation data—We obtained pronunciation variation data from the 

Linguistic Atlas of the Middle and South Atlantic States (LAMSAS; Kretzschmar et al., 

1993). These data consist of dialect records on pronunciations of everyday words collected 

in 1933–1942 from 11 states: Delaware, Maryland, New Jersey, New York, North Carolina, 

Pennsylvania, South Carolina, Virginia and West Virginia, with some records from eastern 

Georgia and northeastern Florida included as well.

We restricted our analysis to n = 839 informants interviewed by the major field worker 

(Nerbonne & Kretzschmar, 2003) and m = 69 words recorded for most informants. We 

constructed the n × n similarity matrix based on phonetic transcriptions of pronunciations 

of the m words. The similarity is greater when informants share many pronunciations, and 

when they share rare pronunciations (see the Methods section). We then applied NetStruct to 

infer hierarchical structure.

Hierarchical structure of pronunciation variation: Levels of detail—Figure 1 

presents the hierarchical structure of pronunciation variation in the LAMSAS data. In Figure 

1a, we colour informants on the map by their finest-scale clusters in the tree diagram. In 

the NetStruct colour scheme, informants with more similar colours appear closer in the tree 
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diagram, and those with distinct colours are placed in different branches at relatively high 

levels in the hierarchy. For example, in Figure 1a, the distant colours purple and yellow 

belong to different major branches of the hierarchy; informants coloured purple are mostly 

in the northern part of the Atlantic region and those coloured yellow are mostly in the 

southern part.

To examine the two major clusters at a finer level of detail, we reapply the colouring, for 

each cluster assigning the root node the colour corresponding to the midpoint in the unit 

interval (Figure 1b and c). Within each of the two clusters, finer levels of the hierarchy 

group together informants who are geographically closer. In the cluster that contains most 

of the individuals from the more northerly regions (Figure 1b), pronunciation distinctions 

can be observed in groups corresponding largely to New York and to West Virginia. In 

the cluster that contains most of the more southerly individuals (Figure 1b), a distinction 

is noticeable between finer clusters corresponding to North Carolina and to Virginia, with 

some individuals in both states placed in small clusters.

We repeat the process to examine Figure 1c in even finer detail. This analysis, in Figure 1d 

and e, illustrates that at lower levels of the hierarchy, clusters are not always associated with 

geographical features. However, we observe that year of birth is strongly associated with 

cluster assignment at this local geographic scale (Figure 1d and e). In other words, in some 

tree branches, clusters within a branch correspond to age structure, rather than to geography.

This analysis highlights that our clustering extracts one set of features from pronunciation 

variation at high hierarchical levels – geographical variation in informants – and at lower 

hierarchical levels, it captures other features, such as age structure. The analysis of multiple 

hierarchical levels assists in the interpretation of the patterns both at the broadest scale as 

well as at fine-scale levels.

Variation in folklore motifs across cultures

In the study of folklore and mythology, recurring plot patterns, or ‘motifs’, occur 

across cultures. Motif variation can provide insight into cross-cultural patterns, including 

migrations and cultural transmission in relation to ethnolinguistic barriers (Berezkin, 2010; 

Bortolini et al., 2017; Korotayev et al., 2017; Thuillard et al., 2018). Here we used 

folklore motifs to analyse cultural variation, identifying motifs important in constructing 

the proposed hierarchical relationships.

Database of folklore—We examined data on the presence and absence of folklore motifs 

in individual cultures. Using folklore data from around the world, Berezkin et al. (Berezkin 

et al., 2009; Korotayev et al., 2017) tabulated recurring motifs prominent in links between 

folklore traditions, defining a motif to be ‘any image, compositional structure, episode or 

chain of episodes found in more than one text’. Berezkin et al. reported a list of cultures for 

each motif.

We focused our analysis on the n = 65 regions in the Berezkin et al. database and the m = 

2459 motifs appearing in at least two of these regions. We computed similarities between 
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pairs of regions based on numbers of shared motifs, negatively weighted by motif frequency 

(see the Methods section).

Hierarchical structure of folklore variation: important characters—Figure 2a 

presents the hierarchical structure of motif variation extracted using the pairwise similarities 

calculated based on all motifs. The geographic regions are mostly clustered into three large 

areas: Eurasia and Africa (purple), North America (blue) and South America (orange), with 

varied placement of populations from Australia and Oceania.

To identify which motifs are most important for extracting the hierarchical features, 

we adopt the normalized mutual information (NMI) approach to compare hierarchies 

constructed using different sets of motifs (Greenbaum et al., 2019). For a pair of hierarchical 

clusterings, the NMI measure ranges from 0 to 1, quantifying the information obtained 

about one clustering by observing another. The NMI measure is high when two clustering 

hierarchies describe similar clustering structures (see the Methods section). The NMI 

approach is flexible in that it enables comparisons between subsets of the hierarchical 

structure, for example by comparing only the leaves of the hierarchy.

We sampled 100 random subsets of 20, 50, 100 and 500 motifs, for each subset applying 

NetStruct to extract a hierarchy from the similarity network based on the sampled motifs. 

We then computed the NMI between the hierarchy of the sampled motifs and the hierarchy 

for all motifs, both for the full tree and for only the leaf clusters. In both NMI analyses, 

as the number of motifs in the subset increases, the mean of the NMI distribution increases 

(Figure 2b and d). The hierarchy produced by a larger subset of motifs is more informative 

than those generated with fewer motifs.

Different motifs can be more informative or less informative regarding the hierarchical 

structure of the data. For example, a motif found in all regions, or one not correlated with 

the main cultural patterns, will not be informative about the clustering. To identify the 

most informative motifs, we sampled 5000 subsets of 20 motifs with replacement, counting 

occurrences of motifs in the 200 subsets possessing the highest NMI with the full tree and 

those possessing the highest NMI for leaf clusters. With random sampling, the expected 

number of occurrences of each motif in the top 200 subsets is 20/m × 200 ≈ 1.6.

The five most informative motifs for the full hierarchical structure appear in Figure 2c. 

The motif most frequently found in high-NMI subsets is ‘trickster is a feline’, appearing in 

16 of 200 subsets (p = 1.5 × 10−11, binomial test). This motif is common in Central and 

South America. ‘To sort grain’ has 11 occurrences (p = 9.8 × 10−7), and the next three most 

informative motifs have eight occurrences each (p = 2.7 × 10−4) and are also associated 

with large geographic regions (Figure 2c). Some informative motifs correspond to natural 

or cultural phenomena restricted by geography, such as the practice of agriculture and the 

habitat ranges of animals.

The three most informative motifs for the fine-scale cultural structure represented by the 

leaves of the hierarchy are shown in Figure 2e. Each appears eight times, above the number 

expected from random sampling (p = 2.7 × 10−4). Two of these, ‘a drop of blood’ and ‘the 
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packed kingdom’, have restricted geographic ranges. This result suggests that motifs of local 

folklore contribute to fine-scale features of the hierarchy.

In addition to visualizing hierarchical patterns of variation in folklore in relation to 

geography, this analysis demonstrates the use of NetStruct to identify characters – folklore 

motifs in this case – that play an important role in driving the hierarchical structure. The 

analysis of many subsets of characters, and the identification of those that appear in subsets 

that give rise to high NMI with the full-data analysis, uncovers those that contribute most to 

hierarchical clustering patterns.

Variation in phonemes across languages

A salient feature of linguistic variation is phonemic variation: variation in the sounds present 

within languages. Phonemic variation can be used to study inter-language relationships and 

population migrations (Atkinson, 2011; Creanza et al., 2015; Fort & Pérez-Losada, 2016; 

Pérez-Losada & Fort, 2018), and for our next example, we analyse hierarchical structure in 

worldwide phonemic variation.

Ruhlen phoneme database—Creanza et al. (2015) analysed two databases that have 

been assembled on phonemes across large numbers of languages. We applied NetStruct 
on one of these, the Ruhlen database, as studied by Creanza et al. (2015) to explore 

phoneme-based hierarchical structure across languages. This database contains presence/

absence information for 728 phonemes, organized by language classification and geography.

In our analysis, we included all n = 2082 languages and m = 454 phonemes that exist 

in more than one language. We then constructed the hierarchy based on the pairwise 

frequency-weighted phoneme-sharing similarities calculated from the n × m data matrix 

(see the Methods section).

Hierarchical structure of phonemic variation: Outlier entities—The hierarchy 

extracted from phonemic variation clusters languages in accord with geography on a broad 

scale (Figure 3a). In Figure 3b, major clusters tend to be localized within continents, in 

many places co-occurring with other such clusters.

Figure 3c–e highlights patterns in local regions. In northeastern Siberia (Figure 3d), four of 

five languages of the Chukotko–Kamchatkan language family – Alyutor, Chukchi, Kerek, 

and Koryak – cluster in one branch (purple to yellow colours), whereas the Kamchadal 

language is alone in another (green). Indeed, the first four languages and Kamchadal are 

assigned to different branches in the family, Chukotian and Itelmen, and the unity of the 

family has been uncertain (Fortescue, 2005).

In East Africa (Figure 3e), three languages shown in a distinct colour from their surrounding 

languages – Dahalo, Hadza, and Sandawe – are the only three languages in the region that 

are click languages, a phonemic group of languages for which clicks function as normal 

consonants (Westphal, 1971). Similarly, in Northeast Asia (Figure 3c), Korean, a language 

isolate, is clustered into a branch distinct from other neighbouring languages.
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This analysis, like the analyses of pronunciation and folklore motifs, illustrates the use of 

the NetStruct framework to identify geographic effects on entities of interest (assemblages 

of pronunciation variants, folklore motif repertoires and phoneme inventories). The local 

patterns additionally illustrate the potential of the method for understanding effects on 

entities – in this case, languages – whose placements in the hierarchy differ from those of 

their geographic neighbours.

Variation in first names over time

Frequencies of first names among births in a population represent a rich source of cultural 

data, enabling tests about mechanisms of cultural change (Hahn & Bentley, 2003; Gureckis 

& Goldstone, 2009; Berger et al., 2012; Kessler et al., 2012; Acerbi & Bentley, 2014; 

O’Dwyer & Kandler, 2017). Our final example used NetStruct to analyse relationships 

among names in their patterns of temporal variation.

Social Security data on first names—Data on frequent first names from Social 

Security card applications for births starting in 1880 are provided publicly by the US Social 

Security Administration. Separately for male and female names, for each year of birth, 

frequency data are provided. We analysed female and male names separately, restricting 

attention to 1397 female and 1074 male names of total frequency greater than or equal to 

10,000 until the end of 2019.

Considering each year during 1880–2019 separately, the dataset gives two n × m matrices 

with m = 140 years, and n = 1397 for female and n = 1074 for male names. The 

similarity score between two names is computed based on the Pearson correlation between 

their frequency vectors over the m years of available data (see the Methods section). We 

generated the NetStruct hierarchy from these similarities.

To interpret the NetStruct hierarchy, we made use of state-specific data, which are available 

alongside the national data starting from 1910. In the state-level data, each of n names has 

53 vectors of counts of length 110, for 53 locations (50 states plus District of Columbia, 

Puerto Rico and other territories) and 110 years (1910–2019). After normalizing counts from 

each year by the total number of individuals for that year, we identified for each name 

the state with the greatest mean normalized frequency over 110 years. In other words, we 

labelled each name by the state in which it was most frequent.

Hierarchical structure of variation in temporal patterns among names: 
Features of entities—We present the hierarchical structure extracted from time series 

data on the frequencies of female names, as well as the temporal trends of the corresponding 

names, in Figure 4a, with seven major branches of the hierarchy coloured differently. The 

same visualization for male names appears in Figure 4e, with five major branches assigned 

different colours. For both female and male names, names in branches of different colour 

have distinct frequency trends over time, with those on the left indicating names that had the 

greatest frequency at the beginning of the time series.

Figure 4b and f relabel the hierarchies in Figure 4a and e by the state in which a name 

has occurred most frequently over the full dataset. The calculation of the state with highest 
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frequency for a name is described in the Methods section. Initially, the most populous 

states were New York and Pennsylvania; California and Texas have been most populous 

more recently. Thus, the leftmost names, frequent early in the period, tend to be associated 

with New York, and to some extent, Pennsylvania and Texas. Names in the centre are 

more closely associated with California. Names in the rightmost clusters are associated 

with California or Texas, whose recent population growth has reduced the difference from 

California in the number of annual births.

Because the patterns in Figure 4b and f are driven in large part by population sizes of states, 

we next relabel the hierarchies using a frequency that is normalized by population size. 

In particular, we group states into four regions – Midwest, South, Northeast and West – 

normalizing the region-wise count of each name by the total number of individuals in the 

region. The calculation of the region with the highest normalized frequency for a name is 

described in the Methods section. Figure 4c and g relabel the hierarchies in Figure 4a and 

e by the region in which the normalized frequency is greatest. In this relabelling, the South 

is the region that has the largest number of names associated with it, for both females and 

males. This pattern is particularly pronounced at the beginning of the time series, during 

which the South was the region of greatest frequency for large numbers of names.

Figure 4d and h examine the hierarchies in relation to a second variable: the number 

of syllables in names. As was seen when considering names by the state with highest 

frequency, much structure is observable with this variable. Female names in clusters 1 

and 2 of Figure 4a, which share a common predecessor node as the parent cluster, have 

similar temporal trends, with a high frequency in the early twentieth century. In a fine-scale 

analysis, however, they separate into a branch whose names have fewer syllables (cluster 1, 

e.g. Mary, Helen), and a branch whose names have more syllables (cluster 2, e.g. Dorothy, 

Virginia). For male names, later names tend to have more syllables than earlier names 

(Figure 4h).

In summary, the NetStruct analysis reveals relationships in co-occurrences of names, 

identifying names with similar temporal trends. The recoding of clustering hierarchies 

by additional variables – the state with highest frequency and the number of syllables 

– illustrates the use of NetStruct in understanding attributes that correlate with, and 

potentially contribute to, relationships among entities. The visualization can potentially 

suggest analyses of other factors that influence the dynamics, including immigration, 

regional correlations and differences in naming practices by state over time.

Discussion

Inspired by the potential of hierarchical clustering analyses to illuminate features of 

population-genetic variation, we have adapted the network-based clustering framework 

NetStruct for use in the analysis of cultural variation. In four examples, we have illustrated 

several aspects of the framework in applications to data matrices representing a set of 

entities, each associated with values of a set of characters. These applications demonstrate 

the potential of NetStruct to extract broad- and fine-scale relationships among entities. They 

illustrate the use of NetStruct to analyse relationships of geography with clustering patterns, 
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to uncover the characters that drive relationships and to understand effects on cultural data 

points of interest in specific scenarios. The algorithmic perspective incorporates flexibility in 

the design of similarity measures and in visualization schemes to aid the analysis.

Interpretations of data on cultural variation

The four examples illustrate the potential of NetStruct for producing novel visualizations 

to deepen the understanding of cultural entities – pronunciation repertoires of individuals, 

folklore repertoires of cultures, phoneme inventories of languages and time series of name 

frequencies. The technique can uncover hierarchical features underlying the variation in 

cultural traits at different scales, and it enables the examination of different hierarchical 

levels. For example, the LAMSAS data, the dataset among the four that has been studied for 

longest, has given rise to numerous analyses of dialect variation, often seeking to partition 

the Atlantic region into dialects (Lee & Kretzschmar, 1993; Nerbonne & Kretzschmar, 

2003; Nerbonne 2015); our approach contributes to observing hierarchical divisions at 

multiple levels, to detecting spatially continuous variation beyond the level of dialects and to 

identifying birth date as a variable that contributes to deviations from spatial patterns.

Fewer studies have examined the folklore dataset that we have considered. With the use of 

NMI, we have shown that NetStruct can help to identify informative motifs for describing 

broad- and fine-scale structures of folklore variation. The recurrence of a shared motif in 

widely separated cultural groups has been useful for reconstructing cross-cultural contact 

and examining cultural diffusion. In this context, past studies have considered the diffusion 

of specific motifs, sometimes chosen as those that are widespread or that have particular 

cultural salience (Korotaev et al., 2006; Berezkin, 2010; Ross et al., 2013; Tehrani, 2013). 

Rather than choosing motifs based on prior significance, the NMI approach identifies motifs 

that are most informative about cultural groupings from patterns of motif occurrence alone. 

The identification using NMI of motifs of particular informativeness can further focus the 

choice of specific motifs for use in detailed analysis of diffusion patterns of folklore across 

worldwide cultural groups; studies such as those examining ‘The Tale of the Kind and the 

Unkind Girls’ (Ross et al., 2013) and ‘Little Red Riding Hood’ (Tehrani, 2013) can be 

informative for interpreting patterns in well-known motifs, but studies of other motifs might 

be more informative for understanding cultural diffusion.

NetStruct requires little prior knowledge of datasets of interest. For the phonemes, as in 

the principal components analysis of Creanza et al. (2015), NetStruct identifies broad-scale 

geographic differentiation by a method that supposes no prior relationships among entities. 

Our analysis illustrates the potential to highlight distinctions of certain languages from 

their neighbours, finding that phonemic distinctiveness can reflect the distinctiveness of one 

language in relation to others.

For first names, previous studies of the data have examined many aspects, including spatial 

correlations (Barucca et al., 2015; Pomorski et al., 2016) and phonemic influences (Berger 

et al., 2012); our analyses of the state of greatest popularity and of patterns in syllables 

contribute further to understanding patterns in name frequencies. Some studies of naming 

patterns are model based, assuming factors that drive the variation and incorporating these 

factors as variables in the models to compare with observed trends (Hahn & Bentley, 2003; 
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Gureckis & Goldstone, 2009; Berger et al., 2012; Kessler et al., 2012; Acerbi & Bentley, 

2014; O’Dwyer & Kandler, 2017); our approach can augment such studies by suggesting 

hypotheses that can be used in evaluating different generative models.

In our choices of examples for application of NetStruct, the four datasets had several 

features in common. First, in each case, entities corresponding to rows of the initial data 

matrix had a natural set of relationships reflected in the NetStruct hierarchy – geographic 

proximity of informants for the pronunciation data, geographic proximity of cultures for the 

folklore data, geographic proximity of languages for the phonemic data and proximity in 

time of the period of greatest popularity for the data on names. Second, additional salient 

attributes of the entities could be considered – birth dates for pronunciation informants, 

locally specific components of folklore such as geographically restricted cultural practices 

and animal ranges, family memberships for languages, and states of greatest popularity and 

numbers of syllables for names. Additional datasets with spatial structure, temporal structure 

or both, such as data on attributes of ceramics or other artefacts of material culture, or 

data on individual variation in word choices or other idiolectal variation, potentially provide 

natural examples as well. For future datasets, the existence of geographic and temporal 

structure and the availability of other meaningful attributes on entities of interest can be used 

to support use of NetStruct and to guide interpretation of the results that it produces.

Limitations and extensions

We have chosen to focus on similarity measures borrowed from genetics in which the 

sharing of a rare genetic variant between two individuals or populations suggests recent 

common ancestry. Similarly, for cultural data, in which shared descent is also a salient 

phenomenon, our use of a frequency-weighted trait-sharing similarity measures presupposes 

the potential importance of shared rare variants in characterizing relationships between 

entities. However, the choice of similarity measure occurs prior to the application of 

NetStruct; the emphasis of similarity measures on shared rare variants can therefore be 

tuned as appropriate to a specific type of data. A possible systematic difference from 

the genetics context is that fast-evolving cultural data could generate more homoplasy 

than is seen for genetic markers (Tehrani & Collard, 2002; Haasl & Payseur, 2011), so 

that a shared rare variant could be less meaningful in cultural data than in genetic data. 

Distance-based hierarchical clustering studies in genetics have generally identified many 

shared features in population relationships irrespective of the similarity measure considered, 

even for fast-evolving genetic markers with significant homoplasy (Takezaki & Nei, 1996). 

In a preliminary analysis of the choice of similarity measure, considering the LAMSAS data, 

we see that generally similar patterns are obtained with two additional similarity measures: 

a measure that is not frequency weighted and a measure designed specifically for linguistic 

data (Figures S1 and S2). With a specific scientific question and dataset, measures that 

encode aspects of similarity of greatest interest can be considered, and researchers can 

employ multiple similarity statistics to identify patterns that are robust and patterns that are 

distinctive to particular measures.

As in genetic studies that use tree-like models of population relationships, we have 

assumed that a hierarchical relationship between clusters exists, focusing on transferring 
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the application of a hierarchical clustering method from population-genetic data to data 

on cultural variation. In cultural data, as is often seen in population-genetic data, the 

appropriate generative model that underlies the data need not be fully tree like. Studies in 

population genetics have introduced methods for testing the suitability of evolutionary trees 

for explaining patterns of genetic variation, a key concept being the ‘treeness’ of the data 

(Cavalli-Sforza & Piazza, 1975; Patterson et al. 2012; Pickrell & Pritchard 2012). It would 

be of interest to develop comparable approaches for testing the extent to which a hierarchical 

structure from NetStruct explains cultural variation data; a permutation test of Greenbaum et 

al. (2016) for significance of clustering in a two-level NetStruct hierarchy containing a root 

and offspring nodes, devised in the population-genetic context, can potentially be adapted 

for arbitrary hierarchies and applied to data on cultural variation.

Conclusions: Uses and applications of NetStruct

In population genetics, the interplay of evolutionary processes contributes to producing 

hierarchical patterns in genetic composition among populations. Similarly, in the study 

of cultural data, many forces interact to shape hierarchical trait variation. Interpreting the 

clustering results requires consideration of multiple interacting processes and phenomena, 

including global and local selection pressures on specific cultural variants (e.g. positive, 

negative, or balancing), the linkage of multiple variants in ‘cultural complexes’ (similar to 

genetic linkage) and random drift. As in the study of genetic data, geographic patterns need 

not uniquely identify the underlying processes; for example, similarly to the phenomenon 

of convergent evolution in genetic data, convergent evolution of cultural variants (e.g. 

Tehrani & Collard 2002; Mesoudi et al. 2006; Rogers & Ehrlich 2008) can produce a 

level of similarity that can be conflated with shared descent. For example, in our phonemic 

analysis in Figure 3, the potential for rapid change in languages can produce similarity 

in phonemes of otherwise distant languages. The cluster of languages coloured in light 

green in Figure 3, which includes languages from sub-Saharan Africa, the Caucasus and 

western North America, may result from convergent evolution combined with linkage of 

phoneme complexes that have developed independently. Consideration of the mechanistic 

processes underlying cultural data while incorporating domain-knowledge specific to 

datasets of interest is important in interpreting the hierarchical structure generated by 

NetStruct. Because cultural data often possess the type of geographic structure, temporal 

structure, hierarchical categorization or defining attributes for which NetStruct results can 

be productively interpreted, patterns from NetStruct can be informative alongside other 

statistical methods for assessing specific generative models for cultural data.

As a non-model-based tool, the strength of the method lies in its potential as an exploratory 

approach for producing informative patterns, patterns that potentially inspire hypotheses 

about factors that drive the features of cultural variation. We suggest that the use of this 

exploratory approach should be accompanied by analyses of hypotheses based on additional 

methods and domain knowledge; analyses of data on variation in artefacts of culture can be 

productively advanced by adding NetStruct to the repertoire of the field of cultural evolution.
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Methods

Between-informant similarity for LAMSAS pronunciation variation

We obtained the LAMSAS data from the project website (www.lap.uga.edu/Site/

LAMSAS.html). To eliminate systematic effects of different interviewers, we considered 

only informants interviewed by the main interviewer, G. Lowman, who collected the earliest 

LAMSAS data (Nerbonne & Kleiweg, 2003). We therefore restricted attention to 839 

informants interviewed during 1933–1942. Because words chosen for pronunciation differed 

across interviews, many words only appear in the records of a subset of informants. We 

considered only words collected for at least 700 informants, resulting in a list of 69 words.

Consider n informants and m words. Suppose word j has lj distinct transcriptions, counting 

diacritics. Entry Aij of the data matrix is a categorical variable that indicates the transcription 

of word j for informant i: Aij ∈ {1, 2, …, lj} if the information of word j has been collected 

from informant i, or Aij = 0 if word j is unavailable for informant i.

We computed a frequency-weighted transcription-sharing similarity, adapting the allele-

sharing similarity for genetic data (Greenbaum et al., 2019). For two informants i1 and 

i2, their frequency-weighted transcription-sharing similarity is calculated as

si1i2 =
∑j = 1

m 1 − pAi1j
j I Ai1j = Ai2j I Ai1j ≠ 0 ∧ Ai2j ≠ 0

∑j = 1
m I Ai1j ≠ 0 ∧ Ai2j ≠ 0

, (1)

where pAij
j  is the frequency of transcription Aij for word j. The indicator function I( · ) 

is 1 if the condition holds, and it is 0 otherwise. The similarity matrix S is obtained by 

normalization:

Si1i2 =
si1i2 − smin
smax − smin

, (2)

where smin = min
i1, i2

si1i2  and smax = max
i1, i2

si1i2 .

In rare instances, two individuals have no shared words with data present. In these cases, we 

assigned for the similarity score the mean similarity of the remaining pairs.

Between-region similarity for folklore motif variation

We downloaded the folklore data from the Berezkin et al. database (http://www.ruthenia.ru/

folklore/berezkin/). The database provides (in Russian) for each indexed motif, a list of all 

numbered regions in which the motif is present. Considering all 2495 motifs, we constructed 

the matrix of presence/absence entries, associating the region and motif names with matrix 

rows and columns, respectively.

We denote the n × m matrix by A, where n = 65 is the number of regions and m = 2459 is 

the number of motifs appearing in at least two regions; Aij = 1 if motif j appears in region 
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i, and Aij = 0 otherwise. The pairwise frequency-weighted motif-sharing similarity for two 

regions i1 and i2 is calculated using a weighted Jaccard distance:

si1i2 =
∑j = 1

m 1 − fj Ai1jAi2j

∑j = 1
m 1 − fj I Ai1j ≠ 0 ∨ Ai2j ≠ 0

. (3)

The quantity fj = 1
n ∑i = 1

n Aij is the frequency of motif j across all regions. Equation 3 places 

greater weight on contributions of less frequent motifs and less weight on common motifs.

We applied the same normalization from Equation 2 to obtain a normalized similarity matrix 

that we used in our analysis.

Normalized mutual information

Denote two hierarchical clusterings on n entities by C1 and C2. Suppose they partition the 

same set of entities E={e1,e2, …, en} into k and l clusters C1
1, C2

1…, Ck
1 and C1

2, C2
2…, Cl

2, 

respectively, where ∪
j = 1

k
Cj

1 = ∪
j = 1

ℓ Cj
2 = E. Note that for each clustering – for example, C 

– the clusters are not necessarily disjoint, so that each ei can belong to multiple clusters 

Cj; indeed child clusters Cj′ are contained in parent clusters Cj, or Cj′, ⊂ Cj. The NMI 

between these two hierarchical clusterings is then computed from the Cj
1 and Cj

2 following 

the procedure of Greenbaum et al. (2019). This approach is flexible in the sense that NMI 

can also be computed for subsets of the clusters in the hierarchy, rather than for the entire set 

of clusters. To address clustering at the finer scale of the hierarchy, we computed NMI for 

the set of leaf clusters at the tips of the hierarchy.

Between-language similarity for phoneme inventories

We obtained phoneme data from the supplement of Creanza et al. (2015). The similarity 

calculation follows that of the motif-sharing similarity, except that A now represents an n 
× m matrix of n = 2082 languages and m = 454 phonemes. Equation 3 gives the similarity 

between a pair of languages, with fj denoting the frequency of a phoneme among languages; 

we normalized the similarity matrix by Equation 2 for our subsequent analysis.

Between-name similarity for name frequency profiles

We downloaded the name data from https://www.ssa.gov/oact/babynames/limits.html. For 

the analysis, performed separately for female and male names, a matrix entry Aij tabulates 

the number of appearances of name i in year j, normalized by the total number of individuals 

in year j. We write Aij = 0 if name i is absent during year j, or if it is rare enough to have 

been omitted from the database for privacy reasons (fewer than five appearances nationally). 

For each pair of rows i1, i2 of A, we computed the Pearson correlation ri1, i2 between them, 

and transformed it to a value in [0,1] by si1, i2 = ri1, i2 + 1 /2.
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To obtain syllable counts for individual names, two raters separately assigned the counts, 

discussing cases of disagreement to assign a number of syllables. We computed averages of 

the number of syllables for names in specific clusters.

States of highest frequency and regions of highest normalized frequency for names

Separately for female and male names, let Bijk denote the number of appearances of 

name i in state k in year j. The frequency of name i in state k is calculated as 

fik = ∑jBijk / ∑k′ ∑jBijk′ . The state of highest frequency for name i is obtained by 

argmaxk(fik), which we denote the majority state in Figure 4b and f.

The states are then grouped into four regions as described in Figure 4. For each region l 
containing a group of states, let Cijl denote the number of appearances of name i in region l 
in year j, or Cijl = ∑k ∈ lBijk. For each year j, this number of appearances is divided by the 

total number of individuals in a region to obtain the fraction that it represents of all names in 

the region during year Cijl* = Cijl/∑i′Ci′jl. Averaging across years, the normalized frequency 

of name i in region l is then calculated as gil = ∑jCijl* / ∑l′ ∑jCijl′* . The region of highest 

normalized frequency for name i is obtained by argmaxl(gil), which we denote the majority 

region in Figure 4c and g.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Social media summary:

Network-based clustering reveals structure in cultural variation in pronunciation, folklore, 

phonemes and first names
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Figure 1. 
Hierarchical features of variation in English pronunciation in the middle and south Atlantic 

region of the US. (a) Hierarchical tree of the pronunciation similarity network. Informants 

are marked on the map by the colour of the finest-scale cluster to which they belong. (b, 

c) Two major clusters detected at the first level of the hierarchy in (a), each re-coloured 

with the full colour interval. (d, e) Two finer-scale clusters of the hierarchy in (c). In these 

panels, colours are assigned based on placement in the area of the hierarchy circled in (c), 

with all descendants of a child in the circled area assigned the same colour. The colours 

in (d) correspond to 1/4 and 3/4 on the unit interval, and the colours in (e) correspond to 

1/14, 3/14, 5/14, 7/14, 9/14, 11/14 and 13/14. For convenience, the child clusters associated 

with specific internal nodes in the tree diagrams are numbered. Birth-year distributions of 

informants in these child clusters appear on the right.
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Figure 2. 
Hierarchical features of variation in folklore motifs across cultures. (a) Hierarchical tree 

of the motif similarity network. Regions are marked on the map by the colour of the 

finest-scale cluster to which they belong. (b) Distributions of normalized mutual information 

(NMI) between hierarchies extracted from sampled subsets of motifs and from all motifs, 

with 100 subsets of 20, 50, 100 and 500 motifs each. (c) Geographic distributions of five 

motifs that occur most frequently in the 200 of 5,000 subsets of 20 motifs that produce 

hierarchies with highest NMI to the hierarchy produced by all motifs. These motifs drive the 
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hierarchy at higher levels, separating regions into major clusters. (d) Distributions of NMI 

between the leaves of hierarchies extracted from subsets of motifs (those from b) and the 

leaves extracted from all motifs. (e) Geographic distributions of three motifs that occur most 

frequently in the 200 subsets that produce hierarchies whose leaf clusters produce highest 

NMI to those produced by all motifs. These motifs are more specific to the hierarchy in 

lower levels and potentially capture fine-scale regional differences.
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Figure 3. 
Hierarchical features of phonemic variation. (a) Hierarchical tree of the phoneme similarity 

network. Major branches that contain most of the languages are assigned distinct colours, 

and other branches are coloured grey. (b) Language map. Languages are marked by the 

colour of the finest-scale cluster to which they belong. Three regions are magnified: (c) 

Northeast Asia; (d) north-eastern Siberia; and (E) East Africa.

Liu et al. Page 22

Evol Hum Sci. Author manuscript; available in PMC 2022 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Hierarchical features of time series for frequencies of female names (a–d) and male names 

(e–h). (a, e) Hierarchical tree of similarity in time series for name frequencies. Major 

branches are assigned distinct colours. Time series of annual national frequencies appear 

below the trees, with two names selected from each major branch highlighted. The node area 

is proportional to the number of names in a cluster, except that clusters containing greater 

than 25 names are set to a fixed size and are coloured half-transparently. (b, f) Recoding 

of the hierarchies in (a, e) by states of highest frequency. Each cluster shows a pie chart 

tabulating the states in which names in the cluster have the highest frequency. Time series of 

name frequencies appear below the hierarchies. (c, g) Recoding of the hierarchies in (a, e) 

by regions of highest normalized frequency. The states are grouped into four regions: West 

(AK, AZ, CA, CO, HI, ID, MT, NM, NV, OR, UT, WA, WY), Midwest (IA, IL, IN, KS, 

MI, MN, MO, ND, NE, OH, SD, WI), South (AL, AR, DC, DE, FL, GA, KY, LA, MD, 

MS, NC, OK, SC, TN, TX, VA, WV) and Northeast (CT, MA, ME, NH, NJ, NY, PA, RI, 

VT). The normalized frequency of a name in a region is the count of the name in the region 

normalized by the total number of individuals in the region. The steps to obtain the states of 

highest frequency and regions of highest normalized frequency are described in the Methods 
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section. (d, h) Recoding of the hierarchies in (a, e) by mean number of syllables of names in 

clusters.
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