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ABSTRACT

Phenotypic plasticity plays fundamental roles in suc-
cessful adaptation of animals in response to environ-
mental variations. Here, to reveal the transcriptome
reprogramming in locust phase change, a typical phe-
notypic plasticity, we conducted a comprehensive
analysis of multiple phase-related transcriptomic data-
sets of the migratory locust. We defined PhaseCore
genes according to their contribution to phase differ-
entiation by the adjustment for confounding principal
components analysis algorithm (AC-PCA). Compared
with other genes, PhaseCore genes predicted phase
status with over 87.5% accuracy and displayed more
unique gene attributes including the faster evolution
rate, higher CpG content and higher specific expression
level. Then, we identified 20 transcription factors (TFs)
named PhaseCoreTF genes that are associated with the
regulation of PhaseCore genes. Finally, we experimen-
tally verified the regulatory roles of three representative
TFs (Hr4, Hr46, and grh) in phase change by RNAi. Our
findings revealed that core transcriptional signatures
are involved in the global regulation of locust phase
changes, suggesting a potential common mechanism
underlying phenotypic plasticity in insects. The
expression and network data are accessible in an online
resource called LocustMine (http://www.locustmine.
org:8080/locustmine).

KEYWORDS phenotypic plasticity, transcriptional
regulatory network, RNA interference

INTRODUCTION

Phenotypic plasticity is prevalent in organisms and enables
individuals of the same species to develop alternative phe-
notypes in response to changing environments with same
genotype (West-Eberhard, 2003). Phenotypic plasticity is
usually characterized by remarkable changes in various
biological traits, including morphological, behavioral traits,
and so on (Pigliucci, 2001; DeWitt and Scheiner, 2004).
Moreover, these changes often affect entire suites of char-
acters in numerous tissues throughout life (Pigliucci, 2001;
DeWitt and Scheiner, 2004). To reveal the transcriptional
regulatory mechanisms of such a complex natural phe-
nomenon, a number of studies have identified numerous
differentially expressed genes (DEGs) related to phenotypic
plasticity in some of model species utilizing high-throughput
gene expression profiling technologies (Zayed and Robin-
son, 2012; Dal Santo et al., 2013; Le Trionnaire et al., 2013;
Brown et al., 2014). Comparative transcriptome analysis
further revealed that a small core set of genes are consis-
tently associated with specific phenotypes across various
tissues (Johnson and Jasper, 2016) and developmental
stages (Morandin et al., 2015) within species, and some
gene modules regulating similar behavior are conserved
among species (Corona et al., 2016). In addition, transcrip-
tional regulatory network (TRN) analysis found core tran-
scription factors (TFs) could globally regulate behavior
difference (Chandrasekaran et al., 2011). Using different
study systems, many researchers have reported that these
phenotypic plasticity-related genes display unique charac-
teristics associated with several investigated features, such
as faster evolution rate (Hunt et al., 2011), higher CpG
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content (Elango et al., 2009), and lower DNA methylation
level (Patalano et al., 2015). However, few studies have
explored the gene features and regulatory roles of the core
transcriptional signatures in one organism across spa-
tiotemporal scales (Schlichting and Smith, 2002).

The migratory locust, Locusta migratoria, displays a
remarkable density-dependent phase change, a typical
phenotypic plasticity, involving the transition between solitary
and gregarious phases (Pener and Simpson, 2009; Wang
and Kang, 2014). Locust individuals can shift multiple phase-
related traits, such as body color, behavior, metabolic and
hormonal physiology, immune function, and reproduction in
response to the changes of population density (Pener and
Simpson, 2009). By a variety of comparative omics analy-
ses, several key regulatory genes and small RNAs, have
been revealed to be involved in the regulation of such
complex phase-related traits, including body color (Yang
et al., 2019), behavior (Guo et al., 2011; Ma et al., 2011; Wu
et al., 2012; Hou et al., 2017), immunity (Wang et al., 2013),
or reproduction (He et al., 2016). In particularly, we have
accumulated numerous high-throughput transcriptome
datasets from various tissues, developmental stages, and
time courses of phase transition (Chen et al., 2010; Wang
et al., 2013; Wang et al., 2014; Chen et al., 2015; Yang et al.,
2019). And, the sequenced locust genome further provided
more genomic information and reference sequences (Wang
et al., 2014). Therefore, the migratory locust is used as an
ideal model to investigate the core transcriptional signatures
involved in the regulation of phenotypic plasticity across
various spatiotemporal scales through integrative transcrip-
tome analysis.

Integrative transcriptome analysis is one kind of horizon-
tal genomic meta-analysis combining one source of -omics
information (Tseng et al., 2012; Kapheim, 2016). Many
methods have been developed to tackle the issues
encountered during integrative transcriptome analysis, such
as confounding factors removing (Lin et al., 2016), ranks
aggregation (Li et al., 2019) and TRN construction (Marbach
et al., 2012). Integrative transcriptome analysis has been
widely applied for the detections of DEGs, pathways, net-
works or gene co-expression (Rhodes and Chinnaiyan,
2005; Tseng et al., 2012) due to its higher statistical power
by increasing sample size (Normand, 1999). By integrating
transcriptome datasets from multiple treatments, some
candidate genes responsible for behavioral maturation are
identified in honey bee (Whitfield et al., 2006) and the core
transcriptional responses under numerous environmental
and genetic perturbations are determined in Synechocystis
(Singh et al., 2010). The method constructing tissue-to-tis-
sue co-expression networks can give help for the identifi-
cation of obesity-specific subnetworks responding to
changes in different tissues (Dobrin et al., 2009). Therefore,
the development of these analysis tools and successful
applications provide a chance to reveal the core transcrip-
tional signatures and their regulatory roles in locust phase
change.

In this study, we took the use of adjust confounding
principal component analysis (AC-PCA) (Lin et al., 2016) to
remove the confounding factors and performed gene selec-
tion for multiple locust transcriptomic datasets. Then, we
identified PhaseCore genes and PhaseCoreTF genes
associated with locust phase change, and verified these
genes’ reliability and function through both dry and wet
experiments. Our results support there exist core transcrip-
tional signatures across spatiotemporal scales responsible
for phenotypic plasticity in one species.

RESULTS

Dataset establishment

In the past decade, we have accumulated numerous high-
throughput transcriptome datasets from various tissues,
developmental stages, and time courses of phase transition
of the migratory locust. The datasets provided the possibility
for us to identify the core genes closely associated with
phase changes termed PhaseCore genes. To identify these
core genes, we firstly established three transcriptomic
datasets (see MATERIALS AND METHODS) (Fig. 1A and
Table S1). Three categories of transcriptomic datasets
included a developmental dataset from egg to adult stages
(Chen et al., 2010), tissue dataset of eight tissues or organs
(brain, thoracic ganglia, antennae, wing, pronotum, fat body,
and hemolymph), and time course datasets of brain and
ganglia tissues treated by gregarization (crowding of solitary
locusts (CS)) and solitarization (isolation of gregarious
locusts (IG)) (see MATERIALS AND METHODS). These
samples covered 97.4% of the 17,586 genes in the reference

cFigure 1. PhaseCore gene identification. (A) Experimen-

tal design of this study. Left: developmental stages from

eggs to adults. Scale bars = 5 mm. Middle: various tissues,

including three tissues from adult locust (fat body,

hemolymph, and antenna), and five tissues from the fourth

instar nymphs (antenna, brain, thoracic ganglia, wing, and

pronotum). Right: the time courses of phase change (i.e.,

gregarization and solitarization) with two brain and thoracic

ganglia tissues at six time points (0, 4, 8, 16, 32, and 64 h).

(B) Samples from gregarious (G) and solitary locusts (S),

and CS and IG locusts classified using the AC-PCA

method for developmental, tissue, and time course

datasets. One circle represents one sample. Blue repre-

sents typical or crowded solitary locusts, and red repre-

sents typical or isolated gregarious locusts. (C) Scatterplots

and Pearson’s correlation (marked in red) of pairs of the

PC1 values from the three datasets. Lines were fitted using

least-squares linear regression. (D) Accuracy distribution of

leave-one-out cross validation (LOO-CV) and cross-data-

set validation (CDV) for the three datasets using Borda

gene list. Only the top 15,000 genes were considered.

These genes were divided into 15 bins with 1,000 genes in

each bin. The accuracy was calculated for each bin.
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gene set with reads per kilobase per million reads (RPKM) >
0 in any one sample (Table S2). Hierarchical cluster analysis
and principal component analysis (PCA) showed that the
transcriptome RNA-seq samples from the same develop-
mental stages or same tissues/organs clearly clustered
together (Fig. S1), indicating that the datasets were reliable.

PhaseCore gene identification

To rank the genes according to their contribution to the
phase difference, we then tested whether two popular clus-
tering algorithms, unsupervised PCA and supervised partial
least square regression could classify all RNA-seq samples
in consistent with their phase status. However, these two
methods did not clearly classify the transcriptome samples
into two groups, probably because of confounding factors
(Figs. S1 and S2). Then, we conducted a recently developed
method, AC-PCA, which extends the conventional PCA by
adjusting the confounding factor (Lin et al., 2016). The
dominant principal component (PC1), which explained larger
proportions of variance than PC2 (3.8% vs. <0.001% in the
development dataset, 1% vs. <0.001% in the tissue dataset,
and 9.4% vs. 6.2% in the time course datasets), clearly
classified all the three datasets into gregarious and solitary
groups (Fig. 1A). Thus, PC1 represents the difference of
gene expression between the phase-related features.
Moreover, the PC1 value lists from all three datasets were
correlated with each other (Fig. 1B). Therefore, three gene
lists from the three datasets were ranked based on PC1
values and aggregated by the Borda algorithm to produce
one ranked gene list (the Borda list).

To predict how many genes associated with phase-re-
lated features across the three investigated datasets, we
obtained a cutoff to define the core gene set using two cross
validation methods: leave-one-sample-out cross validation
(LOO-CV) and cross-dataset validation (CDV), and func-
tional categories enrichment analysis. We first split the top-
ranked 15,000 genes from the four ranked gene lists (three
dataset-specific gene lists and one Borda list)) into 15, 30,
and 150 bins with 1,000, 500, and 100 genes per bin,
respectively, and then performed validation for each bin.
Through cross validation, we found that the prediction
accuracy of the top ranked 2,000 genes was at least ∼50%
for the Borda list (Figs. 1C, S3 and S4A), Functional cate-
gories enrichment analysis of the top 5% and 10% (850 and
1,700 genes, respectively) of the total genes in the genome.
We did not find that the top-ranked genes in the top 5%
cutoff were more significantly enriched in gene functional
categories than those genes in the top 10% cutoff (Fig. 2I).
The prediction accuracy of LOO-CV using 1,700 PhaseCore
genes was 87.5%. Therefore, we finally defined 1,700
PhaseCore genes using the top 10% as the cutoff in the
Borda list (Table S3).

PhaseCore gene features

To validate the reliability of PhaseCore genes, we performed
a multiple comparison test between PhaseCore genes and
all other non-PhaseCore genes. The multiple comparison
test evaluated seven measurements, including the percent-
age of phase-related genes (PRGs) (Fig. S5), specific
expression, network connectivity, evolution rate, ratio of
observation to expectation of CpG (CpG o/e), methylation
level, and percentage of genes with known function.

To compare the PhaseCore genes with other non-Pha-
seCore genes, we selected the top 15,300 genes (because
the minimum number of genes in the three datasets was
15,360) in the Borda gene lists. These genes were then
sequentially divided into nine bins, with 1,700 genes in each
bin, hence the genes in the first bin were the PhaseCore
genes. For each bin, we calculated the seven measurements
and plotted the measurement distribution along with the rank
of the genes. Compared with non-PhaseCore genes, Pha-
seCore genes showed higher percentage of PRGs (Fig. 2A),
higher specific expression level (Fig. 2B), lower co-expres-
sion network connectivity (Fig. 2C), faster evolution rate
(Fig. 2D), higher CpG o/e (Fig. 2E), lower methylation level
(Fig. 2F), and lower percentage of genes with annotated
function (Fig. 2G). Similar patterns were also observed in the
three dataset-specific gene lists (Fig. S4B–H). These data
indicated that PhaseCore genes displayed unique
characteristics.

Because these features were also observed in the plas-
ticity-related genes of other species, we speculated that
PhaseCore genes are mostly correlated with locust phase
change. So we validated PhaseCore genes using the DEGs
from two studies with three replicates in brain and pronotum
tissues (hence named Brain_Hou and Pronotum_Yang,
respectively) (Hou et al., 2017; Yang et al., 2019). We found
that PhaseCore genes significantly cover more DEGs than
other genes (hypergeometric test, P < 1 × 10−70 for both
studies; Fig. 2H). This pattern was also observed in the three
dataset-specific gene lists (Fig. S4I–K).

cFigure 2. The attributes and functions of PhaseCore

genes. PhaseCore genes displayed extreme gene attri-

butes (A–H). The PhaseCore gene sets were the top 1,700

genes in the Borda gene list (i.e., the far-left column in (A–
H)). PhaseCore genes displayed (A) higher percentage of

PRGs, (B) higher specific expression level, (C) lower

network connectivity in the co-expression network,

(D) faster evolution rate, (E) higher CpG o/e, (F) lower

methylation level, (G) lower percentage of genes with

known function and (H) higher percentage of DEGs from

two experiments with three replicates. (I) Selected

enriched functional classes of PhaseCore genes at two

cutoff: 10% and 5%. Red represents the degree of the

enrichment. b. binding; p. process; m. metabolic; c.

compound.
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Functional class enrichments of PhaseCore genes
showed significant associations with signalling pathways,
metabolic processes, anti-oxidative processes, and struc-
tural constituent of cuticle (Fig. 2I and Table S4). We also
found that 47.5% of the genes involved in juvenile hormone
(JH) biosynthesis and transportation, such as JHBP, JHAMT,
and HexL1, were PhaseCore genes (Table S5).

PhaseCoreTF genes and their regulatory network

To find the TF gene regulating PhaseCore genes, we con-
ducted a genome-wide investigation of TF genes and con-
structed a TRN composed of all TF genes and their target
genes. Based on the locust genome (Wang et al., 2014), we
identified 926 TF genes that could be classified into 94
families, in which zinc finger C2H2, MADF, and homeobox
families having the most numbers of members (Fig. 3A). We
found that 52.9% (n = 490) of TF genes were PRGs
(Fig. S6). There were 33 TF genes in the PhaseCore genes.
These results implied that TF genes play critical roles in
locust phase change.

To construct a reliable and robust genome-wide TRN with
the heterogeneous datasets, we combined eight high-per-
forming methods for TRN reconstruction with an ensemble
method to integrate these results (Fig. 3B). The heteroge-
neous datasets were composed of 129 samples, which
included 48 samples from three datasets mentioned above
and 81 additional samples produced in our laboratory
(Table S2). In the final network, 10,024 nodes were

b

Table 1. Enrichment of PhaseCoreTF genes in PhaseCore genes

GeneID P value Function description Symbol TF_Class PhaseCore

LOCMI03018 2.03×10−41 LPS-induced tumor necrosis factor alpha factor LITAF zf-LITAF-like Y

LOCMI17305 2.64×10−22 Hormone receptor 4 Hr4 zf-C4 N

LOCMI03017 3.02×10−20 LPS-induced tumor necrosis factor alpha factor LITAF zf-LITAF-like Y

LOCMI03824 8.33×10−15 Zinc finger, BED-type predicted ZBED zf-BED Y

LOCMI15104 2.23×10−6 Dwarfin sma-2 sma-2 MH2 N

LOCMI03971 2.43×10−6 PR domain zinc finger protein 1 Prdm1 zf-C2H2 Y

LOCMI04376 2.13×10−5 Myelin regulatory factor Myrf NDT80/PhoG N

LOCMI16491 4.20×10−5 Probable nuclear hormone receptor HR3 Hr46 zf-C4 N

LOCMI17468 4.57×10−5 BTB/POZ domain-containing protein 19 BTBD19 BTB/POZ N

LOCMI13163 1.24×10−4 Zinc finger and SCAN domain-containing protein 2 Zscan2 zf-C2H2 N

LOCMI16568 4.66×10−4 Zinc finger protein 729 ZNF729 zf-C2H2 N

LOCMI12694 8.55×10−4 Protein grainyhead grh CP2 N

LOCMI01314 8.55×10−4 ETS-related transcription factor Elf-1 Elf-1 Others N

LOCMI15376 4.82×10−3 Zinc finger protein 768 ZNF768 zf-C2H2 Y

LOCMI07749 5.60×10−3 NFX1-type zinc finger-containing protein 1 Znfx1 zf-NF-X1 N

LOCMI07485 5.90×10−3 Protein ovo ovo zf-C2H2 Y

LOCMI09997 9.68×10−3 Zinc finger protein 808 ZNF808 BTB/POZ N

LOCMI07877 1.45×10−2 Mediator of RNA polymerase II transcription
subunit 8

MED8 MED N

LOCMI06586 1.96×10−2 Protein max MAX bHLH Y

LOCMI07477 2.10×10−2 Mesoderm posterior protein 1 MESP1 bHLH N

Figure 3. Identification and regulational functions of Pha-

seCoreTF genes. (A) Barplot of locust TF families with >10

members. (B) Schema of transcriptional regulatory network

(TRN) reconstruction. (C) Whole genome TRN. The red nodes

represent the PhaseCore genes or PhaseCore TF genes, which

were connected by green lines. The labelled nodes were 20

PhaseCore TF genes. (D) PhaseCoreTF regulating GO terms

enriched in PhaseCore genes. (E) Venn diagram displaying the

overlap among the DEGs from Brain_Hou dataset and

PhaseCore genes. (F) Network presentation of PhaseCoreTF

regulating PhaseCore genes. Ellipse nodes are TF genes,

rectangle nodes are target genes. Nodes in red or green

represent highly or lowly expressed in gregarious locust, and

gray represents non-DEGs.
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connected by 15,009 edges (Fig. 3C). These nodes covered
873 TF genes, and 986 PhaseCore genes. On average,
each TF regulated 17.2 target genes.

Based on the genome-wide TRN, we defined Phase-
CoreTF genes as those TF genes whose target genes were
over-represented among the PhaseCore genes. We identi-
fied 20 PhaseCoreTF genes (Table 1, Fig. 3C and Table S6),
seven of them were also PhaseCore genes. The other 13

PhaseCoreTF genes were not PhaseCore genes, this may
be caused by i) the TRN construction strategy that combined
large number of expression profiles not used for PhaseCore
gene identification, and ii) the fact that some TF genes’
activity could be regulated post-transcriptionally or post-
translationally (Lelli et al., 2012). Compared with non-Pha-
seCoreTF genes, PhaseCoreTF genes have high-ranked
PC1 values in the AC-PCA analysis (Mann-Whitney test, P =
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Figure 4. Hr4, Hr46, and grh regulating locust phase behavior. (A) Expression levels of three TF genes after RNA interference

(RNAi). (B) and (C) Behavioral changes induced by RNAi of Hr4 (B), grh and Hr46 (C). The red arrows denote the median Pgreg

values. Pgreg = 1 indicates full gregarious behavior, and Pgreg = 0 indicates fully solitary behavior. (D) and (E) Total distance moved

(TDM) 48h after injection of dsRNA of Hr4, grh and Hr46. (F and G) Total duration of movement (TDMV) 48 h after injection of dsRNA

of Hr4, grh and Hr46. *P < 0.05, **P < 0.01 by Mann-Whitney test.

RESEARCH ARTICLE Pengcheng Yang et al.

890 © The Author(s) 2019

P
ro
te
in

&
C
e
ll



1 × 10−5) and higher proportions of PRGs (binominal test,
P = 2.7 × 10−5). These results indicated that PhaseCoreTF
genes were rather closely associated with locust phase
change than non-PhaseCoreTF genes.

To confirm the functions of PhaseCoreTF genes in the
regulatory network, we performed gene ontology (GO)
enrichment of TF target genes with PhaseCore genes as a
background. We identified the enriched TFs for the terms
enriched for PhaseCore genes (Fig. 2I). The functional
classes involved in chitin metabolic process, aminoglycan
metabolic process, carbohydrate metabolic process, and
proteolysis, were mainly regulated by LITAF and sma-2. The
TF Myrf regulated hemolymph JH binding; grh and ZBED
regulated insect odorant-binding protein; and Hr4 regulated
insect cuticle protein (Fig. 3D).

We further investigated potential regulatory roles of
PhaseCoreTF genes involved in the expression difference
between two phases in locust brain tissue using Brain_Hou
dataset (Fig. 3E). By target enrichment analysis, we found
12 PhaseCore TF genes regulating the DEGs (Table S7).
According to the expression levels and known functions
related to behaviour plasticity, we selected three TF genes
for further functional verification, i.e., Hr4, Hr46 and grh. The
expression levels of these three TF genes were relatively
higher than those of most other genes (Figs. 3F and S7).

Functional verification of representative TFs

Because hormone receptors have been reported to be criti-
cal for hormone regulating behavior plasticity (Pfaff and
Joels, 2016), and grh was found to be involved in central
nervous system development (Baumgardt et al., 2014), we
carried out knock-down experiments to validate the functions
of these three TFs (Hr4, Hr46 and grh), followed by behavior
tests and RNA-seq of brain tissues. When Hr4 was knocked
down by RNA interference (RNAi) in the fourth-instar gre-
garious nymphs (Fig. 4A), the Pgreg value was significantly
reduced towards solitary status (Mann-Whitney test, P =
0.024, Fig. 4B). Similar behavioral changes were observed
for knockdowns of Hr46 and grh (Mann-Whitney test, P <
0.005; Fig. 4A and 4B). Behavioral parameter analysis
demonstrated that locust locomotor activity, including total
duration of movement and total distance moved, were
strongly suppressed by knockdowns of these three TFs
separately (Fig. 4D–G). These results indicated that the
three TFs could regulate phase change through influencing
locust locomotor activity.

Transcriptome profiling of brain tissues in gregarious
locusts treated by knockdowns of three TF genes, Hr4, Hr46
and grh, showed that 251, 171, and 417 genes displayed
differential expression levels compared with the GFP control
(Fig. 5A and Table S8). Among these RNAi-induced DEGs,
124 were regulated by at least two TF genes. We found that
a significant overlap between the predicted target genes of
these three TF genes and RNAi-induced DEGs, which
supported the accuracy of our target prediction methods

(Fig. 5B). This result was confirmed with two target gene
sets: one set had relatively strict criteria and relatively few
genes (SuperExactTest, P < 1 × 10−6 except Hr46), and the
other had relaxed criteria and more genes (SuperExactTest,
P < 1 × 10−20 for all three TF genes). Of these RNAi-induced
DEGs, 56, 33, and 71 genes were also differentially
expressed in brain tissues between gregarious and solitary
locusts (hypergeometric test, P < 1 × 10−26 for Hr4 and grh,
P < 1 × 10−9 for Hr46; Fig. 5C).

To illustrate possible regulatory coordination involving
these three TF genes, we constructed a network that com-
bined the RNAi-induced DEGs and predicted target genes
(Fig. 5D). GO enrichment analysis revealed that these RNAi-
induced DEGs were mainly associated with energy meta-
bolisms, oxidation-reduction processes, and cellular struc-
tures (Table S9). Therefore, these results indicated that
these three PhaseCoreTFs regulated locust phase change
in a combinatorial manner.

LocustMine database construction

To facilitate interpretation, searching, and visualization of the
results of this study by other researchers, we constructed a
database called LocustMine (http://www.locustmine.org:
8080/locustmine). In addition to the previously published
genome and CDS/protein sequences (Wang et al., 2014),
LocustMine contains all gene expression data from the
development, tissue, and time course datasets, the pre-
dicted TF-target data, and the co-expression network.
LocustMine also links to the orthologues in six InterMine-
based databases of model organisms, such as FlyMine
(Lyne et al., 2007) and HumanMine (Smith et al., 2012).
LocustMine is useful for performing gene set enrichment
analysis, and currently supports GO, protein domain, and
Kyoto encyclopedia of genes and genomes (KEGG) analy-
sis. The homepage, report page of one gene and enrichment
analysis of gene list were illustrated in Fig. 6.

DISCUSSION

In this study, identification and analysis of PhaseCore and
PhaseCoreTF genes demonstrated that there exist core
transcriptional signatures of phenotypic plasticity in the
migratory locust.

We re-analyzed all RNA-seq datasets by using the same
pipeline and normalized the gene expression matrix that fed
to AC-PCA using a quantile-normalization method (Pan and
Zhang, 2018). Confounding factors has been removed
through AC-PCA analysis. The LOO-CV was performed
within datasets and CDV was performed inter datasets,
which supports the robust of PhaseCore genes identified.
The accuracy of PhaseCore gene was validated by two
external RNA-seq datasets with three replications and some
of them have been experimentally validated in previous
studies. Moreover, these PhaseCore genes displayed dis-
tinct attributes similar to that of plasticity-related genes from
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other species. Therefore, we think, at least most, if not all, of
the PhaseCore genes that we identified are reliable and
confident. In spite of this, due to the complicated nature of
locust phase change, we could only approximately predict
the number of PhaseCore genes. More careful design of
future experiment is needed to uncover the exact PhaseCore
gene list.

PhaseCore genes can predict phase status of new tran-
scriptome profiles from various spatiotemporal scales with
higher accuracy. This finding implied that these genes can
be used as molecular markers to identify alternative phase
phenotypes (Sumner et al., 2018). PhaseCore genes dis-
played specific gene attributes, which have been reported in
several other species, such as caste-biased genes in social
insects (higher CpG o/e (Elango et al., 2009), lower DNA
methylation level (Patalano et al., 2015), faster evolution rate
(Hunt et al., 2011), lower percentage of genes with annotated
function (Ferreira et al., 2013), lower co-expression network
connectivity (Morandin et al., 2016), sex-biased genes in fruit
flies and mice (higher tissue-specific expression level (Mei-
sel, 2011)), and morph-biased genes in pea aphids (faster
evolution rate (Purandare et al., 2014)). PhaseCore genes
with faster evolution rates that rapidly expand genotypic
space may be co-opted for new functions (Helantera and
Uller, 2014). Consistently, PhaseCore genes included a
large number more of genes with unknown functions, similar
with the findings in wasps, in which 75% of the caste-biased
genes were novel genes (Ferreira et al., 2013). Weak
methylation levels could facilitate protein sequence variation
(Simola et al., 2013) and contribute to expression flexibility
via alternative transcription start sites, exon skipping, and
transient methylation (Roberts and Gavery, 2012). Taken
together, possessing these gene features, PhaseCore genes
can rapidly expand their genotypic space and expression
variation scope, which helps locust adapt to the changed
environment.

PhaseCore genes covered several critical pathways
mainly associated with signaling pathways, metabolic pro-
cesses, and anti-oxidative processes. Many previous iden-
tified critical genes were top ranked in the PhaseCore gene
list. For example, the signaling pathways comprised some
genes, included CSPs, takeouts, and members of the JH
pathway. CSP and takeout genes are involved in olfactory
response to locust-emitted odours (Guo et al., 2011). The JH
signaling pathway was suggested to regulate locust phase
change by influencing body color, morphometric parameters,
and reproduction (Kang et al., 2004; Tawfik, 2012). More-
over, two enzymes (FAH and hgo) are involved in the cate-
cholamine metabolic pathway as a key regulator of phase
change (Ma et al., 2011). Numerous metabolic process-re-
lated terms were enriched for PhaseCore genes, which is
consistent with the fact that gregarious locusts exhibit more
active and intensive energy consumption for long-distance
marching or flight (Wang and Kang, 2014). Several anti-ox-
idative molecules, such as APOD (Dassati et al., 2014),

GPX4, and PRDX6 (Wang et al., 2014), can eliminate
reactive oxygen species (ROS) produced by excessive
energy metabolism (Apel and Hirt, 2004). Therefore, the
present results combined with other studies support the
convincible and reproducible findings of our previous studies
by ESTs and RNA-seq (Chen et al., 2010; Wang et al., 2013;
Wang et al., 2014). We provided a valuable list of 20 Pha-
seCoreTF genes responsible for locust phase change and
predicted their possible functions (Fig. 3D). Some of these
regulatory relationships were supported by previous studies.
For example, LITAF overexpression was found to be asso-
ciated with metabolic disorders in humans (Cardoso et al.,
2018), whereas sma-2 was demonstrated be involved in
metabolic homeostasis (Shin et al., 2015). Additionally, many
of these PhaseCoreTF genes have been reported to be
involved in various phenotypic plasticity-related biological
processes, such as development (grh (Baumgardt et al.,
2014), Hr4 (Mane-Padros et al., 2012) and MESP1 (Liu,
2017)) and social behavior (Hr46 (Wang et al., 2009)). In
concert with PhaseCoreTF identification method, RNAi-in-
duced knock-down of three TF genes, Hr4, Hr46, and grh,
drove the behaviors of gregarious locusts into solitary phase
behaviors, validating that the identified PhaseCoreTF genes
are responsible for phase change of locusts. Therefore, the
findings of PhaseCoreTF genes improve our understanding
of the important roles of TF genes in regulating phenotypic
plasticity.

cFigure 5. RNA-seq revealed combinatorial regulations

among Hr4, Hr46 and grh. (A) Venn diagram displaying

the overlap among the three RNAi DEG lists and

PhaseCore genes. (B) Venn diagram displaying the

overlap among the DEGs from RNAi and target genes.

Two target gene sets were used: the target genes through

ensembling TF-Target pairs of total TF genes (TarTotal),

and ensembling TF-target pairs of each TF gene (TarEach)

(see MATERIALS AND METHODS). The hypergeometric

test P value was calculated for these two target gene sets.

(C) Bar chart that illustrates two sets intersections among

four DEG lists in a matrix layout. The matrix of solid and

empty circles at the bottom illustrates the “presence” (solid

green) or “absence” (empty) of the gene sets in each

intersection. The number to the right of the matrix indicates

gene set size. The colored bars on the top of the matrix

represent the intersection sizes, with the color intensity

showing the P value significance. The DEGs in normal

brain tissues were derived from Brain_Hou dataset.

(D) Network of the DEGs from the RNAi of Hr4, Hr46,

and grh. PhaseCore genes of the time course data with

functional annotation are displayed. Red circles indicate

TFs, and the green rectangles indicate no TFs. The edges

with dashed lines indicate DEGs after RNAi, and the edges

with solid lines indicate that the connections were sup-

ported by RNAi DEGs and target prediction.
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We found a common set of genes among each DEG list
after knockdown of three PhasecoreTF genes, Hr4, grh, and
Hr46, suggesting that these PhaseCoreTFs might coordi-
nate the same downstream signaling to regulate phase-re-
lated behaviors. The potential coordination of Hr4 and grh
had been reported during the process of abdominal pig-
mentation in Drosophila melanogaster (Rogers et al., 2014).
In Daphnia magna, Hr4 and Hr46 potentially regulate grh by
binding to its promoter region (Spanier et al., 2017). Several
PhaseCore genes, such as CSP, takeout, JHBP, and Bbox1,
were also included in the 124 genes whose expression
levels were altered by the knockdowns of at least two TF
genes. In particular, Bbox1 was found to be regulated by all
three TF genes. This gene catalyzes the formation of L-
carnitine from gamma-butyrobetaine, which is the last step in
the L-carnitine biosynthetic pathway (https://www.uniprot.
org/uniprot/O75936). Carnitines were previously reported to
be the key regulatory metabolites in locust behavioral tran-
sition (Wu et al., 2012). OLR1, regulated by both Hr4 and
Hr46, has been reported to reduce the released level of nitric
oxide (Sawamura et al., 1997), which is a key gas neuro-
transmitter to activate phase-related locomotor activity (Hou
et al., 2017). Therefore, these PRG changes are able to
mediate the effects of three PhaseCoreTFs on phase-related
behaviors of the locusts.

MATERIALS AND METHODS

Datasets

The RNA-seq data in this study were obtained from three migratory

locust datasets (Figs. 1A, S1 and Table S1). The first dataset

included data from six different developmental stages (egg, com-

bined first and second instar, third instar, fourth instar, fifth instar, and

adult) from both solitary and gregarious locusts (Chen et al., 2010)

that can be found under accession number SRP002665 in the NCBI

SRA database (https://www.ncbi.nlm.nih.gov/sra). The second

dataset included data from various tissues and organs of both

phases, including three tissues or organs from adult locusts (fat

body, hemolymph, and antenna), and five tissues or organs from the

fourth instar (antenna, brain, thoracic ganglia, wing, and pronotum).

Among these tissues, data from the fat body (accession number

SRP013742 in SRA) and pronotum (accession number

PRJNA399053 in SRA) have been published (Wang et al., 2013;

Yang et al., 2019). The data from brain and thoracic ganglia tissues

were the zero time points from the time course datasets of these two

tissues. The third dataset was from the time course experiments,

which refers to CS and IG at six time points (0, 4, 8, 16, 32, and

64 h). The time course datasets for brain and thoracic ganglia tissue

were released in this study (accession number PRJNA412119 in

SRA). We also used a total of 129 samples, which included the

above-mentioned samples and an additional 81 samples from vari-

ous tissues (Samples information and expression values can be

seen in Table S2), to construct the genome-wide TF-target network.

RNA sequencing

Total RNA was extracted using TRIzol reagent (Invitrogen, Carlsbad,

CA, USA) and treated with RNase-free DNase I. Poly(A) mRNA was

isolated using oligo d(T) beads. First-strand complementary DNA

was generated using random hexamer-primed reverse transcription,

followed by synthesis of the second-strand cDNA using RNaseH

and DNA polymerase I. Paired-end RNA-seq libraries were prepared

following Illumina’s protocols and sequenced on the Illumina HiSeq

2000 platform in BGI-Shenzhen.

RNA-seq data analysis

The quality distribution of the RNA-seq raw data were first checked

using FastQC (v0.11.5, http://www.bioinformatics.babraham.ac.uk/

projects/fastqc/); the low-quality and adaptor contaminated reads

were filtered using Trimmomatic (v0.30; http://www.usadellab.org/

cms/index.php?page=trimmomatic; parameters: “ILLUMINACLIP:/

adaptor_sequence.fa:2:8:6 SLIDINGWINDOW:4:15 MINLEN:40”).

The filtered reads were mapped to the L. migratoria reference

genome (Wang et al., 2014) using TopHat2 (version 2.0.13) (Trapnell

et al., 2009). HTSeq (v0.10.0, https://htseq.readthedocs.io) was

used to calculate the read count. To reduce various biases, we

further used the trimmed mean of M-values (TMM) method to elim-

inate the influence of differences in RNA output size between

samples. Gene expression level was measured as reads per

b Figure 6. LocustMine use case. (A) LocustMine homepage.

(A1) Quick visit to subsections, including BLAST and JBrowse.

(A2) Enter a gene name to access the Gene page report. (A3)

Enter a list of genes to perform GO and pathway enrichments.

(A4) Take a tour will direct to a new page of LocustMine

documentation. (A5) Popular template queries can be found

here and under the Templates button at the top of the page. (B–
I) Illustrate the report page of gene Hr4 (http://locustmine.org:

8080/locustmine/gene:LOCMI17305). (B) Header of gene

report page, including quick link to several subsections.

(C) Gene function, including gene ontology and pathways.

(D) Interactions from PPI, co-expression and TF-Target.

(E) Gene models and proteins. (F) Homology information.

(G) Gene expression values from 52 samples. (H) Gene lists

containing Hr4. (I) Links to the orthologues in other Mines.

(J–M) Enrichment analysis for gene list T-IG-32h-VS-T-IG-C-up.

The demo case could be accessed from the link:

http://locustmine.org:8080/locustmine/bagDetails.do?scope=all

&bagName=T-IG-32h-VS-T-IG-C-up. (J) Under Lists on the

LocustMine homepage, users can manually enter or upload a

list of genes for analysis. Here, we use the the public list T-IG-

32h-VS-T-IG-C-up as example. (K) Screenshot of gene infor-

mation of the list. (L) Gene ontology and protein domain

enrichment. (M) Pathway enrichment and Gene Sets

enrichment.
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kilobase per million mapped reads (RPKM). To identify DEGs from

the experiments with three replicates, R package edge was applied

(Robinson et al., 2010). Adjustment for multiple testing-associated

bias was performed by the Benjamini–Hochberg method. Expres-

sion ratio ≥ 2 and adjusted P value < 0.05 were used as the

threshold for significance of gene expression differences.

AC-PCA

AC-PCA was proposed for simultaneous dimension reduction and

adjustment for confounding variation (Lin et al., 2016), and was

demonstrated to be successfully applied under various conditions. In

this study, the desired biological variation was the phase difference,

whereas the confounding factors included the developmental

stages, tissues, and time points after treatment. Data matrix X rep-

resented gene expression, with rows representing samples and

columns representing genes. The raw RPKM values had 1 added to

them and were then log2-transformed. Variation among the samples

was quantile-normalized using the preprocessCore package (https://

github.com/bmbolstad/preprocessCore). Quantile normalization has

recently been validated a superior method for removing inter-study

variation (Pan and Zhang, 2018). The columns were mean-centered.

The confounding matrix Y was designed according to the description

of the acPCA package user guide. In brief, for the development and

tissue datasets, all of the samples from the same phase were con-

sidered biological replicates. For the time course datasets, the

samples from the brain and thoracic ganglia tissues at the same time

points in the same treatment process were considered biological

replicates. Because the four datasets for the 64-h time points clus-

tered together regardless of the treatments and tissues, we removed

this time point prior to AC-PCA model construction. AC-PCA

was performed using the acPCA package (v1.2) downloaded

from https://github.com/linzx06/AC-PCA/tree/master/R_package. The

acPCA function was performed with a linear kernel and the input

Lambda parameter was tuned using the acPCAtuneLambda function.

We utilized the Borda algorithm with a median method to

aggregate the three PC1 values from the three datasets to produce

one summarized Borda gene list. This method first ordered the PC1

values from the three datasets separately, then calculated the

median value of the ranks in the three datasets for each gene as

Borda’s score. The genes were ranked according to their Borda’s

score. The Borda algorithm was implemented in the R package

TopKLists (https://cran.r-project.org/web/packages/TopKLists/index.

html). To retain the directional information, we ran the Borda algo-

rithm twice, once with gregarious phase-biased genes ranked at the

top, and the other with solitary phase-biased genes ranked at the

top. The two Borda lists were merged into one ranked final list by

alternately selecting one gene from each of the two lists from top to

bottom. The PhaseCore genes were defined as the top 1,700 genes

in the Borda list.

To predict phase status based on the constructed AC-PCA

model, we first preprocessed the raw expression data by subjecting

them to log2 transformation, quantile normalization, and mean-cen-

tering. The loadings and the data matrix from AC-PCA and the new

data matrix were fed to the predict function in the mixOmics package

(https://CRAN.R-project.org/package=mixOmics). The tool predict

then output the loadings of the new expression data. The loadings of

the constructed model had a plus or minus sign, which represented

the two phases. If the predicted loadings had the same sign as those

in the constructed model and the phase status was also the same,

we determined that the prediction was correct.

To perform LOO-CV and CDV, we split the top-ranked 15,000

genes from the four ranked gene lists (three dataset-specific gene

lists and one Borda list) into 15, 30, and 150 bins with 1,000, 500,

and 100 genes per bin and then performed validation for each bin.

For LOO-CV, the prediction accuracy was calculated as the per-

centage of samples accurately predicted their phase status. We

performed LOO-CV on three datasets based on the four gene lists

separately. To perform CDV, each time, we select one dataset to

train the AC-PCA model and predict phase status of the samples

from other two datasets and calculate the prediction accuracy. We

performed CDV on three datasets based on the four gene lists,

separately.

Gene features

Phase-related genes

We defined PRGs as those genes displayed differential expression

between gregarious and solitary locusts in the above mentioned

three datasets, development, tissues and phase transition time

course, respectively (Fig. S5). These genes were identified using the

method provided by Audic & Claverie (Audic and Claverie, 1997),

which was developed for experiments without replicates.

Specific expression

The specific expression of genes was measured using the specific

expression index τ (Liao and Zhang, 2006), which is defined as

follows:

τi =
∑n

j=1
1-- log2(S(i , j) + 1)
log2(S(i ,max) + 1)

n -- 1

in which n is the number of samples surveyed, S(i,j) is the RPKM of

gene i in sample j, and S(i,max) is the highest RPKM of gene i in n

samples.

Network connectivity

The co-expression networks for development, tissue, brain time

course, and ganglia time course datasets were separately con-

structed using genes with summarized raw RPKM > 1. The R

package weighted gene co-expression network analysis (WGCNA)

(https://labs.genetics.ucla.edu/horvath/CoexpressionNetwork/

Rpackages/WGCNA/) was used to construct the co-expression

networks. Detailed methodology is described in the TRN construc-

tion subsection. The network connectivity of one gene was defined

as the sum of the topological overlap of this gene with all other

genes in the network.

Evolution rate

The evolution rate was calculated by comparing the grasshopper

Oedaleus asiaticus, which belongs to the same subfamily Oedipo-

dinae as L. migratoria. Transcriptomic data of this species were

downloaded from the NCBI SRA database (SRR IDs SRR2051024,
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SRR3372608, SRR3372609, and SRR3372610). The filtered clean

reads were assembled using Trinity (v2.0.6, https://github.com/

trinityrnaseq/trinityrnaseq/) with default parameters. To reduce

redundancy, we further clustered the assembly into clusters and

separately assembled each cluster using TGICL (v2.1, https://

sourceforge.net/projects/tgicl/). To select one representative tran-

script for genes with multiple isoforms, all of the sequences from

TGICL were reclustered using CD-HIT (v4.6.1, http://weizhongli-lab.

org/cd-hit/), and the single longest representative sequence was

selected for each cluster.

Reciprocal blast searching was performed using the protein

sequences from O. asiaticus and L. migratoria. The reciprocal best

hit pairs were used to calculate Ka/Ks. Protein sequence pair

alignment was performed with muscle (v 3.8.31, https://www.drive5.

com/muscle/) and then converted to CDS alignment using an in-

house Perl script. Stop codons and nonsense codons were

removed. KaKs_Calculator (v2.0, https://sourceforge.net/projects/

kakscalculator2/) was used to calculate Ka/Ks.

CpG o/e

CpG o/e is defined as %CG / (%C × %G), where %CG = #CG / (L −
1) and L is the sequence length.

Methylation level

To calculate methylation level, reduced representation bisulfite

sequencing data were used that were sequenced in the Locust

Genome Project for gregarious and solitary brain samples (down-

loaded from SRA; accession number SRP031775). First, adaptor

contamination and low-quality reads were filtered using trimmomatic

(v0.22). The clean data were then mapped using bismark (v0.7.12;

https://www.bioinformatics.babraham.ac.uk/projects/bismark/) with

bowtie2 (http://bowtie-bio.sourceforge.net/bowtie2/index.shtml) for

alignment. The aligned results were merged together for all samples,

and the methylation level was calculated for every CG site using the

R package methylKit (https://bioconductor.org/packages/methylKit).

The average methylation level across all of the CG sites in the gene

body was calculated as the methylation level at the gene level. To

obtain more reliable results, genes with fewer than 19 CG sites were

filtered. Finally, 9,168 genes with available methylation levels were

selected.

DEGs from experiments with replicates

Two published datasets from fourth-instar gregarious and solitary

locusts with three replicates were used here. The Brain_Hou dataset

was from the brain tissue, in which gregarious individuals were

injected with ddH2O and solitary individuals were injected with

dsGFP (accession number SRP092214 in SRA) (Hou et al., 2017).

The Pronotum_Yang dataset was from pronotum integument (ac-

cession number PRJNA399053 in SRA) (Yang et al., 2019). The

RNA-seq data processing and DEGs detection were performed as

above described.

Functional enrichment analysis

Enrichment analyses of functional classes, including those of GO,

InterPro domains, and KEGG pathways, for the supplied gene list

were carried out based on an algorithm presented by GOstat

(Beissbarth and Speed, 2004), with the whole annotated gene set

being used as the background. The P-value of the enrichment score

was determined using the chi-squared test. Fisher’s exact test was

used when any expected value was below 5, which would have

made the chi-squared test inaccurate. To adjust for multiple testing,

we calculated the false discovery rate using the Benjamini-Hochberg

method. The functional classes were removed if the enriched num-

ber of the genes was less than three.

TF identification

To identify the TFs in the migratory locust, we used previously

described methods (Weirauch and Hughes, 2011; Jin et al., 2014;

Zhang et al., 2015) to search for locust proteins using the Pfam

domain (Finn et al., 2014) and other protein family information using

InterProScan (v5.2-45.0, ftp://ftp.ebi.ac.uk/pub/software/unix/

iprscan/5/5.2-45.0/interproscan-5.2-45.0-64-bit.tar.gz). Each TF

was classified into a particular TF family based on the interpro and

Pfam ID, as previously described (Zhang et al., 2015). Several

proteins without domain information were manually annotated.

TRN construction

Overall TRN construction pipeline

It has demonstrated that integration of predictions from multiple TRN

inference methods showed higher performance than any single

inference method (Marbach et al., 2012). Our TRN construction

strategy consulted those from the DREAM5 challenge. We selected

eight widely used methods with high performance in the DREAM5

challenge (Greenfield et al., 2010; Marbach et al., 2012), available

software, and representing the main TRN reconstruction algorithm

categories, to construct the locust TRN. All of the genes with sum-

marized raw RPKM > 1 across all 129 samples were used. The raw

RPKM was preprocessed before network construction by log2
transformation after adding 1; then, the variation among the samples

was quantile-normalized using the preprocessCore package (https://

github.com/bmbolstad/preprocessCore). Because these transcrip-

tome datasets (development, tissue, and time course datasets for

brain and thoracic ganglia) were produced from various tissues and

development stages, their heterogeneity caused problems with

using all of the data for some tools. Therefore, we split the data to

run the tools separately when necessary. The eight methods were

ARACNE, CLR (http://bioconductor.org/packages/minet), GENIE3

(http://bioconductor.org/packages/GENIE3/), LeMoNe (http://

bioinformatics.psb.ugent.be/beg/tools/lemone), WGCNA, Infer-

elator (https://sites.google.com/a/nyu.edu/inferelator/home), TIGRESS

(http://projets.cbio.mines-paristech.fr/∼ahaury/svn/dream5/html/index.

html), and GGM (https://cran.r-project.org/web/packages/GeneNet/

index.html). For each method, TF-target gene pairs were arranged in

decreasing order according to their regulatory strength. The top

100,000 TF-target pairs from the eight methods were aggregated

using the Borda algorithm, which was implemented in the R package

TopKLists (https://cran.r-project.org/web/packages/TopKLists/index.

html). The top 100,000 TF-target pairs of the aggregated pair list

were used to construct the TRN. However, when we checked the

target degree distribution, we found that 97 target genes were
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regulated by all of the 876 TF genes in the network. Therefore, we

manually filtered these target genes, including three TF genes, and

reconstructed the network.

Eight TRN construction methods

The mutual information-based algorithms ARACNE and CLR were

implemented in the R package minet (http://bioconductor.org/

packages/minet) and run with the default parameters. All 129 sam-

ples were used. The scores that measured the regulation strength

between the TF and all genes were used to rank the TF-target pairs.

The tree-based method GENIE3 was also run using all 129

samples with the default parameters. The score assigned by this

algorithm was used to rank the TF-target pairs.

To run the module-based LeMoNe method, we first defined gene

clusters that showed similar expression trends across samples. The

preprocessed RPKM values, subjected to log2 transformation and

quantile normalization, were clustered using the K-means algorithm

implemented in the R package stats command kmeans with the

default parameters. The number of clusters (K) was chosen to

minimize the Bayesian information criterion (BIC) (Hastie et al.,

2009). The BIC is a function of K represented as BIC(K),

BIC(K) =∑N
l=1∑

M
j=1(

xlj -- ckl , j
σe

) + log(N) ×M ×K

where kl was the cluster to which the lth gene was assigned, and ckl , j
was the jth coordinate of the centroid of the kth cluster in the space of

expression measurements. N was the number of DEGs in each

dataset, and M was the number of samples for which clustering was

performed. σ2
e is the mean intra-cluster variance evaluated at K = 3.

The K-means clustering was carried out for integer values 3 ≤ K ≤
100; for 1,000 iterations at each value of K, the optimal clustering of

K was determined based on the lowest BIC value.

Clusters were produced for each of the four datasets. A score

was assigned to every cluster for each TF gene by the LeMoNe

algorithm. We used this score to represent the regulation strength of

gene members of that cluster for this TF. The TF-target pairs from

the four datasets were aggregated using the Borda algorithm, and

the rank given by the Borda algorithm was used as the output from

the LeMoNe method.

The correlation-based WGCNA method was run for each of the

four datasets. The signed adjacency matrix was calculated with

power 14, 12, 5, and 8 for development, tissue, and brain and

ganglia time course datasets. For each pair of genes, their topo-

logical overlap was calculated based on the adjacency matrix and

used to measure the correlation between them. To summarize the

TF-target correlation, the ranked TF-target correlations from each

dataset were merged using the Borda algorithm.

The t-test-based method Inferelator was downloaded from https://

github.com/ChristophH/Inferelator and run on the R platform with the

default parameters using all 129 samples. The score was used to

order the TF-target pairs.

The regression-based method TIGRESS (v2.1) was run in

MATLAB (v2007) using all 129 samples. The algorithm was run with

the parameters R = 1,000, alpha = 0.3, and L = 5 at the stability

selection step, and the area method was used to score the edges.

The score was used to rank the TF-target pairs.

The graphical Gaussian-based GGM algorithm was implemented

in the R package GeneNet and run using all 129 samples. First,

partial correlation estimation was performed with a dynamic method.

Second, the significance was tested based on regulatory direction.

The TF-target pairs were ordered according to their significant Q

values.

TRN for each TF

The above mentioned TRN was constructed based on the top TF-

target connections by aggregating all TF genes. However, for some

TF genes, the number of their target genes could be very small

because of their lower-ranking TF-target connections. To construct a

comparable TRN for each TF gene, we used the same ensemble

method for each TF gene and selected the top 1,700 TF-target

connections to construct the TRN.

PhaseCoreTF gene analysis

Significance of enrichment of the PhaseCore gene targets was

tested using a hypergeometric distribution. TF genes with at least

three enriched target genes were retained. Adjustment for multiple

testing was performed using the Benjamini-Hochberg method. To

test the specific function of the PhaseCoreTF genes, we performed

GO enrichment analysis with the PhaseCore genes as a

background.

qPCR

qPCR for Hr4, Hr46, and grh was performed using a SYBR Green kit

on a LightCycler 480 instrument (Roche). RP49 was used as internal

reference. The PCR primer sequences are shown in Table S10. The

2−ΔΔCt method was used to determine relative mRNA abundance for

the surveyed samples.

RNAi and behavioral tests

The dsRNA sequences for three TF genes Hr4, Hr46 and grh were

prepared using the T7 RiboMAX Express RNAi system (Promega).

dsRNA was microinjected into the brains of fourth-instar locusts

(1 μg/locust). dsGFP-RNA was used as the control. The behaviors of

test locusts were measured 48 h after injection. The behavioral test

was performed in a rectangular arena (40 cm × 30 cm × 10 cm) that

contained three chambers, as previously described (Guo et al.,

2011; Hou et al., 2017). Two smaller chambers (7.5 cm×30 cm×10

cm) were at either end; one contained 30 fourth-instar gregarious

locusts as a stimulus group, and the other was left empty. Locust

behaviors were recorded for 300 s by an EthoVision video tracking

system and analyzed according to the binary logistic regression

model. Pgreg was calculated as eη / (1 + eη); η = −2.11 + 0.005 ×

attraction index (AI) + 0.012×total distance moved + 0.015×total

duration of movement; AI = total duration in stimulus area – total

duration in area opposite the stimulus; this parameter represents the

extent to which the tested animals are attracted by the stimulus

group. After behavioral tests, the brains of these locusts were col-

lected. Three independent replicates were performed for each

treatment.
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Statistics and visualization

All statistical analyses were performed using R (https://www.r-

project.org/). Venn diagrams were plotted using the R package

VennDiagram (https://cran.r-project.org/web/packages/VennDiagr

am/index.html). The network was presented using Cytoscape

(v3.6.0, https://cytoscape.org/). Most of the graphs were produced

using the R package ggplot2 (https://cran.r-project.org/web/

packages/ggplot2/index.html). The overlap between RNAi DEGs

and DEGs from gregarious and solitary locust brain tissues was

tested and visualized using SuperExactTest package in R (https://

github.com/mw201608/SuperExactTest).

Data availability

The raw reads generated and/or analyzed during the current study

are available in the NCBI/SRA repository under accession IDs

SRP119014 for IG and CS time course, and SRP167424 for RNAi of

the three TF genes. The gene expression scores in RPKM for the

samples from development, tissues and phase transition time

courses are provided in Table S2, and the gene expression scores

for the samples from the RNAi of three TF genes are provided in

Table S8. The gene expression scores are also available on

LocustMine (http://www.locustmine.org:8080/locustmine).

ACKNOWLEDGEMENTS

We thank Drs. Yong Wang (Academy of Mathematics and Systems

Science, Chinese Academy of Sciences) and Zhixiang Lin for dis-

cussing AC-PCA analysis. We are grateful for valuable discussion of

the early version of this manuscript with Drs. Fangqing Zhao and

Zhongsheng Sun (Beijing Institutes of Life Science, Chinese Acad-

emy of Sciences). This study was supported by the Research Net-

work of Computational Biology and the Supercomputing Center at

Beijing Institutes of Life Science, Chinese Academy of Sciences.

This work was supported by the Strategic Priority Research Program

of CAS (XDB11010200 and 11010100); and the National Natural

Science Foundation of China (Grant Nos. 31771452, 31401121, and

31772531).

ABBREVIATIONS

AC-PCA, adjust confounding principal component analysis; CDV,

cross-data validation; CS, crowding of solitary locust; CSP,

chemosensory protein; DEGs, differentially expressed genes; GO,

gene ontology; GRH, grainyhead; HR4, hormone receptor 4; HR46,

hormone receptor 46; IG, isolation of gregarious locust; JH, juvenile

hormone; LOO-CV, leave-one-sample-out cross validation; PRGs,

phase-related genes; RPKM, reads per kilobase per million reads;

TF: transcriptional factor; TRN, transcriptional regulatory network.

COMPLIANCE WITH ETHICS GUIDELINES

Pengcheng Yang, Li Hou, Xianhui Wang and Le Kang declare that

they have no conflict of interest. This article does not contain any

studies with human subjects performed by any of the authors.

OPEN ACCESS

This article is distributed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/

licenses/by/4.0/), which permits unrestricted use, distribution, and

reproduction in any medium, provided you give appropriate credit to

the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made.

REFERENCES

Apel K, Hirt H (2004) Reactive oxygen species: metabolism,

oxidative stress, and signal transduction. Annu Rev Plant Biol

55:373–399
Audic S, Claverie JM (1997) The significance of digital gene

expression profiles. Genome Res 7:986–995
Baumgardt M, Karlsson D, Salmani BY, Bivik C, MacDonald RB,

Gunnar E, Thor S (2014) Global programmed switch in neural

daughter cell proliferation mode triggered by a temporal gene

cascade. Dev Cell 30:192–208
Beissbarth T, Speed TP (2004) GOstat: find statistically overrepre-

sented Gene Ontologies within a group of genes. Bioinformatics

20:1464–1465
Brown JB, Boley N, Eisman R, May GE, Stoiber MH, Duff MO, Booth

BW, Wen J, Park S, Suzuki AM et al (2014) Diversity and

dynamics of the Drosophila transcriptome. Nature 512:393–399
Cardoso TF, Quintanilla R, Castello A, Gonzalez-Prendes R, Amills

M, Canovas A (2018) Differential expression of mRNA isoforms in

the skeletal muscle of pigs with distinct growth and fatness

profiles. BMC Genomics 19:145

Chandrasekaran S, Ament SA, Eddy JA, Rodriguez-Zas SL, Schatz

BR, Price ND, Robinson GE (2011) Behavior-specific changes in

transcriptional modules lead to distinct and predictable neuroge-

nomic states. Proc Natl Acad Sci USA 108:18020–18025
Chen S, Yang P, Jiang F, Wei Y, Ma Z, Kang L (2010) De novo

analysis of transcriptome dynamics in the migratory locust during

the development of phase traits. PLoS ONE 5:e15633

Chen B, Li S, Ren Q, Tong X, Zhang X, Kang L (2015) Paternal

epigenetic effects of population density on locust phase-related

characteristics associated with heat-shock protein expression.

Mol Ecol 24:851–862
Corona M, Libbrecht R, Wheeler DE (2016) Molecular mechanisms

of phenotypic plasticity in social insects. Curr Opin Insect Sci

13:55–60
Dal Santo S, Tornielli GB, Zenoni S, Fasoli M, Farina L, Anesi A,

Guzzo F, Delledonne M, Pezzotti M (2013) The plasticity of the

grapevine berry transcriptome. Genome Biol 14:r54

Dassati S, Waldner A, Schweigreiter R (2014) Apolipoprotein D

takes center stage in the stress response of the aging and

degenerative brain. Neurobiol Aging 35:1632–1642
DeWitt TJ, Scheiner SM (2004) Phenotypic plasticity: functional and

conceptual approaches. Oxford University Press, New York

Dobrin R, Zhu J, Molony C, Argman C, Parrish ML, Carlson S, Allan

MF, Pomp D, Schadt EE (2009) Multi-tissue coexpression

networks reveal unexpected subnetworks associated with dis-

ease. Genome Biol 10:R55

Core transcriptional signatures of locust phase change RESEARCH ARTICLE

© The Author(s) 2019 899

P
ro
te
in

&
C
e
ll

https://www.r-project.org/
https://www.r-project.org/
https://cran.r-project.org/web/packages/VennDiagram/index.html
https://cran.r-project.org/web/packages/VennDiagram/index.html
https://cytoscape.org/
https://cran.r-project.org/web/packages/ggplot2/index.html
https://cran.r-project.org/web/packages/ggplot2/index.html
https://github.com/mw201608/SuperExactTest
https://github.com/mw201608/SuperExactTest
http://www.locustmine.org:8080/locustmine
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Elango N, Hunt BG, Goodisman MA, Yi SV (2009) DNA methylation

is widespread and associated with differential gene expression in

castes of the honeybee, Apis mellifera. Proc Natl Acad Sci USA

106:11206–11211
Ferreira PG, Patalano S, Chauhan R, Ffrench-Constant R, Gabal-

don T, Guigo R, Sumner S (2013) Transcriptome analyses of

primitively eusocial wasps reveal novel insights into the evolution

of sociality and the origin of alternative phenotypes. Genome Biol

14:R20

Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR,

Heger A, Hetherington K, Holm L, Mistry J et al (2014) Pfam: the

protein families database. Nucleic Acids Res 42:D222–D230
Greenfield A, Madar A, Ostrer H, Bonneau R (2010) DREAM4:

combining genetic and dynamic information to identify biological

networks and dynamical models. PLoS ONE 5:e13397

Guo W, Wang X, Ma Z, Xue L, Han J, Yu D, Kang L (2011) CSP and

takeout genes modulate the switch between attraction and

repulsion during behavioral phase change in the migratory locust.

PLoS Genet 7:e1001291

Hastie T, Tibshirani R, Friedman J, Franklin J (2009) The elements of

statistical learning: data mining, inference and prediction, vol 27.

Springer, New York

He J, Chen Q, Wei Y, Jiang F, Yang M, Hao S, Guo X, Chen D, Kang

L (2016) MicroRNA-276 promotes egg-hatching synchrony by up-

regulating brm in locusts. Proc Natl Acad Sci USA 113:584–589
Helantera H, Uller T (2014) Neutral and adaptive explanations for an

association between caste-biased gene expression and rate of

sequence evolution. Front Genet 5:297

Hou L, Yang P, Jiang F, Liu Q, Wang X, Kang L (2017) The

neuropeptide F/nitric oxide pathway is essential for shaping

locomotor plasticity underlying locust phase transition. eLife 6:

e22526

Hunt BG, Ometto L, Wurm Y, Shoemaker D, Yi SV, Keller L,

Goodisman MA (2011) Relaxed selection is a precursor to the

evolution of phenotypic plasticity. Proc Natl Acad Sci USA

108:15936–15941
Jin J, Zhang H, Kong L, Gao G, Luo J (2014) PlantTFDB 3.0: a portal

for the functional and evolutionary study of plant transcription

factors. Nucleic Acids Res 42:D1182–D1187
Johnson BR, Jasper WC (2016) Complex patterns of differential

expression in candidate master regulatory genes for social

behavior in honey bees. Behav Ecol Sociobiol 70:1033–1043
Kang L, Chen X, Zhou Y, Liu B, Zheng W, Li R, Wang J, Yu J (2004)

The analysis of large-scale gene expression correlated to the

phase changes of the migratory locust. Proc Natl Acad Sci USA

101:17611–17615
Kapheim KM (2016) Genomic sources of phenotypic novelty in the

evolution of eusociality in insects. Curr Opin Insect Sci 13:24–32
Le Trionnaire G, Wucher V, Tagu D (2013) Genome expression

control during the photoperiodic response of aphids. Physiol

Entomol 38:117–125
Lelli KM, Slattery M, Mann RS (2012) Disentangling the many layers

of eukaryotic transcriptional regulation. Annu Rev Genet 46:43–
68

Li X, Wang X, Xiao G (2019) A comparative study of rank

aggregation methods for partial and top ranked lists in genomic

applications. Brief Bioinform 20:178–189

Liao BY, Zhang J (2006) Low rates of expression profile divergence

in highly expressed genes and tissue-specific genes during

mammalian evolution. Mol Biol Evol 23:1119–1128
Lin Z, Yang C, Zhu Y, Duchi J, Fu Y, Wang Y, Jiang B, Zamanighomi

M, Xu X, Li M et al (2016) Simultaneous dimension reduction and

adjustment for confounding variation. Proc Natl Acad Sci USA

113:14662–14667
Liu Y (2017) Earlier and broader roles of Mesp1 in cardiovascular

development. Cell Mol Life Sci 74:1969–1983
Lyne R, Smith R, Rutherford K, Wakeling M, Varley A, Guillier F,

Janssens H, Ji W, McLaren P, North P et al (2007) FlyMine: an

integrated database for Drosophila and Anopheles genomics.

Genome Biol 8:R129

Ma Z, Guo W, Guo X, Wang X, Kang L (2011) Modulation of

behavioral phase changes of the migratory locust by the

catecholamine metabolic pathway. Proc Natl Acad Sci USA

108:3882–3887
Mane-Padros D, Borras-Castells F, Belles X, Martin D (2012)

Nuclear receptor HR4 plays an essential role in the ecdysteroid-

triggered gene cascade in the development of the hemimetabo-

lous insect Blattella germanica. Mol Cell Endocrinol 348:322–330
Marbach D, Costello JC, Kuffner R, Vega NM, Prill RJ, Camacho

DM, Allison KR, Consortium D, Kellis M, Collins JJ et al (2012)

Wisdom of crowds for robust gene network inference. Nature

Methods 9:796–804
Meisel RP (2011) Towards a more nuanced understanding of the

relationship between sex-biased gene expression and rates of

protein-coding sequence evolution. Mol Biol Evol 28:1893–1900
Morandin C, Dhaygude K, Paviala J, Trontti K, Wheat C, Helantera H

(2015) Caste-biases in gene expression are specific to develop-

mental stage in the ant Formica exsecta. J Evol Biol 28:1705–
1718

Morandin C, Tin MM, Abril S, Gomez C, Pontieri L, Schiott M,

Sundstrom L, Tsuji K, Pedersen JS, Helantera H et al (2016)

Comparative transcriptomics reveals the conserved building

blocks involved in parallel evolution of diverse phenotypic traits

in ants. Genome Biol 17:43

Normand SL (1999) Meta-analysis: formulating, evaluating, combin-

ing, and reporting. Stat Med 18:321–359
Pan M, Zhang J (2018) Quantile normalization for combining gene-

expression datasets. Biotechnol Biotechnol Equip 32:751–758
Patalano S, Vlasova A, Wyatt C, Ewels P, Camara F, Ferreira PG,

Asher CL, Jurkowski TP, Segonds-Pichon A, Bachman M et al

(2015) Molecular signatures of plastic phenotypes in two eusocial

insect species with simple societies. Proc Natl Acad Sci USA

112:13970–13975
Pener MP, Simpson SJ (2009) Locust phase polyphenism: an

update. Adv Insect Physiol 36:1–272
Pfaff DW, Joels M (2016) Hormones, brain and behavior. Elsevier

Science, Amsterdam

Pigliucci M (2001) Phenotypic plasticity: beyond nature and nurture.

Johns Hopkins Univ Pr, Baltimore

Purandare SR, Bickel RD, Jaquiery J, Rispe C, Brisson JA (2014)

Accelerated evolution of morph-biased genes in pea aphids. Mol

Biol Evol 31:2073–2083
Rhodes DR, Chinnaiyan AM (2005) Integrative analysis of the

cancer transcriptome. Nat Genet 37(Suppl):S31–S37

RESEARCH ARTICLE Pengcheng Yang et al.

900 © The Author(s) 2019

P
ro
te
in

&
C
e
ll



Roberts SB, Gavery MR (2012) Is there a relationship between DNA

methylation and phenotypic plasticity in invertebrates? Front

Physiol 2:116

Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Biocon-

ductor package for differential expression analysis of digital gene

expression data. Bioinformatics 26:139–140
Rogers WA, Grover S, Stringer SJ, Parks J, Rebeiz M, Williams TM

(2014) A survey of the trans-regulatory landscape for Drosophila

melanogaster abdominal pigmentation. Dev Biol 385:417–432
Sawamura T, Kume N, Aoyama T, Moriwaki H, Hoshikawa H, Aiba Y,

Tanaka T, Miwa S, Katsura Y, Kita T et al (1997) An endothelial

receptor for oxidized low-density lipoprotein. Nature 386:73–77
Schlichting CD, Smith H (2002) Phenotypic plasticity: linking

molecular mechanisms with evolutionary outcomes. Evol Ecol

16:189–211
Shin JH, Kim IY, Kim YN, Shin SM, Roh KJ, Lee SH, Sohn M, Cho

SY, Lee SH, Ko CYet al (2015) Obesity resistance and enhanced

insulin sensitivity in Ahnak-/- mice fed a high fat diet are related to

impaired adipogenesis and increased energy expenditure. PLoS

ONE 10:e0139720

Simola DF, Wissler L, Donahue G, Waterhouse RM, Helmkampf M,

Roux J, Nygaard S, Glastad KM, Hagen DE, Viljakainen L et al

(2013) Social insect genomes exhibit dramatic evolution in gene

composition and regulation while preserving regulatory features

linked to sociality. Genome Res 23:1235–1247
Singh AK, Elvitigala T, Cameron JC, Ghosh BK, Bhattacharyya-

Pakrasi M, Pakrasi HB (2010) Integrative analysis of large scale

expression profiles reveals core transcriptional response and

coordination between multiple cellular processes in a cyanobac-

terium. BMC Syst Biol 4:105

Smith RN, Aleksic J, Butano D, Carr A, Contrino S, Hu F, Lyne M,

Lyne R, Kalderimis A, Rutherford K et al (2012) InterMine: a

flexible data warehouse system for the integration and analysis of

heterogeneous biological data. Bioinformatics 28:3163–3165
Spanier KI, Jansen M, Decaestecker E, Hulselmans G, Becker D,

Colbourne JK, Orsini L, De Meester L, Aerts S (2017) Conserved

transcription factors steer growth-related genomic programs in

Daphnia. Genome Biol Evol 9:1821–1842
Sumner S, Bell E, Taylor D (2018) A molecular concept of caste in

insect societies. Curr Opin Insect Sci 25:42–50
Tawfik AI (2012) Hormonal control of the phase polyphenism of the

desert locust: a review of current understanding. Open Entomol J

6:22–41

Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering

splice junctions with RNA-Seq. Bioinformatics 25:1105–1111
Tseng GC, Ghosh D, Feingold E (2012) Comprehensive literature

review and statistical considerations for microarray meta-analy-

sis. Nucleic Acids Res 40:3785–3799
Wang X, Kang L (2014) Molecular mechanisms of phase change in

locusts. Annu Rev Entomol 59:225–244
Wang Y, Amdam GV, Rueppell O, Wallrichs MA, Fondrk MK,

Kaftanoglu O, Page RE Jr (2009) PDK1 and HR46 gene

homologs tie social behavior to ovary signals. PLoS ONE 4:

e4899

Wang Y, Yang P, Cui F, Kang L (2013) Altered immunity in crowded

locust reduced fungal (Metarhizium anisopliae) pathogenesis.

PLoS Pathog 9:e1003102

Wang X, Fang X, Yang P, Jiang X, Jiang F, Zhao D, Li B, Cui F, Wei

J, Ma C et al (2014) The locust genome provides insight into

swarm formation and long-distance flight. Nat Commun 5:2957

Weirauch MT, Hughes TR (2011) A catalogue of eukaryotic

transcription factor types, their evolutionary origin, and species

distribution. Subcell Biochem 52:25–73
West-Eberhard MJ (2003) Developmental plasticity and evolution.

Oxford University Press, Oxford

Whitfield CW, Ben-Shahar Y, Brillet C, Leoncini I, Crauser D,

Leconte Y, Rodriguez-Zas S, Robinson GE (2006) Genomic

dissection of behavioral maturation in the honey bee. Proc Natl

Acad Sci USA 103:16068–16075
Wu R, Wu Z, Wang X, Yang P, Yu D, Zhao C, Xu G, Kang L (2012)

Metabolomic analysis reveals that carnitines are key regulatory

metabolites in phase transition of the locusts. Proc Natl Acad Sci

USA 109:3259–3263
Yang M, Wang Y, Liu Q, Liu Z, Jiang F, Wang H, Guo X, Zhang J,

Kang L (2019) A beta-carotene-binding protein carrying a red

pigment regulates body-color transition between green and black

in locusts. eLife 8:e41362

Zayed A, Robinson GE (2012) Understanding the relationship

between brain gene expression and social behavior: lessons

from the honey bee. Annu Rev Genet 46:591–615
Zhang HM, Liu T, Liu CJ, Song S, Zhang X, Liu W, Jia H, Xue Y, Guo

AY (2015) AnimalTFDB 2.0: a resource for expression, prediction

and functional study of animal transcription factors. Nucleic Acids

Res 43:D76–D81

Core transcriptional signatures of locust phase change RESEARCH ARTICLE

© The Author(s) 2019 901

P
ro
te
in

&
C
e
ll


	Core transcriptional signatures of&#146;phase change in&#146;the&#146;migratory locust
	ABSTRACT
	INTRODUCTION
	RESULTS
	Dataset establishment
	PhaseCore gene identification
	PhaseCore gene features
	PhaseCoreTF genes and&#146;their regulatory network
	Functional verification of&#146;representative TFs
	LocustMine database construction

	DISCUSSION
	MATERIALS AND METHODS
	Datasets
	RNA sequencing
	RNA-seq data analysis
	AC-PCA
	Gene features
	Phase-related genes
	Specific expression
	Network connectivity
	Evolution rate
	CpG o/e
	Methylation level
	DEGs from&#146;experiments with&#146;replicates

	Functional enrichment analysis
	TF identification
	TRN construction
	Overall TRN construction pipeline
	Eight TRN construction methods
	TRN for&#146;each TF

	PhaseCoreTF gene analysis
	qPCR
	RNAi and&#146;behavioral tests
	Statistics and&#146;visualization
	Data availability

	ACKNOWLEDGEMENTS
	REFERENCES




