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Abstract

The concept of the brain has shifted to a complex system where different subnetworks support the human cognitive
functions. Neurodegenerative diseases would affect the interactions among these subnetworks and, the evolution of
impairment and the subnetworks involved would be unique for each neurodegenerative disease. In this study, we seek for
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structural connectivity traits associated with the family history of Alzheimer’s disease, that is, early signs of subnetworks
impairment due to Alzheimer’s disease. The sample in this study consisted of 123 first-degree Alzheimer’s disease relatives
and 61 nonrelatives. For each subject, structural connectomes were obtained using classical diffusion tensor imaging
measures and different resolutions of cortical parcellation. For the whole sample, independent structural-connectome-traits
were obtained under the framework of connICA. Finally, we tested the association of the structural-connectome-traits with
different factors of relevance for Alzheimer’s disease by means of a multiple linear regression. The analysis revealed a
structural-connectome-trait obtained from fractional anisotropy associated with the family history of Alzheimer’s disease.
The structural-connectome-trait presents a reduced fractional anisotropy pattern in first-degree relatives in the tracts
connecting posterior areas and temporal areas. The family history of Alzheimer’s disease structural-connectome-trait
presents a posterior–posterior and posterior–temporal pattern, supplying new evidences to the cascading network failure
model.

Key words: Alzheimer’s disease, cascading network failure, diffusion-weighted imaging, early detection, family history of
Alzheimer’s disease

Introduction
It is well established that Alzheimer’s Disease (AD) can be con-
sidered a long-duration neuropathological process starting about
20 years before the appearance of the typical clinical symptoms
as it is episodic memory impairment. It would be ideal to identify
a biomarker indicating the relative risk for the development of
dementia, as early in time as possible. For this reason, there is
an increased interest in the study of the preclinical stages of
the AD continuum, specifically in populations at risk with no
symptoms, neither brain pathology. A typical example of this
population at risk, are the relatives of AD patients. It has been
found that first-degree relatives of AD who are carriers of ε3/ε4
showed a lifetime risk of 46.1% and up to 61.4% in ε4/ε4 carriers.
However, this risk decreases to 29.2% in first-degree relatives
carrying ε3/ε3 alleles (Martinez et al. 1998; Bendlin et al. 2010a).
Therefore, this population is of great interest for identifying
early neurophysiological characteristics of the disease that could
open new vistas for intervention (Ramírez-Toraño et al. 2020). To
accomplish this challenging aim it is necessary to approach this
complex disease from new perspectives.

In the recent years, the concept of the brain organization
has shifted to a complex system where different subnetworks
support the human cognitive functions. In this framework, neu-
rodegenerative diseases would not solely affect the brain at a
locally molecular level but the normal functions and interactions
among these subnetworks. The evolution of impairment and the
subnetworks involved would be unique for each neurodegen-
erative disease (Seeley et al. 2009). In the case of sporadic AD,
the network-level malfunction would start in highly connected
posterior regions progressing to hyperconnectivity with ventral
and anterior areas (Jones et al. 2016). This model, denominated
cascading network failure, accords with the AD pathophysiology
observed with other biomarkers.

Diffusion-weighted imaging (DWI) is a specific technique of
magnetic resonance imaging (MRI) that measures the movement
of water particles in the brain (Le Bihan and Breton 1985). The
DWI information and the properties of water movement in the
different tissues of the brain allow extracting more complex
information about the structural integrity of the brain. Diffusion
tensor imaging (DTI) technique characterizes the magnitude, the
degree of anisotropy, and the orientation of water diffusion and
thus, test the structural integrity of the brain. DTI technique has
been widely used in the study of AD. The most reported observa-
tion in advanced AD stages and mild cognitive impairment (MCI)
is a decreased in fractional anisotropy (FA) and an increase in
mean diffusivity (MDiff), especially in the hippocampal cingulum
and in the posterior, temporal and parietal areas white matter

(WM) (Bozzali et al. 2002; Douaud et al. 2011; Nir et al. 2013; Mayo
et al. 2019). Fewer studies might be found with cognitively healthy
population at risk of developing AD but still, the reports show an
initial impairment in posterior and temporal areas (Gold et al.
2010; Smith et al. 2010; Bendlin et al. 2010b).

Nevertheless, since no considerable impairments are expected
in cognitively healthy population at risk, the classical straight-
forward comparison techniques might obscure subtle patterns
of connectivity. To address this matter, Amico et al. (2017)
developed an independent component (IC) approach that
untangle different patterns of brain connectivity present in the
population under study. This approach estimates independent
connectivity patterns (or traits) present in the whole population
without any stratification of subjects or supervised classification
into groups. Instead, the presence of traits on each subject is a
posteriori evaluated in order to assess possible associations with
cognition or behavior. This framework has been used to identify
connectivity traits related to levels of consciousness (Amico et
al. 2017), to mild cognitive impairment and AD (Contreras et
al. 2017), structural-functional connectivity traits that support
cognitive tasks (Amico and Goñi 2018) and, more recently, family
history of alcoholism (Amico et al. 2020).

In this study, we estimate structural ICs under the framework
of connICA using classical DTI measures and different resolu-
tions of cortical parcellation. We then test the association of
the obtained traits with a collection of demographic, genetic,
neuropsychological, and neurophysiological factors that have
been proven to be related to AD and structural connectivity.
Specially, we seek for structural connectivity traits associated
with the family history of AD.

Material and Methods
Participants

Two hundred and sixty two healthy older adults were recruited
from local hospitals, via advertisements in the Fulbright alumni
association, in the “Asociación Española de Ingenieros de
Telecomunicación Delegación de Madrid”, as well as in public
media. Exclusion criteria for the current study comprised:
(1) history of psychiatric or neurological disorders or drug
consumption in the last week that could affect MEG activity;
(2) evidence of infection, infarction or focal lesions in a T2-
weighted MRI scan; (3) alcoholism or chronic use of anxiolytics,
neuroleptics, narcotics, anticonvulsants, or sedative hypnotics;
(4) Mini-Mental State Examination (MMSE) score below 27; (5)
subjective cognitive complaints; (6) unusable T1-weighted image
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Table 1. Demographic characteristics of the population

AD relatives Controls BootstrapP value Bootstrapeffect size

N 123 61
Age 57.88 ± 6.85 62.72 ± 9.31 (0.0524–1.0000) (0.0000–0.3548)
APOE ε4 carriers 46 (+)/77 (−) 13 (+)/48 (−) (0.0716–1.0000) (0.0000–0.1631)
Sex 42 M/81 F 25 M/36 F (0.0538–1.0000) (0.0000–0.1746)
Years of education 15.5040 ± 3.8376 16.9180 ± 3.8508 (0.0529–0.9806) (0.0044–0.3540)
MoCA 26.1157 ± 2.7792 25.9993 ± 2.5375 (0.0515–0.9960) (0.0009–0.3561)
TPA 1.4411 ± 1.1921 1.5465 ± 1.1567 (0.0538–0.9722) (0.0063–0.3527)
Average cortical thickness 2.3704 ± 0.0724 2.3517 ± 0.0780 (0.0558–1.0000) (0.0000–0.3496)
Hippocampi volume 3820.99 ± 377.23 3751.36 ± 445.17 (0.0509–0.9997) (0.0001–0.3570)

Values are presented as mean ± standard deviation. TPA values are normalized by actigraphy wear time. The cortical thickness is expressed in millimeters. The hippocampi
volume is the average of left and right hippocampi volumes. The 2 last columns present the minimum and the maximum P value and effect size of each predictor across
the 100 samplings. (+) APOE ε4 carriers; (−) non APOE ε4 carriers; M = male; F = female; MoCA = Montreal Cognitive Assessment; TPA = total physical activity.

or DWI. All participants underwent a comprehensive battery of
neuropsychological tests, a blood extraction procedure, and an
MRI scan. None of the participants included in this study meets
the diagnosis criteria for AD, MCI, or preclinical stages of AD
(Albert et al. 2011; Gosche et al. 2002; McKhann et al., 2011;
Sperling et al. 2011). The demographic, neuropsychological,
and neurophysiological data of each subject is included
in Supplementary Table 2. When specifically looking at the
temporal cortical thickness (average thickness across entorhinal,
fusiform, inferior temporal, and middle temporal), 3 subjects
out of 184 had a value below the standard interquantile range
(2.61–2.80) reported by Jack et al. (2017). However, none of the 3
subjects fulfilled the criteria for AD, MCI, or preclinical stages
of AD.

All participants signed an informed consent. The “Hospital
Clínico San Carlos” Ethics Committee approved this study, and
the procedure was performed in accordance with international
approved guidelines and regulations.

The final sample in this study consisted of 184 participants:
123 first-degree AD relatives and 61 nonrelatives. First-degree
relatives were defined as being direct descendants or siblings
of a patient with AD. Relatives of AD patients were required to
provide a medical report indicating the diagnosis of the patient
following the NINCDS-ADRDA criteria (McKhann et al. 1984). The
characteristics of the sample are displayed in Table 1.

APOE Genotype Test

DNA was extracted from whole-blood samples of the participants
of this study. As previously described in (Cuesta et al. 2015),
APOE haplotype was determined by analyzing SNPs rs7412
and rs429358 genotypes with TaqMan assays using an Applied
Biosystems 7500 Fast Real Time PCR machine (Applied Biosys-
tems, Foster City, CA, USA). A genotyping call rate over 90% per
plate, sample controls for each genotype and negative sample
controls were included in each assay. Three well-differentiated
genotyping clusters for each SNP were required to validate
results. Intra- and interplate duplicates of several DNA samples
were included.

MRI Data

Image Acquisition

Each subject T1-weighted MRI image was acquired in a Gen-
eral Electric 1.5 Tesla system. A high-resolution antenna was

employed together with a homogenization Phased array Unifor-
mity Enhancement filter (Fast Spoiled Gradient Echo sequence,
TR/TE/TI = 11.2/4.2/450 ms; flip angle 12◦; 1 mm slice thickness,
256 × 256 matrix and field of view (FOV) 25 cm).

The acquisition parameters for DWI were as follows: TE/TR
96.1/12000 ms; NEX 3 for increasing the SNR; 2.4 mm slice thick-
ness, 128 × 128 matrix, and 30.7 cm FOV yielding an isotropic
voxel of 2.4 mm; 1 image with no diffusion sensitization (i.e.,
T2-weighted b0 images); and 25 DWI (b = 900 s/mm2). Data were
recorded with a single shot echo planar imaging sequence.

T1 Processing

Each subject T1-weighted MRI image was processed using
FreeSurfer 6.0 recon-all procedure as described in (Dale et al.
1999; Fischl et al. 1999a, 1999b, 2001; Ségonne et al. 2004,
2007). First, this procedure performs a motion correction,
corrects for intensity nonuniformity and performs and intensity
normalization. Then, it performs a segmentation of the different
brain tissues and it constructs a cortical surface mesh for each
T1. It registers an inflated sphere version of this cortical mesh to
a common surface-space. Finally, it uses an anatomical atlas
(this atlas must be also an inflated version of the surface
atlas and register to the common surface-space) to assign
a neuroanatomical label to each native brain voxel. In this
study, we have used the cortex parcellation scheme proposed
by (Schaefer et al. 2018). This parcellation scheme divides the
cortex into 7 functional networks with 10 different levels of
spatial granularity (from 100 parcels up to 1000 parcels). For
completeness of those atlases, subcortical regions were added
as obtained using the FIRST command provided by FSL software
(Patenaude 2007). An example of a whole brain structural
connectome organized into hemispheres and resting-state
networks (RSN) is shown in Supplementary Figure 1.

As last step, we obtained the cortical thickness using the
FreeSurfer software and we registered the T1-space cortical atlas
to each subject’s DWI-space using the linear registration tool
(“flirt” command with 7 degrees of freedom) as provided by FSL
software (Jenkinson and Smith 2001; Jenkinson et al. 2002).

DWI Processing

The DWI data were processed using the MRtrix3 software
(Tournier et al. 2019). The DWI processing was compounded from
the following sequential steps: (1) DWI denoising (Veraart et al.
2016), Gibbs-ringing artifacts removal (Kellner et al. 2015), eddy
current and movements correction (Andersson and Sotiropoulos
2016), DWI bias field correction; (2) generation of a tissue-type

https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/texcom/tgab051#supplementary-data
https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/texcom/tgab051#supplementary-data


4 Cerebral Cortex Communications, 2021, Vol. 2, No. 4

segmented image appropriate for anatomically constrained
tractography (Smith et al. 2012); (3) estimation of WM, gray
matter (GM) and cerebrospinal fluid (CSF) response functions
for each subject (Dhollander et al. 2016). The final response
function used for the whole sample is the average of all subjects’
response functions; (4) Single-Shell 3-Tissue CSD (SS3T-CSD) was
performed to obtain WM-like FODs as well as GM-like and CSF-
like compartments in all voxels (Dhollander and Connelly 2016),
using MRtrix3Tissue (https://3Tissue.github.io); (5) Multitissue
informed log-domain intensity normalization (Raffelt et al.
2017); (6) generation of the tractogram (25 millions streamlines,
maximum tract length = 250, FA cutoff = 0.06, dynamical seeding)
(Tournier and Calamante 2010); SIFT2 tractography optimization
(Smith et al. 2015).

For each tractography, we obtained a set of structural con-
nectomes corresponding to each of the 10 Schaefer parcella-
tions. In particular, for each parcellation, structural connectomes
were estimated based on the 5 following measures: number of
streamlines (NoS), FA, axial diffusivity (ADiff), MDiff, and radial
diffusivity (RDiff). Overall, this process results in 50 structural
connectomes (SC) for each subject (5 structural measures and 10
parcellations).

Independent Component Analysis of Structural Connectomes

The workflow to obtain ICs from structural connectomes is based
on the connICA methodology used for functional connectomes
(Amico et al. 2017). For a single parcellation and structural mea-
sure, each SC was transformed into a column vector keeping
only the upper triangular part of the SC. The SC vectors of the
whole population were concatenated into a single matrix. To
avoid possible sources of noise, we performed a principal com-
ponent analysis (PCA) and reconstructed the whole-population
matrix using the number of components needed to explain the
95% of the variance. Note that the number of PCA components
needed is different for each measure and parcellation. Over this
reconstructed matrix, we performed an independent component
analysis (ICA) by running the FastICA algorithm (Hyvärinen 1999).
The number of ICs was set to 20. For each IC, we obtained 2
output vectors: the first output vector will be referred to as
SC-trait and it represents the IC itself; the second output vec-
tor will be referred to as weights and it quantifies the impor-
tance or presence of this SC-trait in each subject. A scheme of
this framework is shown in Figure 1. This process was repeated
for all combinations of structural measures and parcellations
schemes.

The nondeterministic nature of the FastICA algorithm
(Hyvärinen 1999) represents a problem for the consistency of the
solutions obtained. In order to get consistent solutions, we ran
the FastICA algorithm 500 times and we imposed 2 constraints to
keep only the “robust” SC-traits: first, it has to be present, at least,
in 75% of the runs; second, a SC-trait from one run “is present”
in another run if it has a correlation of 0.7 or higher with any of
the SC-traits of that second run.

Statistical Analysis

The first statistical analysis compares the presence of each SC-
trait in the relatives and nonrelatives groups by means of a t-
test. A t-test was performed using the weights of each of the
robust SC-traits obtained. To address the multiple comparison
problem, a false discovery rate (FDR) correction was applied
taking into account the number of robust SC-traits found, the

number of structural measures, and the parcellation resolution.
The significance level for the FDR correction was set to q < 0.05.

The second statistical analysis consists in an incremental
multiple lineal regression (MLR) model using as response the
weights of the robust SC-traits aforementioned and 9 predictors.
The selected predictors are a collection of demographic, genetic,
neuropsychological, and neurophysiological factors that have
been proven to be related to AD and SC. The last predictor added
is family history of AD so that we can evaluate the isolated
contribution of familial history when accounting for all other 8
predictors. Predictors are presented in Table 1.

To avoid possible biases driven by the unbalanced stratifi-
cation of our cohort into family history (N = 123) and controls
(N = 61), the MLR model was estimated using a sampling without
replacement scheme. For each bootstrap iteration, 61 first-degree
relatives are selected randomly without replacement. Only itera-
tions where the 61 first-degree relatives selected show not signif-
icant differences with the control group in any of the remaining
8 predictors are kept for further evaluation. With this constraint,
we avoid any group bias on the predictors that might interact or
confound with being first-degree relatives or not. This procedure
is repeated until obtaining 100 unbiased samplings (runs) of the
family history group. For each sampling, the statistics of the
corresponding MLR model are saved. Results are summarized by
averaging the statistics across runs, namely: predicted values,
standard residuals, predictability of the model (R2), regression
coefficients of each predictor (β), and t-statistic of each predictor.
The P value associated to each predictor is calculated using
the averaged t-statistic. To address the multiple comparison
problem, a FDR correction was applied taking into account the
number of robust SC-traits found, the number of predictors, the
number of structural measures, and the parcellation resolution.
The significance level for the FDR correction was set to q < 0.05.

Results
In this section, we present the structural connectivity patterns
found in a young cognitively healthy population using the con-
nICA technique. This technique reveals ICs of structural connec-
tivity, SC-traits, present in the whole population under study
without any prior stratification. First, we study the presence of
the robust SC-traits in the relatives and nonrelatives groups.
Finally, we study the association of these SC-traits with demo-
graphic, neuropsychological, and neurophysiological variables of
interest by means of a multiple linear regression.

Robust SC-Traits

A SC-trait is defined as robust when it is present, at least, in 75%
of the 500 runs as defined in (Amico et al. 2017). We explored
the presence of robust SC-traits across structural measures and
Schaefer parcellations. Results are shown in Table 2. Note that
for the cases where no robust SC-traits were found, no further
investigation on the traits or their possible association with
demographic and/or cognition was performed.

Presence of the SC-Traits

One SC-trait survived the FDR correction when compared the
weights of the relatives and nonrelatives groups. The SC-trait
associated with family history of AD is obtained with the FA
measure and the 800 areas parcellation. This SC-trait shows a

https://3Tissue.github.io
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Figure 1. Scheme of the connICA framework applied to structural connectomes. The original structural connectomes are vectorized and assembled to create a structural

connectivity matrix for the whole population. The matrix is preprocessed by means PCA and an ICA is performed. The output consist of 20 SC-traits, presents in the whole

population, and their associated weights, quantifying the presence of each SC-trait in each subject. SC = structural connectome; PCA = principal component analysis;

ICA = independent component analysis.

pattern of altered interhemispheric connectivity, with an impor-
tant negative cluster in the interhemispheric temporal-occipital
connections and a more widespread positive alteration. The
presence of the SC-trait (i.e., the weights obtained by connICA)
in the whole population is 0.0039 ± 0.0116 (mean ± std), whereas
in the first-degree relatives group is 0.0065 ± 0.0108 and in the
control group is −0.0012 ± 0.0115. Figure 2 shows the significant
SC-trait in its matrix form and the presence of the SC-trait in each
subject.

Multiple Linear Regression

The SC-trait associated with family history of AD is further ana-
lyzed. The SC-trait was considered for associations with different
characteristics of the subjects. To do so, we used demographic,
genetic, neuropsychological, and neurophysiological factors as
predictors in a multilinear regression model to predict the sub-
jects’ weights of the SC-trait.

Sampling without Replacement Scheme

As imposed by the sampling scheme, the 2 groups did not differ
in any of the predictors across the 100 samplings. The minimum
and maximum P value and effect size for each predictor across
the 100 samplings are presented in Table 1.

Multiple Linear Regression Results

The predictability of this MLR model using the 9 aforementioned
predictors was R2 = 0.2121. We assessed the relative contribution
of each predictor to the general predictability of the model adding
sequentially the predictors to the MLR model. The most relevant
predictors for the MLR model were family history of AD (relative
contribution of 0.1084), sex (0.0341), and age (0.0303). The only
predictor significantly associated with this SC-trait is family
history of AD (t(112) = 3.8713, p = 0.0002) with a standardized
regression coefficient β = 0.3423 ± 0.0372 and an explained
variance of R2 = 0.1084. The positive sign of the regression
coefficient indicates that first-degree relatives have a greater
presence of this SC-trait. The value of the FH R2 indicates a
strong variation in the SC-trait weights due to the risk factor
of positive family history of AD. The information of the MLR
model is visually summarized in Figure 3. To see the complete
information of the MLR model refer to Supplementary Table 1.

Anatomical Areas of the Family History of AD SC-Trait

In order to comprehend the implications of the SC-trait, we
condensed the SC-trait into the 7 functional networks defined
by (Schaefer et al. 2018). First, the SC-trait is split into 2 sub-
traits, one reflecting enhanced integrity and the other reflecting
diminished integrity. As shown in Figures 2 and 3, the presence

https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/texcom/tgab051#supplementary-data
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Table 2. Number of robust SC-traits found for each structural measure and atlas resolution

Structural measures Atlas resolution

100 200 300 400 500 600 700 800 900 1000

NoS 3 9 8 5 8 8 7 6 2 8
FA 0 5 11 7 6 9 10 10 10 10
ADiff 0 15 12 11 11 12 10 9 7 9
MDiff – – – – – – – – – –
RDiff – – – – – – – – – –

The number of robust SC-traits is presented. The dash symbol (‘-’) indicates the cases where was not possible to obtain 20 independent components. NoS = number of
streamlines; FA = fractional anisotropy; ADiff = axial diffusivity; MDiff = mean diffusivity; RDiff = radial diffusivity.

Figure 2. Family history of AD SC-trait. On the left, the matrix represents the connectivity patterns of connectivity of the SC-trait. The positive values (yellow) represent

an increased FA connectivity in the AD relatives group and the negative values (blue) represent a decreased FA connectivity in the AD relatives group. On the right, the

weights of this SC-trait for each subject, that is, the presence of this SC-trait in the connectivity pattern of each subject. The violin plots present the weights distribution

of each group with the quartiles and the median. The P value is the result of a two-tailed t-test. LH = left hemisphere; RH = right hemisphere; FA = fractional anisotropy.

of this SC-trait is significantly higher in first-degree relatives.
Hence, the enhanced integrity represents a pattern of increased
integrity in the first-degree relatives group and the diminished
integrity represents a pattern of decreased integrity in the first-
degree relatives group. Hence, from now on, we will refer to those
subtraits as FH enhanced integrity and FH diminished integrity
respectively. For each subtrait, we retained the giant component
of the connectivity pattern, hence, discarding spurious edges
involving one or a few brain areas (Goñi et al. 2013). Then, we
estimated the presence of each RSN as the sum of the weights
of the within and between RSN edges divided by their respective
total number of edges. The denominator takes into account the
RSNs size so that results are comparable within and between
RSNs. Our hypothesis includes that FH subjects will not show
an integrity gain in connectivity respect to the control group.
Instead, we expect them to possibly have a loss of structural
integrity (Gold et al. 2010; Smith et al. 2010; Bendlin et al. 2010b).
In accordance with this hypothesis, we used the highest value of
RSNs presence in FH enhanced subtrait (0.6076) to build our null
model thresholds of spurious FA values at the networks level. In

the same manner, we used the highest value of RSNs presence
in FH diminished subtrait (1.4720) to validate our hypothesis
(i.e., any value of the FH enhanced subtrait is greater than this
value).

All values of the FH enhanced subtrait are lower than
the threshold applied (1.4720). The 3 over-represented within
and between RSNs in the FH diminished subtrait are: visual–
visual, visual–limbic and visual–subcortical. Results are shown
Figure 4A. In order to get an anatomical visualization of
the results, we extracted the streamlines from the original
tractography for each over-represented result (Fig. 4B).

This process revealed that the most active functional net-
works were found in the negative matrix, that is, areas where
the first-degree relatives present a reduced connectivity pattern,
involving the visual–visual network, the visual limbic network
and the visual–subcortical network as defined by (Schaefer et al.
2018). Anatomically, we observed a decreased pattern of connec-
tivity between posterior regions, between posterior and superior
temporal regions (including the insula), and between posterior
regions and the amygdala.
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Figure 3. Multiple linear regression model. On the top panel, the t-statistic associated to each of the 9 predictors used to define the model. On the mid panel, the quality

of the model, that is, the real weight of each subject versus the weight predicted by the model and the error associated to each prediction. On the bottom panel, the

contribution of each predictor to the overall predictability of the model.

Discussion
In this work, the presence of disrupted structural connec-
tivity patterns associated with the family history of AD has
been addressed. The population under study is about one
decade younger compared with the average onset of the
sporadic AD and present no differences in relevant markers
of AD, namely: APOE ε4 carriage, demographic characteristics,

neuropsychological performance, hippocampi volume, and
cortical thickness. The SC-traits were obtained for 5 different DTI
measures and 10 different resolutions of the brain parcellation
using the connICA technique. The SC-traits obtained with this
method are present in the whole population without any
stratification of the subjects and without knowing if they have
any relation with the variables of interest. The posterior MLR



8 Cerebral Cortex Communications, 2021, Vol. 2, No. 4

analysis revealed a SC-trait obtained from FA associated with the
family history of AD. The SC-trait presents a reduced FA pattern
in first-degree relatives in the tracts connecting posterior areas
and temporal areas.

The essential of this study is the exploratory analysis of
structural connectivity in young healthy population to reveal
early effects of sporadic AD. With this purpose, we have selected
the most used DTI measures in the literature and a brain
parcellation scheme that allows us to obtain different levels
of resolution of the same defined brain functional networks
(Schaefer et al. 2018). Furthermore, the expected changes in
the first-degree relatives population, if any, might be so subtle
that straightforward connectivity matrix comparisons may loss
early AD signs in young population at risk. connICA technique
extracts independent structural connectivity patterns (SC-traits)
present in the population without any kind of stratification or a
priori assumption about the population. Later, the association
of the SC-traits to different variables of interest is further
analyzed. This framework has been previously used in different
experiments such as, levels of consciousness (Amico et al.
2017), mild cognitive impairment and AD (Contreras et al. 2017),
structural-functional connectivity traits that support cognitive
tasks (Amico and Goñi 2018) and family history of alcoholism
(Amico et al. 2020). Table 2 shows the diverse number of SC-
traits obtained for each parcellation resolution and DTI measure,
indicating the benefits of our framework for an exploratory
study.

The MLR models the relationship between the SC-traits and
the set of demographic, genetic, neuropsychological, and neu-
rophysiological factors relevant for sporadic AD. Among all the
SC-traits, one showed a significant association to the family
history of AD. Furthermore, family history of AD is the only
significant predictor for this SC-trait, addressing current dis-
cussions in AD literature. The fact that the 2 groups do not
differ in hippocampi volume or cortical thickness and the fact
that these 2 predictors are not associated with this SC-trait,
may support the idea that WM alterations are not caused by
Wallerian degeneration secondary to GM atrophy (Gold et al.
2010; Zhuang et al. 2012; Caballero et al. 2018). Neither being
an APOE ε4 carrier is associated with this SC-trait, a surprising
outcome previously reported in the literature (Chalmers et al.
2005; Bendlin et al. 2010b). This same outcome was found in this
population in a previous study of functional connectivity using
magnetoencephalography (Ramírez-Toraño et al. 2020). The null
contribution of APOE ε4 to this SC-trait does not imply that
APOE ε4 has no effect on the progression of AD. It only can
be inferred the presence of an abnormal connectivity pattern
related to the risk factor of family history of AD. APOE ε4 has been
associated with the deposition of amyloid plaques, which could
be a different pathway of AD pathology than the disrupted WM
integrity. These 2 pathways could be interacting at some point
in the pathology but seems to be relatively independent at this
stage of the AD continuum.

The family history of AD SC-trait presented a decreased con-
nectivity pattern between posterior areas, between posterior
areas and temporal areas, and between posterior areas and the
amygdala. Decreased FA has been reported in preclinical AD,
amnestic MCI and clinically diagnosed AD dementia patients
(Chua et al. 2008, 2009; Wang et al. 2009; Bendlin et al. 2010b; Liu
et al. 2011; Kantarci et al. 2017). Furthermore, the visual–limbic
SC-trait presented in this study reminds of the ventral cortical
pathway defined by Mishkin et al. (1983), which is related with
high-order visual recognition. Damage in this cortical pathway
could lead to difficulties in face-recognition tasks, difficulties

that worsen with the AD progression (Huang et al. 2020). These
results might demonstrate an early structural impairment before
the presence of any clinical or neurophysiological alteration.
The association of this finding with the typical pathophysiol-
ogy of the disease is hard to establish with the current data.
Nevertheless, the early disruption of the WM integrity could be
due to an initial effect of the tau-pathology associated with AD
since pyramidal neurons in the temporal cortex prone to be
particularly vulnerable to tau-pathology (Hof et al. 1990). The
hyper phosphorylation of the tau-protein affects the structure
of the axonal microtubules and consequently the axon struc-
ture. This effect could be lastly seen in the reduction of the
tracts integrity by DTI. In fact, this relationship has been already
demonstrated in AD patients with posterior cortical atrophy
(Sintini et al. 2019). This hypothesis needs to be tested by mix-
ing SC and tau-PET scans in subjects with family history of
AD. As a final remark, we observed widespread effects of WM
integrity enhancement and diminishment (Fig. 2). Although the
enhancement effect associated to FH could be due to actual
neurophysiological changes, it is more probable that this effect
is caused by the uncertainty introduced by the fitted model of
local diffusion and by the intrinsic uncertainty associated with
the estimation of DTI parameters (Behrens et al. 2003; Jones 2003;
Polders et al. 2011). The methodology employed in this study,
that is, the use of the highest value in the FH enhanced subtrait,
considers this effect as a background noise due to intrinsic
uncertainty associated with the DTI parameters, and set the
threshold for significant diminishment changes associated with
FH (Fig. 4).

Recently, (Jones et al. 2016) proposed a model for AD pro-
gression defined as a cascading network failure. According to
this model: “The failure begins in the posterior default mode
network, which then shifts processing burden to other systems
containing prominent connectivity hubs.”. The “systems con-
taining prominent connectivity hubs” would be the temporal
and frontal areas. The family history of AD SC-trait presented
in this study might be a supporting evidence of this model.
The family history of AD SC-trait resembles this model def-
inition, presenting posterior–posterior and posterior–temporal
abnormal connectivity patterns in the population at increased
risk of AD.

To conclude, this study has presented the family history of
AD SC-trait, an abnormal FA connectivity pattern related to the
family history of AD. This SC-trait cannot be explained by any
of the other relevant factors of AD such as APOE ε4 carriage,
demographic characteristics, neuropsychological performance,
and neurophysiological characteristics. This SC-trait presents a
posterior–posterior and posterior–temporal pattern, supplying
new evidence to the cascading network failure model.

There are 3 main lines of future work for this study. First,
interesting results have been found in the same population
regarding functional connectivity using magnetoencephalogra-
phy. The next study will try to model the association (if any)
between the functional and structural connectivity patterns
found in the population. In parallel, the sample used in this
study is currently enrolled in a longitudinal study to evaluate
a possible clinical progression over time; therefore, some of
the hypotheses presented could be better evaluated during the
follow-up period. Second, machine learning techniques could
also be evaluated to quantify nonlinear associations between
subject characteristics and the presence of connectivity traits.
Finally, the inclusion of additional neuroimaging techniques
as tau-PET could help in the interpretation of the current
results.
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Figure 4. Anatomical visualization of the family history of AD SC-trait. The family history of AD SC-trait is split in 1 positive and 1 negative matrix, excluding spurious

connections. The most active networks are estimated as the sum of the connectivity patterns of the areas belonging to that network divided by the numbers of areas. The

most active networks were found in the negative matrix and they were the visual–visual network (blue), the visual-limbic network (purple), and the visual-subcortical

network (green). The tracts of these networks are visually presented over an MRI for clarity purposes. DMN = default mode network.

Limitations
The main limitation related to the study design is the lack
of Aβ biomarkers and tau biomarkers. Nevertheless, the
population of this study are significantly younger than the
average onset age of sporadic AD (Huff et al. 1987). Therefore,

it is reasonable to suspect that the presence of Aβ would
probably be in an oligomeric form, which is harder to detect
(Yamin and Teplow 2017). The main limitation related to the
methodological design is the instability or nondeterministic
nature of the ICA. This limitation has been addressed enforcing
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the use of “robust” components as defined by (Amico et al.
2017).

Supplementary Material
Supplementary material can be found at Cerebral Cortex Commu-
nications online.
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