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It is estimated that each year, Nigeria, India and the 
Democratic Republic of Congo share half the burden 
of the 300,000 newborns affected by sickle cell disease 
(SCD)1. Here, we focus on the therapeutic advances in 
SCD that have taken place in the last decade. While 
hydroxyurea (HU) and blood transfusion remain the 
two disease-modifying treatment options, evidence 
for their efficacy from clinical studies and therapeutic 
trials in the last decade has led to their expanded 
use. Initially approved on the basis of its efficacy in 
reducing pain crises in adults with a history of three or 
more acute pain crises in a year, HU was also noted to 
reduce acute chest syndrome frequency and improve 
anaemia, minimizing the need for blood transfusions2. 
Longitudinal studies of patients receiving HU therapy 
for more than five years now demonstrate important 
effects on mortality reduction3,4. Patients in the Belgian 
cohort receiving HU showed a significantly better 
survival compared with either patients receiving no 
disease-modifying treatment or patients undergoing 
stem cell transplantation3. Moreover, the relative safety 
of HU in children5, even in settings with high infectious 
disease burden6,7, has increased our confidence in 
broadening the clinical use of this drug such that some 
centres initiate HU therapy in infants with SCD as 
early as nine months of age8. However, in one study, 
the proportion of adult patients with SCD with acute 
painful crises in the United States (US) receiving HU 
treatment was reported to be less than 25 per cent9, 
suggesting the need for more health systems research 
to achieve better translation of evidence into practice10. 
In 2016 the Transcranial Doppler (TCD) With 
Transfusions Changing to Hydroxyurea (TWiTCH) 
trial was completed11. This referred to the multicentre, 
open-label, phase III non-inferiority trial of HU therapy 
versus continuation of exchange blood transfusions 
in children with SCD with no severe vasculopathy 

detected on magnetic resonance angiography but at risk 
of stroke as assessed by abnormal TCD flow velocities 
(>200 cm/sec). Children on prophylactic exchange 
transfusions for at least two years when transitioned to 
HU maintained similar average TCD values as those 
children that continued exchange transfusions11. Interim 
analysis demonstrated non-inferiority of HU based on 
TCD measurements, but one should bear in mind that 
the follow up period was less than 24 months. Patients 
benefiting most from the conclusions of the TWiTCH 
study are children and young adults; replacing blood 
transfusion with HU would reduce the frequency of 
blood transfusion and time taken off from school.

Blood transfusion is effective in preventing and 
managing many acute and chronic complications 
but has the attendant risks of alloimmunization and 
haemosiderosis. While chronic blood transfusion 
has an evidence base for stroke prophylaxis or 
treatment, its use in many other medical situations, 
such as management of acute pain and acute chest 
syndrome is based largely on observation and clinical 
experience12. Thus, long-term transfusion rates in 
adults and in children even in well-resourced countries 
are highly variable (between 0 and 42% for adults 
and between 1.2 and 19.5% for children in the UK13). 
Surgery and general anaesthesia are associated with 
an increased rate of sickle-related complications, and 
many physicians transfuse patients before surgery to 
reduce perioperative complications. The Transfusion 
Alternatives Pre-Operatively in Sickle Cell Disease 
(TAPS) trial provides evidence supporting this practice 
and recommends that patients with haemoglobin (Hb) 
SS and HbSβ0 thalassemia with Hb <9 g/dl undergoing 
low- and moderate-risk surgery receive pre-operative 
simple transfusion aiming for a Hb level of 10 g/dl14. 
The risk of alloimmunization persists despite extended 
red cell phenotyping (standard practice for SCD 
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patients in many centres in the UK and US)15, but 
the emergence and broader utilization of DNA-based 
testing offer the possibility of further diminishing this 
risk16. Increasing the use of blood transfusion results in 
secondary iron overload, and in patients with SCD, the 
liver is most at risk. 

Acute pain crises probably the most frequent 
complication in sickle cell anaemia, and the most 
common reason to utilize hospital emergency services 
are a burden on the healthcare system. Cellular adhesion, 
coagulation and inflammation, pathways downstream 
of HbS polymerization, have a profound influence on 
vascular manifestations of SCD. From this perspective, 
crizanlizumab, a humanized monoclonal antibody 
to P-selectin, holds much promise for the prevention 
of acute vaso-occlusive pain. In a double-blind, 
randomized, placebo-controlled phase II trial, adult 
participants (on or off HU) who received the agent 
intravenously 15 times throughout the course of a year 
had a 45 per cent reduction in the annualized rate of 
pain compared to those receiving placebo17. Although 
the 30-min intravenous infusion of crizanlizumab 
mandates a visit to a medical facility, its relative long 
life (30 days) offers advantages compared to daily HU 
therapy. Anticoagulant treatment has also demonstrated 
activity in a placebo-controlled trial for vaso-occlusive 
crises18, but selection bias in this setting may have 
compromised validity of the results. Surprisingly, 
the Determining Effects of Platelet Inhibition on 
Vaso-Occlusive Events (DOVE) trial of prasugrel 
failed to reduce frequency of acute painful episodes19. 
In addition to platelet inhibition, the observation that 
genetic or pharmacologic inhibition of the coagulation 
pathway per se reduces organ damage and vasculopathy 
in murine models of SCD20 has prompted human studies 
of pharmacological agents that inhibit the actions of 
factors Xa and IIa in SCD patients (NCT02072668 and 
NCT02179177, phase II studies of rivaroxaban and 
apixaban, respectively). Ischaemia-reperfusion injury is 
thought to underlie vaso-occlusive crises, and a subset 
of inflammatory cells known as invariant natural killer 
T-cells (iNKT) cells is believed to mediate these effects. 
Patients with SCD have higher iNKT cell numbers and 
reducing their function with small molecule inhibitors 
(e.g. regadenoson)21 or immunodepleting them with 
monoclonal antibodies22 seems safe.

The last decade also witnessed several clinical 
trials on agents inhibiting HbS polymerization, the 
underlying mechanism of the sickle cell pathology. HbS 
polymerization occurs only under low oxygen tension 

prompting one approach of using agents to maintain 
HbS in the oxygenated state, such as GBT44023,24 
and derivatives of 5-hydroxymethyl-2 furfural 
(e.g. AES103), with several others in various stages 
of development25. Although AES103 initially showed 
promise in vitro, this was not successfully translated into 
clinical use26,27. Phase II studies have found GBT440 to 
be safe and effective in raising Hb almost 1.5 g/dl in 
support of its anti-polymerization effects that possibly 
reduce sickle-induced haemolysis28. Multicentre phase 
III clinical studies of GBT440 are now being launched 
with anaemia reduction as a primary end-point.

Inhibition of HbS polymerization via therapeutic 
induction or ‘de-repression’ of HbF has been pursued 
with numerous agents in clinical trials since the 
1980s, but the only successful agent approved by 
the US Food and Drug Administration is HU. One 
of the mechanisms by which HU acts is through 
increasing HbF, but the patient-to-patient response is 
highly variable and the distribution of the increase in 
HbF levels is heterocellular. Ideally, an increased HbF 
level that is evenly distributed among all erythrocytes 
(pancellular) would be more effective in thwarting 
HbS polymerization29. In recent years, advances in 
unravelling the molecular mechanisms controlling 
globin gene expression have led to new generations 
of agents that fall into two groups - those that affect 
chromatin regulators (such as decitabine on DNA 
methylation and histone deacetylase inhibitors) and 
the others that affect DNA-binding transcription 
factors. Several trials of HbF-inducing agents are 
under investigation30-33. At least three transcription 
factors - BCL11A, KLF1 and MYB - important for 
gamma-globin silencing have been identified34-39. Of 
these, BCL11A is not only the most potent repressor of 
HbF but also has the safest therapeutic window. MYB has 
an essential role in haematopoietic stem and progenitor 
cells, and although KLF1 is erythroid-specific, it has a 
pleiotropic effect on erythropoiesis. Although BCL11A 
has important roles in neuronal development and B-cell 
lymphopoiesis, dissection of the erythroid-specific 
enhancer down to a small region in the gene offers 
great hope for the possibility of disrupting this region 
and specifically targeting erythroid function using 
genome-editing technology (such zinc-finger nucleases 
or CRISPR-Cas 9). Another approach of reducing 
BCL11A levels is knocking down its expression 
by RNA interference, further enhanced by the 
development of novel vectors that can restrict the effect 
to the erythroid lineage. One could also ‘de-repress’ 
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gamma-globin expression by forcing an interaction 
between the β-locus control region and the γ gene using 
a synthetic DNA-binding protein40.

The last decade has also seen considerable 
advances in gene therapy for SCD using lentiviral 
vectors (anti-sickling β-globin or γ-increasing) as 
autologous haematopoietic stem cell transplantation 
(HSCT). The most advanced of these is the anti-sickling 
β-globin vector containing the HbAT87Q mutation, 
first tested in a patient with transfusion-dependent 
HbE/β-thalassemia41. The first such treated case of 
SCD reported therapeutic levels of anti-sickling 
β-Hb (>50%), absence of crises, correction of disease 
hallmarks and no evidence of insertional mutagenesis42. 
Interim results from a phase I/II study using this vector 
revealed therapeutic HbAT87Q expression in all 
seven patients with SCD43. These data should reassure 
patients of the short-term (and hopefully long-term) 
safety of gene therapy and encourage participation in 
future clinical trials.

Allogeneic HSCT has become an acceptable 
treatment option for SCD; human leucocyte antigen 
(HLA)-identical sibling donor transplantation in 
1000 patients conducted over 1986-2013 revealed 
excellent outcomes with both children and adults 
demonstrating 93 per cent overall survival (95% confidence 
interval, 91.1-94.6)44. Modifications to the intensity of 
conditioning have expanded allogeneic transplantation 
as a treatment option for adult patients with 
pre-existing organ dysfunction, who would have been 
otherwise ineligible for transplantation using standard 
myeloablative conditioning45. However, less than 
14 per cent of patients with SCD have HLA-matched 
siblings as donors. Hence, several approaches are 
needed to make HSCT available to more patients 
including expanding the sources from which stem cells 
can be obtained, such as an umbilical cord blood and 
haploidentical family members or matched unrelated 
donors combined with less intensive conditioning 
strategies and better supportive care.

Medical advances become meaningful only when 
the fruit of such advances reach the majority of patients. 
For this, we need to ensure access to high-quality care1,46 
for all patients, bearing in mind that the vast majority 
of patients with SCD come from a disadvantaged group 
and from geographically resource-limited settings. In 
India, and for that matter elsewhere, systematic data 
collection in the setting of clinical care would provide 
a clearer definition for and guide the expanding role 

of HU, HSCT and potential novel therapies in this 
population. Facilitating population-based diagnosis 
or monitoring of therapy within the framework of 
accessible primary care for patients with SCD is 
particularly relevant to patients lacking access to 
frequent hospital/clinic visits in resource-limited 
settings. The technology for point-of-care diagnostic 
devices offers much promise by detecting sickle 
Hb accurately, requiring <1 μl of whole blood and 
minimal to no instruments or power sources47,48. 
Finally, the role of collaborative science for this global 
health problem cannot be overemphasized. Several 
models exist, but the challenge is for resource-limited 
countries themselves to determine how best to develop 
relationships built on trust that improves the health of 
an already disadvantaged population.
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