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Evaluation of machine learning classifiers in
keratoconus detection from orbscan Il examinations
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Faculdade de Medicina da Universidade de Sao Paulo, Ophthalmology, Sao Paulo, Sdo Paulo, Brazil

-

PURPOSE: To evaluate the performance of support vector machine, multi-layer perceptron and radial basis function
neural network as auxiliary tools to identify keratoconus from Orbscan Il maps.

METHODS: A total of 318 maps were selected and classified into four categories: normal (n=172), astigmatism
(n=89), keratoconus (n =46) and photorefractive keratectomy (n=11). For each map, 11 attributes were obtained or
calculated from data provided by the Orbscan II. Ten-fold cross-validation was used to train and test the classifiers.
Besides accuracy, sensitivity and specificity, receiver operating characteristic (ROC) curves for each classifier were
generated, and the areas under the curves were calculated.

RESULTS: The three selected classifiers provided a good performance, and there were no differences between their
performances. The area under the ROC curve of the support vector machine, multi-layer perceptron and radial basis
function neural network were significantly larger than those for all individual Orbscan Il attributes evaluated (p<0.05).

CONCLUSION: Overall, the results suggest that using a support vector machine, multi-layer perceptron classifiers and
radial basis function neural network, these classifiers, trained on Orbscan Il data, could represent useful techniques
for keratoconus detection.

KEYWORDS: Neural networks; Artificial intelligence; Clinical decision support systems; Corneal topography;
Diagnosis.
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INTRODUCTION actual cases stored in databases. The data used to build

these models can either be preprocessed and expressed in a

Keratoconus (KC) is a bilateral and non-inflammatory set of rules or serve as training data for statistical or machine
condition characterized by progressive thinning, protrusion learning models.”

and scarring of the cornea.! The disease usually becomes Machine learning models have already been used in

clinically evident at puberty, and its etiology remains keratoconus detection. Previous papers have focused on the

unknown.” Although it has well-described clinical signs, assessment of neural networks in keratoconus diagnosis;

early forms of the disease may be undetected, even when however, only multi-layer perceptron (MLP) and anterior
computer-assisted videokeratography techniques or other topographic data have been used.>>*°

methods are used to evaluate the cornea.’ Likewise, the most popular MLP artificial neural networks,
Prior to the development of refractive surgery, it was support vector machine (SVM) and radial basis function
considered sufficient to diagnose clinically evident kerato- neural network (RBFNN), also represent supervised learning
conus.* However, given the spread of refractive surgery,’ a methods that can be used for regression or classification.'
careful differentiation between normal and keratoconus The Orbscan I™ (Bausch & Lomb) is a hybrid system
cases is essential to avoid postoperative complications such that acquires data through slit-scanning and Placido ring
as keratectasia.® technology. This instrument is able to map multiple ocular
Classification represents an important process in medical surfaces beyond the anterior corneal surface.'’ A well-
care. To help with this task, predictive models are used in a known theorem in prediction theory states that, when more
variety of medical domains, including diagnostic. These variables describing an event can be measured, the model

models are usually based on knowledge acquired from can predict the outcome more precisely.'”> Thus, we
hypothesized that a high accuracy in the classification of
keratoconus subjects can be reached when Orbscan II data

Copyright © 2010 CLINICS - This is an Open Access article distributed under are used to develop supervised learning methods.
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METHODS

This study was composed of three phases. First, Orbscan
IT data were retrospectively collected from medical records.
In the second phase, these data were preprocessed in order
to properly present them to the classifiers. SVM, MLP and
RBFNN classifications were applied in the third phase.
Subjects were enrolled from patients examined at the
private practice of one of the authors (M.B.S.) between
January 2004 and January 2009. Research followed the tenets
of the Declaration of Helsinki, and Institutional Review
Board approval was obtained.

Only one eye of each patient was randomly included in
the study. Diagnostic classification for all patients was
obtained from medical records and Orbscan II data review.

The examinations were classified into four different
corneal categories: normal, astigmatism, keratoconus (KC)
and photorefractive keratectomy (PRK).

The maps were classified as keratoconus if they had a
central corneal power superior to 48.7 D, an inferior superior
asymmetry (I-S) above 1.9'*'* or at least one of the following
biomicroscopic findings: Vogt’s striae or Fleischer’s ring.

Clinically diagnosed normal eyes, with no abnormal
flattening or steepening on tangential map and absence of
irregular astigmatism, were included in the normal (<1.5 D
cylinder) or astigmatism (=1.5 D cylinder) groups.

Orbscan II maps with poor corneal coverage, missing data
points, poor fixation or lid artifacts were excluded.

The machine classifiers were developed to detect the
presence of KC apart from other cornea patterns.

WEKA software'® version 3.6.2 was used to implement
the SVM and RBENN classifiers, and NETLAB!® software
was used to implement the MLP model. Although the
holdout method is the simplest technique for ““honestly”
estimating error rates, a single random partition can be
misleading for small or moderately sized samples, and
multiple train-and-test experiments can do better. In order
to find the best classifier parameters and to evaluate their
generalization ability, a 10-fold cross-validation was used.
In 10-fold cross-validation, the cases are randomly divided
into 10 mutually exclusive test partitions of approximately
equal size.'” At each train-and-test experiment, nine parti-
tions are used for training and one partition for testing the
performance.'”

Pooled examinations from the four corneal categories were
randomly divided into each of the 10 partitions used to train
and test the classifiers. The performance of the classifiers
reflected the ability to detect keratoconus apart from the
other non-keratoconus patterns in the test partitions.
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We also applied a receiver operating characteristic (ROC)
analysis, to obtain a ROC curve, and calculated the area
under the curve (AROC).!1%2!

Data collection

All Orbscan II tests were performed by experienced
examiners using the acquisition protocol recommended by
the manufacturer. The center of the map was the apex
determined by Placido data. Floating alignment and a cornea
fit zone of 9 mm were applied for best-fit spheres in all cases.

Eleven quantitative attributes from each Orbscan II
examination were used as input data for the algorithms:
anterior best-fit sphere, posterior best-fit sphere, astigmatism,
maximum and minimum simulated keratometry, index of
irregularity of the central 5 mm, thinnest point pachymetry,
central corneal power in diopters, I-S, maximum anterior
elevation and maximum posterior elevation (Table 1).

The I-S value was calculated as the difference between the
superior and inferior average powers of 15 data points,
located approximately 2.5-3.0 mm peripheral to the corneal
vertex, at 30° intervals.!>!4

The central corneal power was obtained by averaging the
dioptric power 4points on rings 2, 3 and 4, based on sagittal
topography.'**

The maximum anterior and posterior elevations were
defined by the highest elevation point over the best-fit
sphere within the central 5 mm of the Orbscan II map.

Data preprocessing

In order to avoid significant differences between variable
magnitudes, all features were normalized to have zero mean
and unit standard deviation. To normalize the data, we
treated each input variable independently and, for each
variable x;, we calculated its mean X; and variance af.l(’ The
rescaled variables were given by:

RBFNN

The RBENN is a universal approximator and the main
practical alternative to the MLP for non-linear modeling. It
is characterized by a layer of input nodes, a layer of output
nodes and one intermediate or hidden layer.16 The hidden
layer performs a non-linear transformation from the input
space into a high-dimensional space. The output layer

Table 1 - Attributes used as input data for the machine learning classifiers.

Attributes

Description

Anterior best-fit sphere

Posterior best-fit sphere
Simulated astigmatism

5mm irregularity

Maximum simulated keratometry
Minimum simulated keratometry
Maximum anterior elevation
Maximum posterior elevation
Thinnest point

I-S

Anterior best-fit sphere, using a floating alignment in a cornea fit zone of 9 millimeters

Posterior best-fit sphere, using a floating alignment in a cornea fit zone of 9 millimeters

Simulated astigmatism provided by Orbscan I

Index of irregularity of the central 5 mm provided by Orbscan II

Maximum simulated keratometry provided by Orbscan Il

Minimum simulated keratometry provided by Orbscan I

Highest anterior elevation point over the best-fit sphere within the central 5 mm

Highest posterior elevation point over the best-fit sphere within the central 5 mm

Thinnest point pachymetry provided by Orbscan I

Difference between superior and inferior average powers of 15 data points, located approximately 2.5 to

3.0 mm peripheral to the corneal vertex, at 30° intervals

Central corneal power

Average dioptric power of rings 2, 3 and 4, on sagittal topography
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applies a linear transformation from the hidden space to the
output space. The idea behind a non-linear transformation
followed by a linear transformation involves the fact that a
complex pattern classification problem cast in a high-
dimensional space is more likely to be linearly separable
than in a low-dimensional space.'

Each processing unit in the hidden layer implements a
radial basis function. Among the various functions tested as
activation functions for RBFNN, we chose the Gaussian
function, as this function is preferred in pattern classifica-
tion applications.”>*

The RBFNN available in the WEKA system uses a k-
means clustering algorithm to determine the centers and
widths of the radial basis functions; the weights are
determined by logistic regression. The adjustable para-
meters included the number of clusters and the ridge
parameter for linear regression.”” These parameters were
experimentally determined. The number of clusters tested
were 2, 3, 4, 5, 6, 8, 10, 15, 30 and 50, and the ridge
parameters tested were 1 ><1078, 1 ><1077,. 1 %10 Accuracy
was used for model selection.

SVM

The support vector machine is a learning method
developed from statistical learning theory. Like the previous
approach, it can be applied to both classification and
regression. After the input space is mapped into a high-
dimensional space, SVM uses a kernel function to find a
hyperplane that maximizes the separation between two
classes.'*

The SVM was implemented using Platt’s sequential
minimal optimization algorithm®* with a radial basis
function kernel. Two parameters were experimentally
optimized, the complexity parameter (C) and the width of
the Gaussian function (o). We varied C between 275 274
273, ..., 2% and ¢ between 1x107% 1x1077, ..., 1x10.
Accuracy was used for model selection.

Once the outputs of SVM are binary decisions, to obtain
proper probability estimates, we used the option that fits
logistic regression models to the outputs of the support
vector machine.

MLP

A standard multi-layer perceptron neural network is
characterized by a layer of input nodes, a layer of output
nodes and one or more intermediate or hidden layers.2 In
our study, we evaluated neural networks with a single
hidden layer, with 11 units in the input layer and a single
output neuron.

To determine the number of neurons in the hidden layer,
we experimentally evaluated the performance of different
neural network configurations, measuring the accuracy
achieved on the validation set. The number of hidden neurons
tested varied from a minimum of 1 to a maximum of 70
neurons. Weights and biases were initially generated from a
spherically s%fmmetric Gaussian distribution with a mean
equal to zero 6 and, as any training run is sensitive to initial
connection weights, accuracy was measured and averaged for
a total of 20 runs for each hidden layer configuration.

The hyperbolic tangent activation function was used for
neurons in the hidden layer, and a logistic activation
function was used for the output neuron. The cross-entropy
error function simplifies the optimization process when the
logistic activation function is used in the output layer; thus,
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we considered this an appropriate choice.®® The scaled
conjugate gradient” was the training algorithm, as it
generally shows faster convergence when compared with
gradient descent-based techniques.”

It is useless to design a classifier that accurately models
the sample data used during development but does poorly
on new cases. The nature of this problem is called over-fitting
of the classifier to the data. In order to avoid over-fitting
during training, a validation set and weight decay regular-
ization were used. A penalty term (Ey) proportional to the
sum of squared weights was added to the cross-entropy
error function (Ep). The function can be expressed as:

N
1
E=Ep+Ep=—Y_ [tny,+(1—ta)In(1—y,)]+ ocEsz

n=1

A large or small value of the regularization parameter o
can lead to under-fitting or over-fitting respectively. The
values of o evaluated were between 0 and 0.4, in 0.05 steps.

In order to find the best neural network architecture, we
chose the MLP that achieved the highest accuracy with the
simplest architecture.

RESULTS

A total of 318 subjects were enrolled in the study, 129
males (41%) and 189 females (59%). The mean age was
38.1+9.7 years. Subjects were classified into four categories:
normal (n=172), astigmatism (n==389), keratoconus (n=46)
and photorefractive keratectomy (n=11).

The parameters that reached the best performance for the
RBFNN were 8 clusters and a ridge of 1x10~®. For the SVM
classifier, a C value of 0.5 and an ¢ value of 1x10~° were
used. The MLP reached the best performance with a
regularization parameter (o) of 0.15 and 17 hidden units.

ROC curves for classifying eyes as keratoconus or non-
keratoconus were determined for each machine learning
technique and each individual attribute.

Sensitivity, specificity and AROC given by each indivi-
dual Orbscan II attribute and by the machine learning
classifiers are showed in Table 2. To ease the comparison of
the results, we have displayed the sensitivity at defined
specificities. Sensitivities at 75% and 90% were chosen
arbitrarily to represent moderate and high specificity
respectively (Table 2).

The individual attributes with the highest ROC areas
were I-S (0.96), followed by 5 mm irregularity (0.95),
maximum anterior elevation (0.95) and maximum posterior
elevation (0.94). The areas under the ROC curves of these
attributes showed no statistical difference, but were sig-
nificantly larger than the areas of the other individual
attributes (p<0.05).*

There were no differences between the performances of
SVM, MLP and RBFNN. The ROC curves of the three
classifiers are shown in Figure 1. The AROC of the SVM
(0.99), MLP (0.99) and RBFNN (0.98) classifiers were
significantly larger than those for all the individual
attributes evaluated (p<0.05).29

DISCUSSION

Early forms of keratoconus can be detected without any
slit-lamp sign of keratoconus.” In these cases, the evalua-
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Table 2 - Areas under ROC curves and sensitivities at fixed specificities for detecting keratoconus apart from all other

patterns for all techniques and attributes.

Technique AROC SE Sensitivity at 75% specificity (%) Sensitivity at 90% specificity (%)
SVM 0.99 0.002 100 100
MLP 0.99 0.002 100 100
RBFNN 0.98 0.005 98 98
I-S 0.96 0.007 100 95
5 mm irreqularity 0.95 0.02 93 87
Maximum anterior elevation 0.95 0.02 89 87
Maximum posterior elevation 0.94 0.02 91 89
Thinnest pachymetry point 0.87 0.03 54 47
Central corneal power 0.86 0.03 73 69
Maximum simulated keratometry 0.86 0.04 78 69
Posterior best-fit sphere 0.79 0.04 69 54
Anterior best-fit sphere 0.78 0.04 65 40
Minimum simulated keratometry 0.77 0.04 69 50
Simulated astigmatism 0.71 0.04 43 22

AROC, area under ROC curve; SE, standard error; SVM, support vector machine; RBFNN, radial basis function neural network; MLP, multi-layer perceptron;

I-S, inferior superior asymmetry.

tion of the anterior topography of the cornea is essential.*'
Corneal topography maps provide useful information about
corneal surface; however, interpretation of this may
represent a difficult task, specially because of the many
forms in which keratoconus may present.”> Thus, the ability
to automatically screen KC corneal topographic patters
would be a useful aid in screening candidates for refractive
procedures.’

In order to help clinicians, numerical methods and
quantitative parameters, calculated from corneal maps>>"3
or Orbscan I examinations,®**** have been proposed.

Machine learning methods, such as artificial neural
networks and discriminant analysis, were already in use
for identifying the topographic patterns of KC.>**>*° Unlike
the majority of previous publications, in this study, we used
Orbscan II examinations instead of anterior topography data
alone. In addition to anterior topography, Orbscan II
examination provides important information, such as
pachymetry and elevation maps. As the analysis of
Orbscan II data has already been demonstrated to be useful
in KC detection,®* > we hypothesized that the processing
of Orbscan II data could provide high accuracy in the
classification of keratoconus examinations.

Maeda et al,®> Smolek and Klyce8 and Accardo and
Stefano® have already demonstrated the value of a neural
network approach in identifying keratoconus patterns from
corneal topography, and our work agrees with their results.
However, besides the use of Orbscan II data, we also used
machine learning models that, although already described
previously in other fields of ophthalmology,‘wJ12 have not
been used for keratoconus detection. Thus, despite similar
results, on account of methodological differences and
different populations, it is not possible to compare our
results with previous studies.”®?>%

In the absence of a definitive or genetic test to detect
patients with KC, computer-assisted corneal analysis repre-
sents the most effective method.

Although the 5 mm irregularity, I-S, maximum anterior
elevation and maximum posterior elevation showed good
performance, the results in this study indicate that SVM,
MLP and RBENN classifiers, trained on combined Orbscan
II measurements, are superior to all the single parameters
evaluated to detect keratoconus. This is in accordance with
previous publications that recommended the use of anterior

1226

and posterior corneal data, or the association of Orbscan II
measurements to improve keratoconus detection ability.*

In our study, simulated astigmatism showed the worst
performance of the individual attributes evaluated. Smolek
and Klyce® also reported this observation.

SVM, MLP and RBENN were effective in detecting
keratoconus. There were no differences between the
classifiers” performance. It is important to highlight, how-
ever, that the performance of the classifiers is always
influenced by the datasets used to develop and test the
model. Thus, our results may be somewhat overestimated,
as we used very similar train-and-test sets, reflecting the
characteristics of our clinic population.

Although we trained and tested the classifiers on different
data, each data input was generated from the same rather
homogeneous pool.

Although similar previous studies have concentrated on
MLP, some studies have encouraged the use of SVM and
RBFNN classifiers.

RBFNN has some advantages over MLP. In general,
RBENN is more resilient to a bad training set than MLP. In
addition, the simple linear transformation in the output
layer can be optimized using traditional linear modeling
techniques, which are fast and do not suffer from problems
such as local minima, which plague MLP training techni-
ques. In addition, using only one single hidden layer
removes some design decisions about numbers of layers.*

MLP error surfaces are complex and are characterized by
a number of unhelpful features, such as local minima, which
correspond to a partial solution for the network in response
to the training data. Like RBFNN, a significant advantage of
SVM is that, although MLP can suffer from multiple local
minima, the solution to a SVM is global and unique. Besides
that, fewer samples are required to prevent over—ﬁt’cing.10

On the other hand, a disadvantage of RBFNN and SVM,
in contrast to MLP, is that they give every attribute the same
weight. Hence, they cannot deal effectively with irrelevant
attributes.*

It is not known beforehand which parameters are best for
a given problem; consequently, some kind of model
selection (parameter search) must be done. In this study,
we used a grid search. Although time-consuming, the time
required to find good parameters with this strategy is not
much more than that required by approximations or
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Figure 1 - ROC curves for detecting keratoconus apart from the other non-keratoconus patterns, computed for support vector
machine(SVM), multi-layer perceptron (MLP) and radial basis function neural network classifiers (RBF). AROC, area under ther ROC

curve; Se, sensibility; Es, specificity; cut off, cut-off value.

heuristics methods, as there were only two parameters in
each classifier. Another advantage of this method is that the
grid search can be easily parallelized, once each pair of
parameters tested is independent.** However, as it is
impossible to try all possible combinations, any model can
provide only a suboptimal result.

The evaluation criteria used to report results are directly
implicated with the results of a classifier. As our study
focuses on whether it is possible to distinguish one class of
data from others, based on the same set of measurements,
we used only the discrimination ability to access the model
performance.*’

Orbscan II can provide plenty of data,'* and it is known
that, as the number of variables used to train a learning
method increases, so does the amount of information
available. However, as features are added, more samples
are needed to prevent over-fitting. In order to avoid this
situation, known as “‘the curse of dimensionali’fy”,46 we
limited the data used. However, despite the satisfactory
performance, we believe that the use of a different
combination of attributes, selected with a data-mining
strategy from a bigger database, could be associated with
performance improvement.

The ability to screen automatically for keratoconus
patterns would be a helpful tool in clinical practice,
especially if the classifier has the ability to detect early
cases, once it is clinically easy to identify KC by clinical
signs.

In accordance with previous studies, we did not include
maps that could not be classified differently from suspected
keratoconus.””® This strategy was adopted to allow more
precise criteria in the assessment of the results, as the main
purpose of this study is to evaluate keratoconus detection.

However, we believe that further investigation, with the
inclusion of suspected keratoconus or other confusing
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patterns, would be desirable once there is a wide range of
corneal patterns in clinical practice. Although the inclusion
of these patterns can increase the false-positive rate, in order
to screen for keratoconus, a method with high sensitivity
would be more appropriate than a method with high
specificity, as the risk of misclassifying a keratoconus
subject is greater than misclassifying a normal subject.

In general, physicians will not accept and act on the
advice of a computer system without knowing the basis for
the system’s decision,” and one of the greatest disadvan-
tages of the methods tested in this study is their inability to
produce meaningful explanations for their decisions.*®
However, some factors in the keratoconus detection task
represent favorable indicators for applying them: 1) an
outcome influenced by multiple factors; 2) the need for
results that apply to an individual rather than to a
population; and 3) the desirability of constructing composite
indices from multiple measurements.*’

A good KC screening tool should identify the largest
number of cases, with the minimum possible number of
false-positives. Overall, our results suggest that SVM, MLP
and RBFNN classifiers, trained on Orbscan II data, could
represent useful techniques for keratoconus detection. We
believe that future work, with larger databases and the use
of different combinations of attributes, would probably be
associated with better results.
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