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Abstract

Genomic best linear unbiased prediction (GBLUP) is the most widely used model for genome-wide predictions. Interestingly, it is also pos-
sible to perform genome-wide association studies (GWAS) based on GBLUP. Although the estimated marker effects in GBLUP are shrunken
and the conventional test based on such effects has low power, it was observed that a modified test statistic can be produced and the
result of test was identical to a standard GWAS model. Later, a mathematical proof was given for the special case that there is no fixed
covariate in GBLUP. Since then, the new approach has been called “GWAS by GBLUP”. Nevertheless, covariates such as environmental
and subpopulation effects are very common in GBLUP. Thus, it is necessary to confirm the equivalence in the general case. Recently, the
concept was generalized to GWAS for epistatic effects and the new approach was termed rapid epistatic mixed-model association analysis
(REMMA) because it greatly improved the computational efficiency. However, the relationship between REMMA and the standard GWAS
model has not been investigated. In this study, we first provided a general mathematical proof of the equivalence between “GWAS by
GBLUP” and the standard GWAS model for additive effects. Then, we compared REMMA with the standard GWAS model for epistatic
effects by a theoretical investigation and by empirical data analyses. We hypothesized that the similarity of the two models is influenced by
the relative contribution of additive and epistatic effects to the phenotypic variance, which was verified by empirical and simulation studies.

Keywords: GWAS; GBLUP; Q þ K linear mixed model; epistatic effect

Introduction
Genome-wide association study (GWAS) and genome-wide pre-
diction (GWP) are two extensively applied tools in the study of
complex traits in human, animal, and plant populations (De Los
Campos et al. 2010; Wray et al. 2013; Hickey et al. 2017; Evans et al.
2018). GWAS is used to dissect the genetic architecture and iden-
tify potential causal variants for the trait, whereas GWP exploits
all genetic variants such as single nucleotide polymorphisms
(SNPs) to predict the genetic values of unphenotyped individuals.
Despite the different focuses, the statistical models utilized for
GWAS and GWP share many common features.

The state-of-the-art model for GWAS in structured popula-
tions is the QþK linear mixed model (Kennedy et al. 1992; Yu
et al. 2006). In this model, the population structure is controlled
by setting subpopulation effects as fixed covaraites (Q) and the
cryptic relatedness is taken into account by a random term with
a kinship matrix defining the genetic covariance between individ-
uals (K). The marker effect under test is modeled as a fixed pa-
rameter and its significance is assessed by the likelihood ratio
test (Lippert et al. 2011) or the F-test (Kang et al. 2008). The model
has to be fitted once for each marker. Thus, the computational
load can be very high for large-scale data sets as the estimation
of variance components usually involves an iteration procedure.

A widely applied efficient approximation approach is the P3D

(population parameters previously determined) method (Zhang

et al. 2010). Namely, the variance components are estimated only

once in a “null model” without including any marker effect and

then they are fixed throughout the test for all markers. It has be-

come a standard GWAS approach implemented in many soft-

ware packages such as EMMAX (Kang et al. 2010), GAPIT (Zhang

et al. 2010), and rrBLUP (Endelman 2011).
For GWP, the most commonly applied model is the genomic

best linear unbiased prediction (GBLUP; VanRaden 2008), which is

also a linear mixed model. In this model, the genetic values for

unphenotyped individuals are predicted via a genomic relation-

ship matrix connecting the phenotyped and unphenotyped indi-

viduals. The genomic relationship matrix can also be used as the

covariance matrix controlling the cryptic relatedness for GWAS.

Then, the GBLUP model is exactly the “null model” of the QþK

model for GWAS. On the other hand, GBLUP is equivalent to the

ridge regression best linear unbiased prediction (RR-BLUP;

Whittaker et al. 2000; Meuwissen et al. 2001), in which all marker

effects are explicitly modeled as random variables. With these

observations, we can treat GBLUP as a bridge connecting the

QþK model for GWAS and the RR-BLUP model for GWP. Thus, an

interesting question is whether GWAS can be directly performed
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using the GBLUP model. More precisely, whether a test statistic
can be constructed directly using the GBLUP model in which the
marker effects were modeled as random.

In fact, it has been proposed to perform GWAS directly based on
the GBLUP model using the estimated effects (Wang et al. 2012) or
the proportion of phenotypic variance explained by the markers
(Dikmen et al. 2013; Wang et al. 2014). However, test statistics
were not constructed in these approaches. A more meaningful ap-
proach is to construct a test statistic based on the estimated marker
effects in GBLUP. This has also been considered in previous studies
in the framework of ridge regression (Malo et al. 2008; Shen et al.
2013). Namely, a test statistic following t-distribution can be formed
by taking the estimated marker effect divided by the square
root of its prediction error variance (PVE), or equivalently, its poste-
rior variance from the Bayesian perspective (Chen et al. 2017).
Nevertheless, when the number of markers is large, the estimated
marker effects in the GBLUP model and the corresponding test sta-
tistics are usually over shrunken, which leads to low detection
power (Wang et al. 2020b).

Interestingly, it was demonstrated that an alternative test sta-
tistic can be constructed using the estimated marker effect in
GBLUP divided by the square root of its variance in the sense of
Henderson (1975) instead of the PVE, and it was observed that the
P-values produced in this method were almost identical to those
obtained in the QþK GWAS model (Duarte et al. 2014). Later, it
was mathematically proved that the new test statistic is identical
to the P3D approximated test statistic in the QþK model (Bernal
Rubio et al. 2016). Although the proof was only for the special
case that no fixed covariates are included in the GBLUP model, it
has been accepted by the community that the two GWAS
approaches are equivalent (Chen et al. 2017; Lu et al. 2018; Aguilar
et al. 2019) and the new approach was termed “GWAS by GBLUP”
(Legarra et al. 2018). It was also generalized to window-based or
SNP-set association tests (Chen et al. 2017). Nevertheless, it is
very common to include fixed covariates (e.g., an intercept, sub-
population, environmental effects, and known QTL effects) in the
GBLUP model. Thus, a strict mathematical proof for the general
case is needed to confirm the equivalence between “GWAS by
GBLUP” and the standard GWAS approach.

Recently, the concept of “GWAS by GBLUP” has been extended
to the 2D scan for epistatic effects (Ning et al. 2018; Wang et al.
2020a). That is, the GBLUP model can be extended to add a sec-
ond random term with an epistatic genomic relationship matrix
as covariance matrix, called EGBLUP (Jiang and Reif 2015; Martini
et al. 2016). Similar to the equivalence between GBLUP and RR-
BLUP, the EGBLUP model is equivalent to a model explicitly in-
cluding the additive effects of all markers and the epistatic
effects for all pairs of markers. Because of this equivalence, the
test statistics for the epistatic effects for all pairs of markers can
be efficiently calculated by fitting the EGBLUP model only once.
This approach was termed rapid epistatic mixed-model associa-
tion analysis (REMMA; Ning et al. 2018). On the other hand,
the standard QþK model for GWAS can also be extended to test
the significance of marker epistatic effects (Lippert et al. 2013;
Xu 2013). Thus, it is necessary to investigate the relationship
between REMMA and the extended QþK method. Similar to the
case of additive effects, one might expect that they are equivalent
because of the connections between the underlying models.
However, there have not been any theoretical or empirical stud-
ies comparing the two approaches.

In this study, we aimed to answer two questions: (1) Is “GWAS
by GBLUP” equivalent to the standard GWAS approach for marker
additive effects in the general case (when fixed covariates are

presented in the model)? (2) Is REMMA equivalent to the ex-
tended standard GWAS approach for marker epistatic effects?
For the first question, we gave an affirmative answer by providing
a strict mathematical proof that “GWAS by GBLUP” is equivalent
to the P3D approximated QþK approach. Moreover, the equiva-
lence is valid not only for single SNP-based test but also for
window-based test in which the additive effects of a group of
SNPs are tested together. For the second question, we first
made a theoretical comparison, which indicated that the two
approaches are not equivalent in general. Then we verified our
theoretical finding with empirical data analysis. Based on the em-
pirical results, we hypothesized that the different performance of
the two approaches is influenced by the ratio of the additive to
the epistatic variance component and verified the hypothesis
with a simulation study.

Materials and methods
GWAS by the Q 1 K linear mixed model
The QþK linear mixed model (Yu et al. 2006) has the following
form:

y ¼ Xbþmiai þ gþ e: (1)

The notations and assumptions are the following: y is the n-di-
mensional vector of phenotypic records. b is the k-dimensional
vector of covariate effects. X is the corresponding n� k design
matrix. ai is the additive effect of the i-th marker and mi is the
n-dimensional vector of marker codings. g denotes the n-dimen-
sional vector of polygenic background effects and e is the residual
term. In the model, b and ai are assumed to be fixed parameters
and g � Nð0;Kr2

gÞ, where K is a matrix of kinship coefficients
estimated by the pedigree or genomic data. e � Nð0; Ir2

e Þ and
Covðe; gÞ ¼ 0.

Note that in model (1), we assumed that each genotype has
only one record and the same order of individuals was applied to
g and y. Therefore, the design matrix for g is an identity matrix
and hence omitted. This assumption is made throughout the
manuscript in order to simplify the presentation of our theoreti-
cal results. The general case is treated in the Supplementary
Notes (Supplementary File S1).

In GWAS, we are mainly interested in the significance of the
marker effect ai. It can be assessed using the following test statistic,
which follows a t-distribution with n� k� 1 degrees of freedom:

zi;QþK ¼
âi;fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Varðâi;f Þ
q ; (2)

where âi;f is the best linear unbiased estimate of ai and a sub-
script “f” is added to emphasize that the marker effect is modeled
as a fixed parameter.

GWAS by the GBLUP model
The GBLUP model is of the following form:

y ¼ Xbþ gþ e; (3)

where the notations are the same as in (1) except that
g � Nð0;Gr2

gÞ, where G is a genomic relationship matrix derived
from marker information. If we take K ¼ G in (1), the only
difference between (1) and (3) is that there is no marker effect
term in (3). Thus, the GBLUP model can be treated as the “null
model” of the QþK GWAS model.
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It is well-known that GBLUP is equivalent to the following RR-
BLUP model (Habier et al. 2007):

y ¼ XbþMaþ e; (4)

where a is the p-dimensional vector of additive effects for all
markers, a � Nð0; Ir2

aÞ and M is an n� p matrix of marker profiles.
In particular, the genomic relationship matrix usually takes the
form G ¼ MM0=c, where c is a scaling factor (e.g., VanRaden 2008).
Then the equivalence between (3) and (4) can be seen by taking
g ¼ Ma and then we have r2

a ¼ r2
g=c. Without loss of generality,

we assume c¼ 1 from now on and this will simplify the presenta-
tion of our results and their proofs. The assumption is released in
the Supplementary Notes (Supplementary File S1).

Because of the equivalence, the estimate â in (4) as well as
VarðâÞ can be efficiently calculated via linear transformations of
the estimate ĝ and VarðĝÞ from model (3). Namely,

â ¼ M0G�1ĝ;

VarðâÞ ¼ M0G�1VarðĝÞG0�1M:

Note that here Varð�Þ denote the variance of BLUP in the sense
of Henderson (1975).

Then, GWAS can be performed using test statistics con-
structed by â and VarðâÞ (Duarte et al. 2014). The form of the test
statistic is similar to (2) and follows a t-distribution with n� k� 1
degrees of freedom:

zi;GBLUP ¼
âi;rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Varðâi;rÞ
p ; (5)

where âi;r is the i-th entry of the vector â, i.e., the estimated effect
of the i-th marker. The subscript “r” was added to emphasize that
the marker effect was modeled as a random variable. This is the
so-called “GWAS by GBLUP” approach (Legarra et al. 2018).

GWAS for epistasis by the extended Q 1 K model
The extension of the QþK model (1) for testing epistatic effects
between markers is straightforward (Reif et al. 2011; Lippert et al.
2013). The model can be described as follows:

y ¼ Xbþmiai þmjaj þ ðmi8mjÞaaij þ gþ e; (6)

where ai and aj are the additive effects of the i-th and the j-th
markers (i 6¼ j), mi and mj are the corresponding marker coding
vectors, aaij is the epistatic effect between the two markers, mi8mj

is the element-wise product of the two vectors mi and mj. In the
model, ai, aj, and aaij are assumed to be fixed parameters. All
other notations and assumptions are the same as in (1).

Since the genomic relationship matrix G ¼ MM0 only takes the
additive marker effects into account, it may be necessary to con-
trol the epistatic background effects in addition to the additive
background effects when testing the epistatic effect between
markers. With this purpose, the model (6) can be modified to in-
clude one more random term with an epistatic genomic relation-
ship matrix (Xu 2013; Jiang et al. 2017; Runcie and Crawford 2019):

y ¼ Xbþmiai þmjaj þ ðmi8mjÞaaij þ gA þ gAA þ e; (7)

where gA and gAA are the vectors of additive and additive-by-ad-
ditive genetic values, respectively, and all other notations are the
same as in (6). In this model, we assume that gA � Nð0;Gr2

AÞ and

gAA � Nð0;Hr2
AAÞ, where H is the epistatic genomic relationship

matrix calculated as follows (Jiang and Reif 2020):

H ¼ 1
2

G8G� M8Mð Þ M8Mð Þ �Þ:
�

(8)

As there are two genomic relationship matrices in model (7),
we call it “Qþ 2K” for convenience.

In both models, the significance of the epistatic effect aaij can
be assessed by a Wald test (Xu 2013), in which the test statistic
has the form

wij;Qþ2K ¼
âa2

ij;f

Varðâaij;f Þ
;

which is the square of the z-score statistic similar to (2) and fol-
lows asymptotically the v2 distribution with one degree of free-
dom. The subscript “f” again indicates that the epistatic effect is
modeled as a fixed variable.

GWAS for epistasis by the EGBLUP model
(REMMA)
The extended genomic best linear unbiased prediction (EGBLUP)
model is an natural extension of the classic GBLUP model to in-
clude epistasis (Jiang and Reif 2015; Martini et al. 2016). It has the
following form:

y ¼ Xbþ gA þ gAA þ e; (9)

where all notations are the same as in (7).
Similar to the equivalence between GBLUP and RR-BLUP, the

EGBLUP model was proved to be equivalent to the following
model, which explicitly includes the epistatic effects between all
pairs of markers (Jiang and Reif 2015):

y ¼ XbþMaþ Qaaþ e; (10)

where all notations are the same as in (4), except that aa is the
vector of epistatic effects for all pair of markers, aa �
Nð0; Ir2

aaÞ; Q is an n� pðp� 1Þ=2 dimensional matrix whose col-
umns are products of two distinct columns in M, i.e. mi8mj for
any i, j such that 1 � i < j � p. For the equivalence between (9)
and (10), we just need to take gA ¼ Ma; gAA ¼ Qaa and note that
H ¼ QQ 0 (Jiang and Reif 2015). Then we have r2

A ¼ r2
a; r2

AA ¼ r2
aa.

REMMA (Ning et al. 2018) is a rapid GWAS algorithm for epi-
static effects based on EGBLUP. Its rationale is similar to “GWAS
by GBLUP” for additive effects, i.e., the estimates âa and VarðâaÞ
in (10) can be obtained by linear transformations of ĝAA and
VarðĝAAÞ in (9):

âa ¼ Q 0H�1ĝAA
VarðâaÞ ¼ Q 0H�1VarðĝAAÞH0�1Q:

Thus, one only needs to fit the model (9), which is computa-
tionally much more efficient than (10).

Then the hypothesis H0 : aaij ¼ 0 for any pair of markers i and j
can be tested using the Wald statistic:

wij;REMMA ¼
âa2

ij;r

Varðâaij;rÞ
:

Here the subscript “r” is again to emphasize that in this ap-
proach the epistatic effect is modeled as a random variable.
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Comparison of GWAS models
For GWAS with additive effects, we compared the standard QþK
approach (1) with the “GWAS by GBLUP” approach (3). Only a the-
oretical comparison was made as it was enough to show the
equivalence. For GWAS with epistatic effects, we compared the
performances of the following three approaches: QþK (6), Qþ 2K
(7), and REMMA (9). These models were first compared by theory
and then by analyzing empirical and simulated data. The QþK
model was implemented by the FastLMM software package
(Lippert et al. 2011). The Qþ 2K model was implemented by our-
selves using the statistical software R (R Core Team 2019) and the
package BGLR (Pérez and de Los Campos 2014). The REMMA
approach was implemented in Ning et al. (2018).

Data sets
Four published data sets were used in this study: (1) A maize data
set consisting of 2815 inbred accessions preserved mostly at the
National Plant Germplasm System in the United States (Romay
et al. 2013). The collection was genotyped by the genotyping-by-
sequencing technology, which produced 681,257 SNP markers.
The trait we analyzed is the growing degree days from planting to
the day that 50% of the plants show silk. (2) A rice diversity panel
consisted of 413 inbred accessions collected from 82 countries
(Zhao et al. 2011). The panel was genotyped by an Affymetrix sin-
gle SNP array and there were in total 44,100 SNP markers.
Phenotypic data of plant height were analyzed in this study. (3) A
wheat data set comprised of 1604 single-cross hybrids from a fac-
torial design of 15 male and 120 female parental lines (Zhao et al.
2015). The parental lines were genotyped by an Illumina Infinium
assay resulting of 17,372 high-quality SNPs. The trait under con-
sideration was grain yield. (4) A mouse data set that contained
1304 genotypes from the F10 generation of an intercross line, each
genotyped with 1470 SNPs (Jarvis and Cheverud 2011). The ana-
lyzed phenotype was reproductive fat pad weight.

As the purpose of empirical data analyses was to compare the
resulting test statistics obtained in different models instead of in-
vestigating the full structure of epistatic interactions across the
genome, it is not necessary to perform GWAS for epistatic effects
with all pairs of markers in each data set. In order to reduce the
computational load, we applied a pruning procedure to the
markers based on linkage disequilibrium (LD) with a threshold of
r2 < 0:2, a window size of 1 Mb and a step size of 10 kb. That is,
pairs of markers in the initial window with r2 values above 0.2
were noted, and the markers were greedily pruned until no such
pairs remained. Then the window moved with a step size of 10 kb
and the procedure was repeated. The LD pruning was done using
the software PLINK (Purcell et al. 2007). The final number of
markers as well as other information of each data set was sum-
marized in Table 1.

Simulation study
To further compare the performance of the three GWAS models
for epistatic effects (QþK, Qþ 2K, and REMMA), we performed a
simulation study. The purpose was to test the hypothesis that

the behavior of these models was affected by the relative contri-
bution of the additive and epistatic genetic effects to the pheno-
typic variance in the data set. For the motivation of the
hypothesis, we refer to the Results.

The simulation was based on the genotypic data of the rice
data set. The following formula was used to generate the simu-
lated phenotypes:

y ¼ gA þ gAA þ e;

where gA � Nð0;Gr2
AÞ; gAA � Nð0;Hr2

AAÞ, and e � Nð0; Ir2
e Þ. Using

all markers, we calculated the genomic relationship matrices G
following VanRaden (2008) and H using (8). We considered seven
levels of r2

A=r
2
AA ratios (0:25; 0:5; 1; 2; 4; 8; 16) and nine levels of

broad-sense heritability h2 ¼ ðr2
A þ r2

AAÞ=ðr2
A þ r2

AA þ r2
e Þ (from 0.1

to 0.9 with a step of 0.1). For each of the 63 combinations, the
simulation was repeated five times.

Note that we did not simulate any additive or epistatic QTL
effects, for which there were two reasons. First, our main purpose
was to compare the test statistics (and the resulting P-values) of
different models for the epistatic effects of all marker pairs in-
stead of investigating the QTL detection power. Secondly, if we
simulated QTL effects, the test statistics for the QTLs would be
more accurately estimated in the model which we chose to per-
form the simulation. This could potentially generate biased
results.

Before comparing the GWAS models using the simulated data
sets, we estimated the additive and epistatic variance compo-
nents for all simulated data sets using model (9) with the re-
stricted maximal likelihood method, which was obtained in
REMMA. We found that although the estimated ratio r̂2

A=r̂
2
AA was

significantly correlated with the simulated ratio across data sets
(P< 0.001), the correlation was only moderate (r¼ 0.56). This re-
sult was not unexpected as the additive and epistatic covariance
matrices were significantly correlated (P< 0.001) due to the LD
among markers. In fact, the correlation between G and H was
0.684 (maize), 0.681 (rice), 0.688 (wheat), and 0.437 (mouse). Thus,
the contributions of additive and epistatic effects were mixed
and it was difficult for the model to rediscover the simulated vari-
ance components.

In view of the above results, for each simulated r2
A=r

2
AA and h2

value, we defined an interval containing the simulated value as a
criterion to filter the simulated data sets (Supplementary Tables
S1 and S2). We only kept the data sets in which the estimated
r̂2

A=r̂
2
AA and ĥ

2
values fell into the corresponding intervals.

Further simulations were performed until for each of the 63 com-
binations of r2

A=r
2
AA and h2 values, there were five simulated data

sets that fulfilled the criterion. Thus, in total, 315 data sets were
used to compare the performance of the three GWAS models for
epistatic effects.

For each simulated data set, we performed GWAS of the
additive-by-additive epistatic effects for all pairs of markers using
the three models. The test statistics and � log 10ðpÞ values were
recorded. Pairwise comparison was made between REMMA and

Table 1 Summary information of the data sets

Data set Species Trait Number of genotypes Number of markers Reference

1 Maize Days to silking 2,279 1,690 Romay et al. (2013)
2 Rice Plant height 383 1,732 Zhao et al. (2011)
3 Wheat Grain yield 1,604 3,497 Zhao et al. (2015)
4 Mouse Fat pad weight 1,304 1,407 Jarvis and Cheverud (2011)
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Qþ 2K, as well as between QþK and Qþ 2K. In each simulated

data set, we calculated the correlation between the � log 10ðpÞ
values obtained in the two models being compared. As the

data sets were simulated with a wide range of heritabilities,

we classified them into three classes: ĥ
2
� 0:7; 0:4 � ĥ

2
< 0:7,

and ĥ
2
< 0:4. Note that within each class, the data sets had

different r̂2
A=r̂

2
AA ratios. Thus, for each class of data sets, we

obtained a number of data points, each representing the corre-

lation between the � log 10ðpÞ values of the two models in a spe-

cific data set. Then, these data points were plotted against the

log 2ðr̂2
A=r̂

2
AAÞ values. In this way, we studied the influence of

the r̂2
A=r̂

2
AA ratio on the performance of different GWAS models.

Data availability
All empirical data sets used in this study have been published in

previous studies. Supplementary File S1 contains the generalized

mathematical proofs of the results in this study. The R code

implementing the P3D approximated Qþ 2K GWAS model for

epistatic effects is provided in Supplementary File S2. The R

code used to generate the simulated data is provided in

Supplementary File S3. A sample phenotypic and genotypic data,

which is a subset of the rice data, are provided in Supplementary

Files S4 and S5, respectively. Supplementary material is available

at figshare: https://doi.org/10.25387/g3.14356598.

Results
The equivalence between GWAS by GBLUP and
by the Q 1 K model for additive effects
In this section, we compare the “GWAS by GBLUP” approach (3)

and the standard QþK approach (1). More precisely, we compare

the corresponding test statistics (5) and (2). Note that in the case

of no fixed covariates (i.e., without the term Xb in the models), it

has been proved that the two test statistics are the same (Bernal

Rubio et al. 2016). Thus, our aim is to investigate the general case.
Before we start, we need to make the following assumption:

The variance components r2
g and r2

e of the QþK model (1) are not

re-estimated for each marker. Instead, they are estimated only

once from the “null model”, which is the GBLUP model (3), and

are then fixed throughout the test for all markers. This is the so-

called P3D approximation of the QþK GWAS approach men-

tioned in the Introduction. It is very important to consider the P3D

approximation instead of the precise approach because it ensures

that the estimated variance components are the same for the

two test statistics. The same assumption was needed in the proof

of Bernal Rubio et al. (2016).
Using Henderson’s mixed model equations (Henderson 1975),

we know that the best linear unbiased estimate of ai and its vari-

ance in model (1) are the following:

âi;f ¼
m0iTy

m0iTmi
;

Varðâi;f Þ ¼
r2

e

m0iTmi
;

(11)

where T ¼ V�1 � V�1XðX0V�1XÞ�1X0V�1, V ¼ Iþ kG, and k ¼ r2
g=r

2
e .

Replacing âi;f and Varðâi;f Þ in (2) by (11), we see that the test

statistic for the i-th marker in model (1) is:

zi;QþK ¼
m0iTy

re
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m0iTmi

p : (12)

On the other hand, the best linear unbiased prediction of a
and its variance from model (3) is:

â ¼ r2
a

r2
e

M0Ty;

VarðâÞ ¼ r2
aI� ðr

2
e

r2
a
IþM0SMÞ�1r2

e ;

(13)

where S ¼ I� XðX0XÞ�1X.
Taking the i-th component in (13), we obtain the best linear

unbiased prediction for ai:

âi;r ¼
r2

a

r2
e

m0iTy: (14)

However, a simplified formula for the variance of âi;r is not

straightforward from (13). Here we just write:

Varðâi;rÞ ¼ VarðâÞi;i; (15)

where VarðâÞi;i denotes the i-th diagonal element of the matrix

VarðâÞ.
Replacing âi;r and Varðâi;rÞ in (5) by (14), we see that the test

statistic for the i-th marker in model (3) is:

zi;GBLUP ¼
r2

am0iTy

r2
e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðâÞi;i

q : (16)

The key result in this section is the following:

VarðâÞi;i ¼
r4

a

r2
e

m0iTmi: (17)

Using (17) and comparing (12) and (16), we can see that

zi;GBLUP ¼ zi;QþK; for any i: (18)

Thus, we have proved that the test statistics of the GBLUP

model are equal to the P3D approximated test statistics from

the QþK model. This justifies the rationale of GWAS by GBLUP.

The mathematical details for the derivation of (11), (13), and (17)

are provided in Appendix.
In addition, the equivalence also holds for window-based test

in which the additive effects of a group of SNPs are tested to-

gether (Chen et al. 2017). Namely, we consider the following

model:

y ¼ XbþWaw þ gþ e;

where aw is the vector of additive effects of s markers in the win-

dow being tested, W is the corresponding n� s matrix of marker

profiles, and all other notations are the same as in (1). The null

hypothesis is H0: aw ¼ 0. The proof in such a general case is pro-

vided in the Supplementary Notes (Supplementary File S1).

The theoretical difference between GWAS by
REMMA, Q 1 K, and Q 1 2K for epistatic effects
In this subsection, we make a theoretical comparison of GWAS

for epistatic effects by REMMA (9), the extended QþK (6), and the
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Qþ 2K model (7). Note that the extended QþK model only con-
trolled the additive polygenic effects by the random term g, while
the Qþ 2K model and REMMA controlled both additive and epi-
static polygenic effects through two random terms gA and gAA.
Thus, the QþK model is not expected to be equivalent to REMMA
or the Qþ 2K model. In the remaining part of this subsection, we
focus on the comparison of REMMA and Qþ 2K.

We observe that (9) is the “null model” of (7) in the sense that
(9) is obtained by removing the terms miai; mjaj and ðmi

�mjÞaaij in
(7). This relationship is very similar to the case of GWAS for addi-
tive effects, i.e., (3) is the “null model” of (1). Since we have proved
that GWAS by GBLUP is equivalent to GWAS by QþK for additive
effects, one may expect that the same holds true for GWAS by
REMMA and by Qþ 2K for epistatic effects, i.e.

wij;REMMA ¼ wij;Qþ2K; for any i and j: (19)

However, a further investigation of the two models does not
support the above hypothesis. To clarify this point, we introduce
the following auxiliary model:

y ¼ Xbþ ðmi
�mjÞaaij þ gA þ gAA þ e; (20)

in which all notations and assumptions are the same as in (7). Let
~aaij be the best linear unbiased estimate of aaij in the above

model. We can also construct a test statistic:

~wij ¼
~aaij

Varð ~aaijÞ
:

Let gT ¼ gA þ gAA and V ¼ Gr2
A=r

2
AA þ H. We can rewrite model

(20) in the following form:

y ¼ Xbþ ðmi
�mjÞaaij þ gT þ e; (21)

where gT � Nð0;Vr2
AAÞ. With these notations, the model (9) can

be written as:

y ¼ Xbþ gT þ e: (22)

If we treat mi
�mj as the coding vector of a new “marker,” the

epistatic effect aaij then becomes the “main effect” of this marker.
With this point of view, the relationship between (21) and (22)
is exactly the same as that between (1) and (3). Therefore, using
the same argumentation line as in the proof of (18), we have the
following result:

wij;REMMA ¼ ~wij: (23)

Thus, comparing the two test statistics wij;Qþ2K with wij;REMMA is
equivalent to comparing wij;Qþ2K with ~wij. The latter is much eas-
ier as the epistatic effect aaij was treated as fixed parameters in
both models. And the difference between models (7) and (20) is
clear. Namely, the additive effects of the two markers (ai and aj)
whose interaction effect is the target of test are included in (7),
but not in (20). Based on this observation, we can anticipate that
the two statistics wij;MKLMM and ~wij are not likely to be equal, i.e.
(19) may not be true in general.

Comparing GWAS by REMMA, Q 1 K, and Q 1 2K
for epistatic effects with empirical data
As the theoretical investigation in the last subsection indicated
that the three GWAS approaches (REMMA, QþK, and Qþ 2K) are

not equivalent, we compared their performances with four em-
pirical data sets (see Materials and Methods) in this subsection.
Results were presented in Figure 1.

When all pairs of markers were considered, we observed that
the correlation between the � log 10ðpÞ values obtained in REMMA
and Qþ 2K was high in all four data sets (Supplementary Figure
S1), which seems contradicting to the theoretical results.
However, when a certain threshold d of � log 10ðpÞ value was used
to filter the marker pairs [i.e., we only considered those marker
pairs whose � log 10ðpÞ values were above d in at least one of the
two models], the correlation sharply decreased to 0.19 as the
threshold increased to d¼ 4 in the rice data set. Although the cor-
relation increased to 0.40 when d¼ 5, it is still low. Thus, it is pos-
sible that the epistatic effect of a pair of markers is significant in
one model but not in the other. In contrast, the correlation only
slightly decreased as the increase of the threshold in the maize
data set, and it was not affected by the threshold in the wheat
and the mouse data set.

For the comparison of the Qþ 2K and QþK model, we ob-
served that the correlation of the � log 10ðpÞ values decreased as
the increase of the threshold in three of the four data sets. But in
this case, it was the mouse data set in which we observed the
largest amount of decrease of the correlation (r¼ 0.49 when
d¼ 5). In the maize data set, the correlation also decreased to
0.66. In contrast, the correlation remained high (above 0.87) in
the rice data set. These results clearly verified our theoretical
findings that the test statistics obtained in the three models are
not the same in general. For each of the four data sets, the
� log 10ðpÞ values of all pairs of markers with � log 10ðpÞ > 3 in
at least one of the three models were listed in Supplementary
Table S3.

Based on the theoretical investigations in the last subsection,
we can already infer the factors affecting the performance of dif-
ferent models. We already knew that the difference between
REMMA [or equivalently, the auxiliary model (20)] and Qþ 2K (7)
is that REMMA does not include the additive effects of the two
markers as fixed covariates when testing their epistatic effects,
which seems unreasonable at a first glance, as the influence of
the additive effects should be considered in the assessment of
the epistatic effect. In fact, REMMA does take the influence of ad-
ditive effects into account, but not as fixed covariates. Rather,
the additive effects of all markers are implicitly included in the
random polygenic term gA. In view of this, we could anticipate
that when the additive effects make a larger contribution to the
total phenotypic variance than the epistatic effects, the Qþ 2K
model would have a stronger control of the additive effects than
REMMA. On the other hand, the difference between the QþK (6)
and the Qþ 2K model is that in Qþ 2K there is an additional ran-
dom polygenic term gAA, which implicitly models the epistatic
effects of all pairs of markers. Therefore, if the relative contribu-
tion of additive effects is much larger than the epistatic effects,
the extra term gAA in Qþ 2K would become unimportant and the
performance of Qþ 2K and QþK should be similar. As the contri-
bution of the additive effects relative to the epistatic effects can
be measured by the ratio of their variance components r2

A=r
2
AA,

we can make the following hypothesis: As the increase of the
r2

A=r
2
AA ratio, the similarity between the REMMA and the Qþ 2K

model decreases and that between the Qþ 2K and the QþK
model increases.

With the above hypothesis, we estimated the ratio r2
A=r

2
AA in

each data set (Table 2). The results provided a first evidence sup-
porting our hypothesis: The mouse data set had the smallest ra-
tio r2

A=r
2
AA and we observed that REMMA and Qþ 2K nearly had
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the same performance, while the difference between Qþ 2K and

QþK was large (Figure 1). The ratio r2
A=r

2
AA for the rice data set

was the largest and in this case, REMMA differed greatly from

Qþ 2K, while the Qþ 2K and QþK performed similarly (Figure 1).

A simulation study on the influence of r2
A=r

2
AA

To further verify our hypothesis, we compared the performance
of the three GWAS approaches for epistatic effects with simu-

lated data (see Materials and Methods). First, we focused on the

comparison between REMMA and the Qþ 2K model. When the
heritability is above 0.7, we observed that the correlation between

the � log 10ðpÞ values obtained in the two models was negatively

correlated with the log 2ðr2
A=r

2
AAÞ value (Figure 2). The absolute

value of the overall correlation was moderate (between 0.4 and

0.5) and significant (P < 0.01). As in the empirical data analysis,

we applied a threshold of � log 10ðpÞ values to filter the marker
pairs included in the analysis. The negative correlation was ob-

served in all cases with four different thresholds. We also investi-

gated the cases where the heritability is between 0.4 and 0.7 or
below 0.4. In both cases, the correlation between the � log 10ðpÞ
values obtained in the two models was also negatively correlated

with the log 2ðr2
A=r

2
AAÞ value, but the absolute value of the overall

correlation was lower than the case with heritability above 0.7
(Supplementary Figures S2 ad S3). These results clearly indicated
that the similarity between REMMA and the Qþ 2K model
decreases as the increase of the r2

A=r
2
AA ratio, which supported

our hypothesis.
Then, we compared the performances of the QþK and the

Qþ 2K model in the simulated data sets. We observed that the
correlation between the � log 10ðpÞ values obtained in the two
models was positively correlated with the log 2ðr2

A=r
2
AAÞ value in

the case with heritability above 0.7 (Figure 3). The overall correla-
tion was high and significant. The same trend was observed in
the cases with lower heritabilities, although the overall correla-
tions were lower (Supplementary Figures S4 and S5). Moreover,
the trend was not affected by the applied threshold to filter the
markers. Thus, the results indicated that the similarity between
the QþK and Qþ 2K model increases as the increase of the
r2

A=r
2
AA ratio, which supported the second part of our hypothesis.

Discussion
The goal of GWAS is to identify specific genomic regions harbor-
ing loci with relatively large effects while controlling the poly-
genic genetic background, which is partially contributed by those
genomic regions we want to identify. The polygenic background
effects can be modeled using GBLUP, a GWP model partitioning
the observed phenotypic variation across the genome into the
polygenic effect contributed by all markers and the residual.
Thus, GWAS can be performed using the estimated marker
effects in the GBLUP model, which was termed “GWAS by GBLUP”
(Legarra et al. 2018). In this study, we provided a general proof of
the equivalence between “GWAS by GBLUP” and the P3D approxi-
mated standard QþK GWAS approach for additive effects. Thus,
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Figure 1 The correlation of � log 10ðpÞ values of different GWAS approaches (REMMA, QþK, and Qþ 2K) for epistatic effects in the (A) maize, (B) rice, (C)
wheat, and (D) mouse data set. Correlations were calculated for the marker pairs whose � log 10ðpÞ values of epistatic effects were above a threshold d
in at least one approach. Different values of d (from 0 to 5 with a step of 1) were considered.

Table 2 The estimated genomic heritability and ratio of additive
to epistatic variance components in the four data sets

Parameter Data set

Maize Rice Wheat Mouse

h2
G 0.837 0.746 0.804 0.631

r2
A=r

2
AA 2.499 9.394 3.907 0.823
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there is no distinction in the computational efficiency of the two
methods. However, the situation of GWAS for epistatic effects is
different. On the one hand, we showed that REMMA is not equiv-
alent to Qþ 2K, which is a natural extension of the standard
QþK method for additive effects. On the other hand, it was
reported that REMMA is much faster than the extension of QþK
to epistatic effects (Ning et al. 2018). Thus, REMMA is computa-
tionally more efficient than Qþ 2K, because the computational
load of the extended QþK and Qþ 2K is similar if the P3D ap-
proximation is applied. Therefore, we may wish to profit from the
efficiency of REMMA and meanwhile, not to lose information
from the Qþ 2K approach. According to our empirical and simu-
lation study, the P-values generated by REMMA are more similar
to those obtained in the Qþ 2K approach when the ratio of addi-
tive to epistatic variance component r2

A=r
2
AA is not large. In view

of this result, we may suggest to check the estimated ratio in the
data set before deciding the strategy of GWAS for epistatic
effects. If the ratio is not too high, we can rely on the REMMA
method and benefit from its fast speed. Otherwise, it may be ben-
eficial to run both models and compare the results.

Then, it is natural to ask the question which threshold of the
r2

A=r
2
AA ratio should be applied. From our results with empirical

data, it seems that the threshold could be at least 4, because the
estimated ratio in the wheat data set was 3.9 (Table 1) and the
performances of REMMA and Qþ 2K were quite similar and inde-
pendent of the applied threshold of � log 10ðpÞ values to filter the

markers (Figure 1C). However, it was not supported by the results
with simulated data. Even in the case where the r2

A=r
2
AA ratio is 1,

the correlation between the � log 10ðpÞ values of the two models
became lower than 0.6 when a threshold of 3 was applied.

Therefore, further studies are needed to clarify such inconsis-
tency, maybe through analyzing more empirical data sets and/or
performing more comprehensive simulations based on different
genotypic data.

In this study, we only considered additive-by-additive epistasis
when discussing GWAS approaches for epistatic effects. Recently,
the REMMA approach has been generalized to take all three types
of digenic epistatic effects into account with remarkable compu-
tational efficiency (Wang et al. 2020a). The algorithm was termed
REMMAX and the underlying model can be treated as an ex-
tended RR-BLUP model including the additive, dominance, and
digenic epistatic effects of all markers. On the other hand, the ex-
tension of the standard QþK GWAS model for all types of digenic
epistatic effects has been developed (Xu 2013). Theoretically, our
argumentation line for the equivalence between the test statis-
tics of REMMA (9) and those from the auxiliary model (20) also
works for REMMAX. Thus, it would be very interesting to compare
REMMAX with approaches extending the standard QþK model
using empirical and simulated data.

As a final remark, we emphasize that “GWAS by GBLUP” is not
equivalent to the exact QþK approach since it is equivalent to
the P3D approximation. The genetic and residual variance used
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Figure 2 The correlations between the � log 10ðpÞ values for the epistatic effects obtained using the REMMA and the Qþ 2K model in simulated data sets
with h2 � 0:7 and different r2

A=r
2
AA ratios. Each point in the figure represented the correlation between the � log 10ðpÞ values from the two models

calculated in a specific simulated data set. The overall correlation between the correlations and the log 2ðr2
A=r

2
AAÞ values across all data sets was

displayed as the r value together with an indication of significance (*P < 0.1, **P < 0.05, ***P < 0.01). A threshold of � log 10ðpÞ values was applied to filter
the marker pairs. Namely, only the marker pairs whose � log 10ðpÞ values were above the threshold in at least one of the two models were considered. In
different panels, distinct threshold values were applied: (A) 1, (B) 2, (C) 3, and (D) 4.
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for calculating the test statistic are estimated in GBLUP, which is

a null model excluding any marker fixed effects. But when a

marker is tested in the exact QþK GWAS model, the estimated

genetic and residual variance will be different from those esti-

mated in the null model. Hence, the test statistic resulted from

the exact QþK model will also be different. Although it was

reported that the approximated test statistics were highly corre-

lated with the exact ones (Zhang et al. 2010), they tended to be

conservative and potentially resulted in lower power (Zhou and

Stephens 2012). Nevertheless, the P3D approximated approach

avoids the estimation of variance parameters marker-by-marker

and is computationally more efficient, especially for large-scale

data sets, as implemented in many new fast GWAS algorithms

(Loh et al. 2015; Runcie and Crawford 2019; Jiang et al. 2019).
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Appendix

Two results in linear algebra
We list the following two results in linear algebra, which are

needed in the remaining subsections:

Lemma A.1. Let Am�m;Bm�n;Cn�m;Dn�n be four matrices. Suppose that

A and D are invertible, then we have

A B
C D

� ��1

¼
ðA� BD�1CÞ�1 �A�1BðD� CA�1BÞ�1

�ðD� CA�1BÞ�1CA�1 ðD� CA�1BÞ�1

 !
:

ðA� BD�1CÞ�1 ¼ A�1 þ A�1BðD� CA�1BÞ�1CA�1:

Lemma A.2. If two matrices An�m and Ln�k satisfy L0A ¼ 0 and Xn�n is

positive-definite, then we have

X�XLðL0XLÞ�1L0X ¼ AðA0X�1AÞ�1A0:

Lemma A.1 can be found in many text books of linear algebra

(e.g., Bernstein 2009). The proof of Lemma A.2 can be found in

Verbyla (1990).

The proof of Equation (11)
The QþK linear mixed model (1) can be rewritten as follows:

y ¼ ~X~bþ gþ e;

where ~X ¼ ðXjmiÞ; ~b ¼ ðb0; ai;f Þ0.
From Henderson’s mixed model equations (Henderson 1975),

we know that the best linear unbiased estimation of the fixed

effects are the following:

~̂b ¼ ð~X0V�1 ~XÞ�1 ~X
0
V�1y; Varð~̂bÞ ¼ ~C11r

2
e ; (A1)

where V ¼ Iþ kG; k ¼ r2
g=r

2
e and ~C11 is defined via the following

equation:

~X0~X ~X0
~X Iþ k�1G�1

 !�1

¼
~C11

~C12
~C
0
12

~C22

 !
:

Using Lemma A.1, we can calculate that

~C11 ¼ ð~X0~X � ~X0ðIþ k�1G�1Þ�1 ~XÞ�1

¼ ð~X0ðI� ðIþ k�1G�1Þ�1Þ~XÞ�1 ¼ ð~X0V�1 ~XÞ�1:
(A2)

Using (A2), we can rewrite (A1) as follows:

b̂

â i;f

 !
¼ ð X0V�1X X0V�1mi

m0iV
�1X m0iV

�1mi
Þ�1ð X0V�1y

m0iV
�1y
Þ

Var b̂

âi;f

 !
¼ ð X0V�1X X0V�1mi

m0iV
�1X m0iV

�1mi
Þ�1r2

e :

(A3)

Using (A3) and Lemma A.1, we can derive the explicit expres-

sions for âi;f and Varðâi;f Þ as follows:

âi;f ¼ ðm0iV
�1mi �m0iV

�1XðX0V�1XÞ�1X0V�1miÞ�1m0iV
�1y

�ðm0iV
�1mi �m0iV

�1XðX0V�1XÞ�1X0V�1miÞ�1m0iV
�1XðX0V�1XÞ�1X0V�1y

¼
m0iðV

�1 � V�1XðX0V�1XÞ�1X0V�1Þy
m0iðV

�1 � V�1XðX0V�1XÞ�1X0V�1Þmi

¼
m0iTy

m0iTmi
;

Varðâi;f Þ ¼ ðm0iV
�1mi �m0iV

�1XðX0V�1XÞ�1X0V�1miÞ�1r2
e

¼ r2
e

m0iðV
�1 � V�1XðX0V�1XÞ�1X0V�1Þmi

¼ r2
e

m0iTmi
;

where T ¼ V�1 � V�1XðX0V�1XÞ�1X0V�1. These formulas confirm

(11) in the main text.

The proof of Equation (13)
According to Henderson (1975), the best linear unbiased predic-

tion of random effects a and its variance for the model (4) is the

following:

â ¼ qM0 ~V
�1ðy� XðX0~V�1

XÞ�1X0 ~V
�1

yÞ (A4)

VarðâÞ ¼ ðqI� C22Þr2
e ; (A5)

where q ¼ r2
a=r

2
e ; C22 is the defined as follows:

X0X X0M
M0X M0Mþ q�1I

� ��1

¼ C11 C12

C012 C22

� �

and ~V ¼ Iþ qMM0.
In fact, ~V is the same as V defined in the last subsection. Recall

the equivalence between (3) and (4), which means that r2
a ¼ r2

g.

Hence, we know that q ¼ r2
g=r

2
e ¼ k. Since G ¼ MM0, we know that

~V ¼ Iþ kG ¼ V.
Replacing ~V by V in (A4), we have

â ¼ qM0V�1ðy� XðX0V�1XÞ�1X0V�1yÞ

¼ qM0ðV�1 � V�1XðX0V�1XÞ�1X0V�1Þy ¼ r2
a

r2
e

M0Ty:
(A6)

where T ¼ V�1 � V�1XðX0V�1XÞ�1X0V�1 as in the last subsection.
Using Lemma A.1, we can derive C22 as follows:

C22 ¼ ðM0Mþ q�1I�M0XðX0XÞ�1X0MÞ�1

¼ ðq�1IþM0ðI� XðX0XÞ�1X0ÞMÞ�1 ¼ r2
e

r2
a
IþM0SM

� ��1
;

(A7)

where S ¼ I� XðX0XÞ�1X0.
Thus, replacing C22 by (A7) in (A5), we have:

VarðâÞ ¼ r2
aI� r2

e

r2
a

IþM0SM

 !�1

r2
e : (A8)

In view of (A6) and (A8), we have completed the proof.

The proof of Equation (17)
To achieve our goal, we need to apply the singular value decom-

position (SVD) of the matrix X. Assume that the SVD of X is

X ¼ URW. In the decomposition, U is an n� n orthogonal matrix,

R ¼ ðD 0k�ðn�kÞÞ0, where D is an k� k diagonal matrix whose diago-

nal entries are the singular values of X and 0k�ðn�kÞ is a k� ðn� kÞ
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matrix of zeros, W is a k� k orthogonal matrix. We can write
U ¼ ðU1 U2Þ, where U1 is the left n� k block and U2 is the right n�
ðn� kÞ block of U. Then we have

X ¼ URW ¼ ðU1 U2Þ
� D

0k�ðn�kÞ

�
W ¼ U1DW: (A9)

The orthogonality of U ensures the following:

U02U1 ¼ 0ðn�kÞ�k; U01U2 ¼ 0k�ðn�kÞ;

U01U1 ¼ Ik; U02U2 ¼ In�k; U1U01 þU2U02 ¼ In:
(A10)

Using (A9) and (A10), we have

S ¼ I� XðX0XÞ�1X0 ¼ I� U1DWðW0DU01U1DWÞ�1W0DU01

¼ I� U1DWðW0D�2WÞW0DU01
¼ I� U1U01 ¼ U2U02

:

Replacing S in (A8) by U2U02 and using Lemma A.1, we can sim-
plify the formula for VarðâÞ as follows:

VarðâÞ ¼ r2
aI� r2

e
r2

a
IþM0U2U02M

� ��1
r2

e

¼ r2
aI� ðqI� q2M0U2ðIþ qU02MM0U2Þ�1U02MÞr2

e

¼ r4
a

r2
e

M0U2ðIþ qU02GU2Þ�1U02M

:

Using the above formula, we can derive an explicit formula for
the i-th diagonal element of VarðâÞ:

VarðâÞi;i ¼
r4

a

r2
e

m0iU2ðIþ qU02GU2Þ�1U02mi: (A11)

Now, comparing (A11) with (17) and noting that q ¼ k (see the
last subsection), we only need to prove:

T ¼ U2ðIþ kU02GU2Þ�1U02:

Using (A9) and (A10), we can calculate that

T ¼ V�1 � V�1XðX0V�1XÞ�1X0V�1

¼ V�1 � V�1U1DWðW0DU01V�1U1DWÞ�1W0DU01V�1

¼ V�1 � V�1U1DWðW0D�1ðU01V�1U1Þ�1D�1WÞW0DU01V�1

¼ V�1 � V�1U1ðU01V�1U1Þ�1U01V�1:

Note that V�1 is positive-definite matrix, U01U2 ¼ 0. Thus, we
can apply Lemma A.2 to the above formula, yielding:

T ¼ U2ðU02VU2Þ�1U02 ¼ U2ðU02ðIþ kGÞU2Þ�1U02
¼ U2ðIþ kU02GU2Þ�1U02;

which completes the proof.
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