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Abstract: Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm derived from the
balanced reciprocal translocation of chromosomes 9 and 22 t (9q34 and 22q11), which leads to the for-
mation of the Philadelphia chromosome and fusion of the BCR-ABL genes. The first-line treatment for
CML is imatinib, a tyrosine kinase inhibitor that acts on the BCR-ABL protein. However, even though
it is a target-specific drug, about 25% of patients do not respond to this treatment. The resistance
mechanisms involved in this process have been investigated and studies have shown that germinal
alterations can influence this mechanism. The aim of this work was to investigate 32 polymorphisms
in 24 genes of carcinogenic pathway to verify the influence of these genetic variants on the response to
treatment with imatinib. Our results demonstrated that individuals with the recessive GG genotype
for the rs2372536 variant in the ATIC gene are approximately three times more likely to experience
treatment failure with imatinib (p = 0.045, HR = 2.726, 95% CI = 0.9986–7.441), as well as individuals
with the TT genotype for the rs10821936 variant in the ARID5B gene, who also have a higher risk
for treatment failure with imatinib over time (p = 0.02, HR = 0.4053, IC 95% = 0.1802–0.911). In
conclusion, we show that variants in the ATIC and ARIDB5 gene, never screened in previous studies,
could potentially influence the therapeutic response to imatinib in patients treated for CML.

Keywords: chronic myeloid leukemia; imatinib; ATIC gene; ARIDB5 gene; pharmacogenomics

1. Introduction

Chronic myeloid leukemia (CML) has as its main characteristic the reciprocal and
balanced translocation of chromosomes 9 and 22 t (9q34 and 22q11), which results in the
Philadelphia chromosome and fusion of the BCR-ABL genes [1,2]. The expression of this
gene is constitutive with tyrosine kinase activity, and it is responsible for leukemogenesis
and maintenance of carcinogenic activity in CML [3,4].

Treatment of CML is performed with the tyrosine kinase inhibitor (TKI), imatinib,
which acts directly on the BCR-ABL protein by decreasing its intracellular activity and, thus,
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controlling the carcinogenic environment [5]. However, even though this is a target-specific
drug, the response to this treatment is variable, therefore, about 25% of patients are not
responsive to imatinib [4,6].

Variations in response to treatment can be influenced by several factors, including
alterations in drug metabolism genes. Genetic variants can alter gene expression and, thus,
modulate the interaction of the expressed protein with the drug, making the response
inefficient [7–10].

Another factor that can interfere with treatment responses is the genetic composition
of a population. It is known that the responses among populations vary worldwide, due
to different frequencies of genetic variants in genes involved in absorption, distribution,
metabolism, and excretion (ADME) of drugs [11–13]. In addition, in this study, the popula-
tion investigated is highly mixed, and it is important to carry out a genomic control based
on genetic ancestry, therefore, that there is no population substructuring and ancestry is
not a confounding factor in the analyses [14,15].

Thus, this study investigated 32 polymorphisms in 24 carcinogenic pathway genes:
ABCC1, ABCC2, ABCC3, AMPD1, ARID5B, ATIC, CCND1, CDKN2A, CEBPE, GGH, IKZF1,
ITPA, MTHFD1, MTHFR, MTRR, NALCN, NOS3, PIP4K2A, SHMT1, SLCO1B1, SLCO1B3,
TLR4, TNFAIP3, and TPMT, aiming to verify the influence of these genetic variants on the
response to treatment with imatinib.

2. Materials and Methods
2.1. Ethics, Consent, and Permissions

This study was approved by the Research Ethics Committee of the participating
institutions, at the Ophir Loyola Hospital under license number 1.575.920/2016 and at the
Núcleo de Pesquisas em Oncologia (NPO) under protocol number 3.354.571/2019. All
participants agreed to participate in the research and signed an informed consent form
allowing the use of their clinical and genetic data.

2.2. Investigated Population

We investigated a total of 165 patients diagnosed with CML, followed for at least
1 year of treatment at Hospital Ophir Loyola, a reference hospital in the onco-hematology
service in the city of Belém do Pará, in Northern Brazil. All patients started treatment with
imatinib mesylate and had a detailed clinical follow-up. For the analyses, the patients were
divided into two groups: patients who responded well to treatment and patients who did
not respond well to treatment. The criteria used to define the hematologic and molecular
response followed the National Comprehensive Cancer Network [16].

2.3. Selected Markers

For marker selection, the criteria were based on PharmGKB, NCBI, and Ensembl
databases, as well as data available in literature regarding important variables for the
carcinogenic pathway. The description of markers can be found in the Supplementary
Materials Table S1.

2.4. DNA Extraction and Quantification

Genetic material was extracted from peripheral blood collected in EDTA tubes and
using an Axy PrepTM Blood Genomic DNA Miniprep kit (Axygen Biotechnology, San
Francisco, CA, USA), following the manufacturer’s instructions. The DNA concentration
and purity were measured using a NanoDrop 1000 spectrophotometer (Thermo Scientific
NanoDrop 1000, NanoDrop Technologies, Wilmington, DE, USA).

2.5. Genotyping

Genotyping of the samples was performed on a QuantStudio™ 12K Flex Real-Time
PCR system (Applied Biosystems, Life Technologies, Carlsbad, CA, USA) using real-time
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PCR technology (TaqMan OpenArray Genotyping) by allelic discrimination, following all
the manufacturer’s recommendations.

2.6. Genetic Ancestry

An ancestry analysis was performed as described by Ramos et al. [17] using
61 autosomal ancestry informative markers (AIMs) in three multiplex PCR reactions,
aiming to accurately estimate the individual and global interethnic mix [14]. Amplicons
were analyzed using an ABI Prism 3130 sequencer (Thermo Fisher Scientific, Waltham, MA,
USA) and Gene Mapper ID v.3.2 software (Thermo Fisher Scientific, Waltham, MA, USA).
The proportions of individual genetic ancestors were estimated using the STRUCTURE
v.2.3.3 software (Stanford University, Stanford, CA, USA), assuming three parental popula-
tions. This analysis was performed to control a possible population substructure, as the
investigated population was highly mixed.

2.7. Statistical Analysis

To be included in the statistical analyses, the genotyping data needed at least 70% in
coverage. The allelic and genotypic distribution is shown in Supplementary Table S2.

The statistical analyses were run in SNPassoc library in RStudio v.3.6.1 software
(Boston, MA, USA). Differences in the categorical variable (sex) were tested using Pearson’s
chi square, while the quantitative variable (mean age) was evaluated using Student’s
t-test. The ancestry indices were compared between the groups using the Mann–Whitney
test. Multiple logistic regressions were used to assess possible associations between the
polymorphisms and the response to treatment with imatinib, by estimating the odds ratios
(ORs) and their 95% confidence intervals (CIs). The Kaplan–Meier survival analysis was
used to estimate possible differences in the time of loss of response for each genotype by
estimating the hazard ratio (HR). For this statistical test, we evaluated the variable “time
of treatment failure” (TTF)—an event in which treatment was changed, due to absence
of molecular or cytogenetic responses or intolerance to treatment. A significance level of
p < 0.05 was considered for all the statistical analyses.

3. Results

The clinical epidemiological data are shown in Table 1, showing that, among the
165 patients included in this study, 103 (63.1%) patients had an excellent response to
treatment and 62 (36.9%) patients did not. When comparing the variable “age at diag-
nosis” between the groups (responders and non-responders) we found no significant
difference (p-value = 0.451), the same result was found when gender distribution was ana-
lyzed (p-value = 0.078). Regarding the genetic ancestry in both groups, we also found no
significant difference between them.

Table 1. Clinical and epidemiological variables of the investigated patients.

Variable
Responders No Responders p-Value
103 (63.1%) 62 (36.9%)

Age (years) 48.50 ± 15.07 46.76 ± 15.00 0.451
Sex (%) 0.078

Men 64 (62.1) 29 (46.7)
Women 39 (37.9) 33 (53.3)

Ancestry Mean
European 0.468 ± 0.147 0.458 ± 0.147 0.797

Amerindian 0.299 ± 0.132 0.319 ± 0.133 0.604
African 0.233 ± 0.101 0.223 ± 0.101 0.686

Further information on clinical data reveals that 34 (20.2%) patients failed to respond
during treatment (mean 47.11 months) and 12 (7.14%) patients were unresponsive from the
beginning of treatment.
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3.1. Genotype and Imatinib Response-Relative Risk Assessment (OR)

Regarding genetic variants, we found no association between responsiveness to ther-
apy at a specific time and the investigated SNPs (Supplementary Table S3).

3.2. Time of Treatment Failure (TTF)/Risk Analysis over the Response Time (HR)

We investigated the relationship between genetic variants and the variable “time of
treatment failure” (TTF) to estimate the risk of treatment failure over time. Our results
indicate that the SNVs rs2372536 in the ATIC gene and the rs10821936 in the ARID5B gene
were statistically significant (Table 2).

Table 2. Hazard ratio analysis of the genotypes analyzed with the time of treatment failure.

Genotype HR (95% CI) Lower Upper p-Value

ATIC rs2372536
CC/CG vs. GG 1 2.726 0.9986 7.441 0.04

CC vs. CG + GG 2 1.484 0.7235 3.046 0.3

ARID5B rs10821936
TT vs. CT + CC 1 0.4053 0.1802 0.911 0.02
CC vs. TT + CT 2 0.6114 0.2436 1.535 0.3

TPMT rs1142345
TT + CT vs. CC 1 0.711 0.165 3.063 0.6
TT vs. CT + CC 2 0.9895 0.4341 2.255 1.00

TPMT rs12201199
NA 1,3

AA vs. AT + TT 2 0.6824 0.2561 1.818 0.4

SLC01B1 rs4149056
NA 1,3

TT vs. CT + CC 2 1.109 0.3502 2.323 0.8

ABCC2 rs717620
NA 1,3

CC vs. CT + TT 2 1.909 0.1807 1.518 0.2

ABCC3 rs9895420
NA 1,3

TT vs. AT + AA 2 1.738 0.1983 1.67 0.3

GGH rs11545078
NA 1,3

GG vs. AG + AA 2 1.769 0.81 3.862 0.1

GGH rs3758149
GG + AG vs. AA 1 0.9296 0.2162 3.997 0.9
GG vs. AG + AA 2 1.148 0.5384 2.446 0.7

ATIC rs4673993
TT + CT vs. CC 1 2.561 0.3905 0.9388 0.06
TT vs. CT + CC 2 1.633 0.7888 3.382 0.2

AMPD1 rs17602729
NA 1,3

GG vs. AG + AA 2 0.7357 0.2756 1.964 0.5

CCND1 rs9344
GG + AG vs. AA 1 1.536 0.5155 4.576 0.4
GG vs. AG + AA 2 1.174 0.5439 2.532 0.7
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Table 2. Cont.

Genotype HR (95% CI) Lower Upper p-Value

IKZF1 rs4132601
TT + GT vs. GG 1 0.7569 0.1013 5.657 0.8
TT vs. GT + GG 2 1.164 0.5258 2.579 0.7

ITPA rs1127354
CC vs. AC 1 1.957 0.4465 8.575 0.4

MTRR rs1801394
AA + AG vs. GG 1 0.8794 0.328 2.358 0.8
AA vs. AG + GG 2 0.9615 0.4536 2.038 0.9

MTHFD1 rs2236225
GG + AG vs. AA 1 0.6535 0.2462 1.735 0.4
GG vs. AG + AA 2 0.7404 0.3318 1.652 0.5

NOS3 rs1799983
NA 1,3

GG vs. GT 2 1.052 0.2408 4.592 0.9

MTHFR rs1801133
GG + GA vs. AA 1 1.445 0.4198 4.97 0.6
GG vs. GA + AA 2 0.9837 0.4521 2.141 1.00

TLR4 rs4986790
NA 1,3

AA vs. AG 2 1.545 0.6471 0.2034 0.7

TPMT rs1800460
CC vs. CT + TT 1 0.6339 0.218 1.843 0.4

NA2

SLCO1B1 rs4149015
GG vs. AG + AA 1 0.8043 0.2271 2.849 0.7
AA vs. GG + AG 2 3.472 0.288 0.4051 0.2

GGH rs1800909
AA+AG vs. GG 1 0.8698 0.2995 2.526 0.8

NA 2

NALCN rs7992226
AA+AG vs. GG 1 0.03471 0.42 2.552 0.9

AA vs. AG + GG 2 1.199 0.348 4.132 0.8

SHMT1 rs1979277
AA+AG vs. GG 1 0.873 0.3515 2.168 0.8

GG vs. AA + AG 2 3.361 0.6504 1.447 0.1

SLCO1B1 rs2306283
GG+AG vs. AA 1 1.733 0.6368 4.718 0.3

GG vs. AG + AA 2 1.276 0.7837 0.4663

CEBPE rs2239633
GG+AG vs. AA 1 1.899 0.8027 4.493 0.1

GG vs. AG + AA 2 2.229 0.4485 0.506 0.3

TNFAIP3 rs6920220
GG+AG vs. AA 1 0.6463 0.2426 1.722 0.4

NA 2

PIP4K2A rs7088318
AA vs. AC + CC 1 0.5205 1.921 0.1135 0.4

NA 2

1 Recessive model; 2 Dominant model; 3 Not applicable for analysis.
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According to our results, we can infer that individuals with the recessive GG genotype
for the rs2372536 variant in the ATIC gene are approximately three times more likely to
experience treatment failure with imatinib (p = 0.045, HR = 2.726, 95% CI 0.9986–7.441),
as well as individuals with the TT genotype for the rs10821936 variant in the ARID5B
gene, who also have a higher risk for treatment failure with imatinib over time (p = 0.02,
HR = 0.4053, IC 95% 0.1802–0.911) (Figure 1).
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Figure 1. Kaplan–Meier curve demonstrating time of treatment failure (TTF) associated with
rs10821936 of ARID5B gene and rs2372536 variant of ATIC.

4. Discussion

Imatinib (STI-571is a 2-phenylamino-pyrimidine compound that inhibits the autophos-
phorylation of the BCR-ABL protein. This happens through the binding of TKI to the
ATP receptor (adenosine triphosphate), which does not allow the binding of the phos-
phate group of the ATP molecule, keeping the protein inactivated. In this way, the entire
downstream signaling cascade is turned off and the leukemic cells stop dividing [4,5].

This drug is used primarily for the treatment of CML, gastrointestinal stromal tu-
mors (GISTs), and Philadelphia chromosome-positive acute lymphoblastic leukemia (ALL
Ph+) [18]. Imatinib was the first TKI that showed efficiency in the treatment of CML, and it
was approved by the Food and Drug Administration (FDA) of United States of America and
also by Agência Nacional de Vigilância Sanitária (Anvisa of Brazil) in 2001, soon beginning
to be used as a first-line treatment for CML.

In addition to inhibiting the BCR-ABL protein, imatinib also works as an inhibitor of
other signaling pathways, such as those activated by the platelet-derived growth factor
receptor (PDGFR), c-Kit (type III member of kinase receptors), MAPK (mitogen-activated
protein kinase), and PI3K/AKT (phosphatidyl inositol 3 kinase), thus, acting in several
ways to block cell division [19].

Resistance to imatinib therapy occurs in about 25% of patients with chronic myeloid
leukemia; the mechanisms involved in this process have been investigated and studies
show that genetic and epigenetic alterations can influence it [7].

In this study, genetic variants in genes involved in the carcinogenic pathway drugs
were investigated in order to understand their influence on the response to treatment
with imatinib in patients with CML. Our results demonstrated a significant association
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between the rs2372536 of the ATIC gene and rs10821936 of ARID5B gene treatment failure
with imatinib.

4.1. ATIC

The ATIC gene (5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/
IMP cyclohydrolase) it is located on chromosome 2q35 and encodes a bifunctional enzyme
that catalyzes the last two steps of purine biosynthesis, generating inosine monophosphate
from the aminoimidazole carboxamide ribonucleotide. Its pathways are related to AMP-
activated protein kinase signaling (AMPK) and to antifolate resistance, as it is able to convert
(5-amino-1-(5-phospho-β-D-ribosyl) imidazole-4-carboxamide)) into 6-mercaptopurine
ribonucleotide, an inhibitor of purine biosynthesis used in the treatment of leukemias [20].

The de novo purine synthesis pathway is important for the disordered tumor growth
process, as it is part of an anabolic pathway of cell multiplication; it is widely used in
metabolic reprogramming for cell survival [21,22]. However, the specific role of the ATIC
gene in modulating cancer progression remains unknown [23–25].

This gene has been shown to be overexpressed in hepatocellular carcinoma (HCC)
and related to a worse prognosis in this neoplasm. The authors found that ATIC activates
mTOR-S6 kinase 1 signaling and consequently stimulates the proliferation and migration
of oncotic cells [25]. Furthermore, the gene has been associated with autophagy and an
increased risk of developing HCC [26], lung cancer [27], and multiple myeloma [28].

In addition, the ATIC gene is associated with the risk of lymphoma progression in
cases of ATIC protein fusion with the protein of oncogene ALK (anaplastic lymphoma
kinase) [29,30]. This fusion even influences the treatment because when ALK phosphory-
lates ATIC in Y104, there is an increase in enzymatic activity. ALK-mediated phosphoryla-
tion of ATIC can rescue cancer cells from cell death induced by antifolate agents [31]. These
results together suggest that ATIC may play an important role in carcinogenesis and cancer
cell survival even under treatment [32].

This type of relationship of ATIC gene variants has also been demonstrated in other
investigations with cancer therapeutic resistance such as in the treatment of breast cancer
with tamoxifen [33], the use of pemetrexed for non-small cell lung cancer [34], as well
as the use of methotrexate for rheumatoid arthritis [35], pediatric osteosarcoma [36], and
acute lymphoblastic leukemia [37]. The investigated rs2372536 polymorphism is a missense
mutation, responsible for the substitution of a threonine for a serine at position 116 of exon
5 of the expressed protein (c.347C > G; Thr116Ser), and it is one of the main biomarkers
investigated in the response to methotrexate in rheumatoid arthritis [38–40].

4.2. ARID5B

The ARID5B gene is part of the AT-rich interaction domain (ARID) family of DNA-
binding proteins, which are described as chromatin remodeling factors and also responsible
for regulating the transcription of target genes [41,42]. ARID5B forms a complex with the
PHF2 protein, which has H3K9me2 histone demethylase activity. H3K9me2 is one of the
main markers of silenced chromatin and, thus, there is an epigenetic regulation of gene
expression [43].

In addition, recent findings demonstrate that ARID5B is involved in cell proliferation
and acts in the growth and differentiation of progenitor B-lymphocytes. It is a co-activator
that binds to the 5′-AATA(CT)-3′ sequence [43]. The rs10821936 is a variant located in
intron 3, and variants present in this intron are the most associated with susceptibility to
ALL [44–47]. Although its role in leukemogenesis is not fully understood, SNPs in intron 3
of ARID5B may alter the transcription network involving normal hematopoiesis, thus,
altering cell growth and differentiation [48].

Variants in the ARID5B gene have also been related to ALL regarding relapse and
treatment response [49]. It has also been associated with risk of developing colorectal can-
cer [50], participation in breast cancer metabolism [51], and with a protein with unregulated
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function in prostate cancer [52]. These findings suggest that this gene plays an important
role in the carcinogenic process.

Therefore, we suggest that variants of the ATIC and ARID5B genes may interfere with
imatinib response in patients with CML, once, even though these genes do not interact
directly with the drug, they act in the cellular environment supporting the survival of
cancer cells, thus, impairing the effect of the treatment.

5. Conclusions

We conclude that the never-before-screened genetic variants of the genes ATIC
(rs2372536) and ARID5B (rs10821936) play a role in therapeutic failure with imatinib,
the gold standard treatment for CML.
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.3390/genes13020330/s1, Table S1: Polymorphisms chosen after applying the criteria of selection;
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patients with response and without response.
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