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Background:Althoughmanyprognostic single-gene (SG) lists have been identified in cancer research, application
of these features is hampered due to poor robustness and performance on independent datasets. Pathway-based
approaches have thus emerged which embed biological knowledge to yield reproducible features.
Methods: Pathifier estimates pathways deregulation score (PDS) to represent the extent of pathway deregulation
based on expression data, and most of its applications treat pathways as independent without addressing the
effect of gene overlap between pathway pairs which we refer to as crosstalk. Here, we propose a novel procedure
based on Pathifiermethodology, which for the first time has been utilizedwith crosstalk accommodated to iden-
tify disease-specific features to predict prognosis in patients with hepatocellular carcinoma (HCC).
Findings: With the cohort (N = 355) of HCC patients from The Cancer Genome Atlas (TCGA), cross validation
(CV) revealed that PDSs identified were more robust and accurate than the SG features by deep learning (DL)-
based approach. When validated on external HCC datasets, these features outperformed the SGs consistently.
Interpretation: On average, we provide 10.2% improvement of prediction accuracy. Importantly, governing genes
in these features provide valuable insight into the cancer hallmarks of HCC. We develop an R package
PATHcrosstalk (available fromGitHub https://github.com/fabotao/PATHcrosstalk)withwhich users can discover
pathways of interest with crosstalk effect considered.
© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

High-throughput expression data in combination with machine
learning is a widely adopted strategy to identify prognostic genes
with which cancer patients can be stratified into risk subgroups
with distinct outcomes. With the hope that the proposed gene-lists
can aid the clinicians in therapy decision in cancer [1], several com-
mercialized gene-signatures for risk prediction have been approved
in clinical practice, especially for breast cancer [2,3]. In spite of rela-
tive success in prognosis prediction, it was demonstrated that the
prognostic gene-lists were highly unstable in prediction performance
and biomarkers identified were greatly influenced by the selection of
samples in the training datasets [4]. Due to inherent noise of expres-
sion data and tumor heterogeneity, poor feature robustness and pre-
diction performance have been observed in multiple studies [4,5]. In
addition, small sample size which is not nearly comparable to the
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number of features (genes) for each sample can lead to a technical
hurdle termed “curse of dimensionality”.

Attempts to decode cancer have thus brought about systematic ap-
proaches which borrow information from molecular mechanisms
among individual genes, proteins or metabolites such as predefined
pathways from biological databases e.g. Kyoto Encyclopedia of Genes
and Genomes (KEGG) [6], Reactome [7] to extract more stable and in-
terpretable features for risk prediction. Among the pathway-based ap-
proaches, most of them estimate a pathway's activity for whole
samples without information on its deregulation in a particular sample
[8], and someothers aim to discover novelmolecularmechanisms other
than established pathways [9], the few exceptions are PARADIGM and
Pathifier [10,11]. PARADIGM approach determines a score for each
pathway and sample utilizing verified connection information and func-
tional assembly of this pathway, which can be inappropriate to complex
or incomplete pathways due to its demanding input of pathway mech-
anism, while Pathifier algorithm only calls for expression data of genes
belong to each pathway to estimate coarse-grained scores which repre-
sent the extent of pathways' deregulation, by determining the deviation
of diseased sample from normal counterpart on the basis of expression
data. Several studies have applied Pathifier to tumor subtyping and
prognosis prediction successfully [12,13].
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Research in context
Evidence before this study

Deep learning-based approaches have provided inspiring predic-
tion performance in cancer research. However, a recent study
employing autoencoder, a deep learning framework, to obtain
mRNA features for risk stratification in hepatocellular carcinoma,
reported prediction accuracy around 0.7 in multiple datasets.
This moderate performance can be largely attributed to the high
heterogeneity of hepatocellular even using the competent deep
learning framework. Pathifier, a pathway-based methodology, de-
rives pathway deregulation score, a robust feature of interpretabil-
ity, using mRNA expression data. This approach is promising for
noisy expression data and has not been used in hepatocellular
carcinoma.

Added value of this study

We found that the association between pathway deregulation and
prognosis in patients with hepatocellular carcinoma could be af-
fected by gene overlap between pathway pairs, developed and
validated a risk stratification model. This model is based on the
pathway deregulation score of 13 pathways/sub-pathways by
Pathifier that differentiate patients into moderate or aggressive
risk subtypes with significantly survival difference in both the
training and validation datasets. Our study provides substantial im-
provement of prediction accuracy compared with the deep
learning-based study, using the same training cohort (N = 355)
as well as other three validation cohorts (N = 231, 221, 41).
Our results suggest that pathway deregulation score-based ap-
proach is more accurate than deep leaning based method in risk
classification. We also provided a nomogram to predict prognosis
of patients with hepatocellular carcinoma, which was based on
13 identified pathways/sub-pathways.

Implications of all available evidence

For the first time, we identified prognosis associated pathways
with removal of gene overlap between pathway pairs and vali-
dated a risk stratification model based on deregulation score of
13 pathways/sub-pathways. This model can provide more accu-
rate and robust prediction than the counterpart by deep learning-
based approach,with strong potential in future clinical application.
Moreover, the dominant genes in these pathways/sub-pathways
could provide more focused insights for therapeutic targets dis-
covery of hepatocellular carcinoma. This study has obtained high
prediction accuracy in hepatocellular carcinoma which is highly
heterogenous and caused by intricate etiologic factors, and can
thus be applied to other tumor types with promising findings.
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However, most existing pathways used are general rather than
disease-specific and disease progression can only affect them partially.
For pathway pairs with many genes in common which we refer to as
crosstalk, taking into consideration the impact of the overlapping
genes on the PDS quantification of the two pathways can contribute to
the identification of disease-associated features,whichmay become sig-
nificant whenwe eliminate the effect of the common part on the signif-
icance of the pathways. Although it is intuitive that pathways can
influence each other, especially when they share genes, the presence
of this phenomenon has not been studied in PDS estimation, which is
obtained on the basis of expression variation of genes in each pathway.
For two pathwayswith shared genes: if expression levels of these genes
govern the deviation from normal samples in both pathways, the sub-
pathway consisting of these common dominant genes should be more
related to disease progression; if the expression variations of shared
genes provide minimal contribution to the aberration of each pathway,
the two remaining sub-pathways after the removal of shared genes can
be more disease relevant. In similar manner, crosstalk could have effect
on the significance of PDS in associated with survival. To the best of our
knowledge, PDS has never beenused in complex diseases such as cancer
with crosstalk accommodated among existing pathways to discover
disease-specific sub-pathways for prognosis prediction.

Due to inherent heterogeneity, cancers are stratified into subtypes
with distinct clinical outcome for personalized therapy. One instance
is found in HCC, where molecular subtypes have been identified to
show distinct differences in terms of survival [14,15].The prognosis of
HCC varies across different subtypes and stages, with an average 5-
year survival rate of 18% [16]. The first line treatment (Sorafenib)
showsmodest effect on prognosis improvement [17]. High heterogene-
ity in HCC, as well as intricate etiologic factors such as HBV, HCV and al-
cohol, poses challenges for accurate and robust prediction of prognosis
in HCC patients. To fill this gap, considerable efforts have been made
to identify subtypes to delineate the heterogeneity of HCC using
mRNA expression data [18–21]. A recent study based on deep learning
(DL) framework has embedded survival information as part of the pro-
cedure to obtain SGs in prediction of two subtypes with significant sur-
vival differences [15], and concluded that moderate prediction accuracy
by DL-based approach is caused by heterogeneous nature of HCC due to
various risk factor. We have thus turn to more robust PDS rather than
mRNAs from noisy expression data, hoping for a more accurate predic-
tion for HCC prognosis.

In this study,we discovered pathway-level features for accurate sub-
type prediction in HCC based on Pathifier, as opposed to previous stud-
ies which derived features without crosstalk effect under consideration.
We obtained PDSs from three relatively large HCC cohorts (The Cancer
Genome Atlas (TCGA) [22], LIRI-JP [23] and NCI [24]), applied crosstalk
correction and discovered survival associated pathways respectively.
Afterwards, we identified 76 common pathways shared by these three
cohorts, rather than use top features arbitrarily from one cohort of
them. Unsurprisingly, survival significant sub-pathways from 8 path-
wayswere discovered after correction,while the 8 predefinedpathways
were not. We merged and reduced these 76 pathways to 13 non-
redundant features, which we believed to be HCC survival specific. Per-
formance was evaluated using CV within the HCC dataset (N = 355)
from TCGA cohort, and demonstrated that discovered PDS features pro-
vided higher accuracy and stability in classifying survival-risk sub-
groups than the SGs from the DL-based study [15]. Subsequently, we
evaluated this learned model from TCGA data on three external HCC
datasets and showed that these features could predict risk subgroups
in HCC with elevated accuracy than the SGs by DL-based approach con-
sistently. Notably, the prediction accuracy and robustness of these PDS
features also outperformed that of the SGs from the three-omics DL-
based design in TCGA cohort, which derived SG features from not only
expression profile but also methylation data as well as microRNA ex-
pression data. In short, we developed the PDS-based approach for HCC
which could improve the prediction accuracy substantially compared
to DL-based approach; additionally, we evaluated the removal of
crosstalk on PDS between pathway pairs.

In addition to discrete risk classification for HCC, the PDS features
were applied to characterize gradual progression of survival-risk
using an independent unsupervised sorting algorithm SPIN (Sorting
Points Into Neighbourhoods; ref. [25]) for above four HCC cohorts,
the ranking profiles of which were not only able to characterize risk
progression continuously and provide individualized risk prediction
in HCC samples, but reproduced the survival-risk distinction of sub-
types classified aforementioned. Finally, we found that the dominant
genes in discovered pathways consisted of multiple HCC therapeutic
targets identified in previous studies and novel biological markers
for further investigation.



Fig. 1. Overall workflow. The workflow includes two steps: (a) obtaining survival-associated features; (b) building model and predicting labels for external cohorts. (a) Expression data
from the 3 cohorts is transformed to Pathways Deregulation Scores (PDS) using Pathifier; then, 100 survival-correlated pathways screened with Sure Independence Screening (SIS) for
each cohort as well as the screened pathways only shared by the other two cohorts are subject to crosstalk correction; then the common corrected pathways shared by the three
cohorts are identified; then the redundant features are filtered out, leaving 13 pathways. (b) K-mean clustering is applied to samples represented by these features in TCGA cohort to
identify survival-risk groups. Then the features as well as the survival-risk labels are used to build an SVM model(s) to predict the survival-risk labels of new datasets.
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2. Material and methods

2.1. Outline of the prediction pipeline

We summarized the overall workflow (Fig. 1) and the motivation
behind the pipeline design in each step. Given a series of expression
profiles, the beginning stage focused on extracting HCC-risk specific
pathways whose PDS were used to build prediction model (Fig. 1a).
To eliminate false positive features as much as possible, we only
adopted the survival-associated PDSs shared by the three large HCC co-
horts (TCGA, LIRI-JP, NCI) rather than use features fromany oneof them.
We estimated PDS for each pathway and sample utilizing Pathifier algo-
rithm, which quantified the extent of pathway deregulation by quanti-
fying the deviation of the diseased sample from the normal in terms of
expression profile of genes in this pathway. This PDS measurement
ranged from 0 to 1 and was able to characterize pathway deregulation
of HCC samples from normal state continuously during cancer initiation
and progression. Subsequently, we kept the top survival-correlated fea-
tures utilizing Sure Independence Screening (SIS) methodwith the cut-
off threshold of 100whichwasmuch larger than the default n/log(n) for
each cohort, where n is the sample size [26].

With the 100 survival-correlated pathways fromeach cohort, we ex-
plored the crosstalk effect on the significance of these pathways as well
as the common ones between the other two cohorts. With the hypoth-
esis that crosstalkwasmainly attributed to gene-overlap between path-
ways, then strong correlations of PDS between pathway pairs with
many common genes were expected. To demonstrate it, we calculated
Jaccard similarity index and PDS correlation for each pathway pair
with N3 genes in common. Furthermore, we evaluated the effect of
crosstalk removal on survival-significance shift of pathways: for each
pathway pair [i, j] with over 3 overlapping genes, the notation Pi\j was
defined as the set of elements in pathway Pi excluding the intersection
with Pj; similarly, with the notations Pj\i we denoted the genes that
were in pathway Pi but not in pathway Pj; additionally, with the nota-
tion Pi∩jwedefined the overlap between pathway Pi and Pj. Thenwe cal-
culated the p-values of these sub-pathways in univariate Cox-PHmodel
built with survival information and each PDS as the predictor. After
crosstalk correction, significant (FDR p-value b 0.01) pathways/sub-
pathways were identified for the three cohorts separately, with the
common ones as candidate features for prediction. Within these fea-
tures, we noticed that multiple sub-pathways from the same existing
pathways were identified as significant features and showed consider-
able correlation of PDSs, among which we chose the representative
sub-pathway with lowest mean and SD in p-values in all three cohorts.
Finally, 13 pathway/sub-pathways were selected to build classifier for
HCC risk.

To compare with SGs from the DL-based study, we employed the
same procedure to build and validate models. First of all, K-means clus-
teringusing the features obtainedwas applied to get labels for HCC sam-
ples in TCGA cohort with the same cluster number of two. With these
labels, we built a classifier using Support Vector Machine (SVM) frame-
work (Fig. 1). To predict TCGA held-out test data in CV, we built an SVM
classifierwhere the 355 TCGA sampleswere split into 10 folds formodel
training and test with a 6/4 ratio rather than 10-fold CV to keep enough
test samples for survival analysis. To predict the other three HCC co-
horts, we trained the classification model using whole TCGA samples.



253B. Fa et al. / EBioMedicine 44 (2019) 250–260
To avoid any unfair comparisons, we have used the three same metrics
(C-index, Brier score and Log-rank p-value) to evaluate performance
[27,28].

2.2. Clinical and gene expression data

Clinical data and normalized mRNA expression data of three large
independent cohorts (TCGA cohort, LIRI-JP cohort, and NCI cohort)
were directly obtained from The Cancer Genome Atlas (TCGA) portal
(https://tcga-data.nci.nih.gov/tcga/) using TCGA-Assembler (v1.0.3;
ref. [29]), International Cancer Genome Consortium (ICGC) portal
(https://dcc.icgc.org/projects/LIRI-JP; ref. [23]), National Cancer Insti-
tute (NCI) data acquired from Gene Expression Omnibus (GEO) data-
base GSE14520 Affymetrix high-throughput GeneChip HG-U133A
microarray dataset [24], respectively. The expression data of TCGA and
LIRI-JP cohorts were RNA sequencing (RNA-Seq) data, while NCI cohort
expression data was from microarray platform. To compare with the
DL-based study, we also prepared another small validation cohort E-
TABM-36 from mRNA microarray platform [30].

After removing patients without proper survival (or censor) time in-
formation or expression data, 355, 231, 221 and 41 patients with HCC
remained in each of the above four cohorts. Clinical characteristics of
these cohorts were provided in Supplementary Table S1. We used the
first three datasets to discover HCC survival related pathways due to
their relatively large sample sizes.

2.3. Pathway Deregulation Score (PDS)

In the dP-dimensional space SP, where each dimension characterizes
the expression intensity of specific gene in pathway P, and each point in
this space represents a sample. To depict the variability (e.g., due to dis-
ease progression) within the samples, then a principal curve passing
across the middle of the sample points can be found [31], where sam-
ples with close projections show similar behaviour of pathway P. Then
we determined the distance DP(i) between the projections of sample i
and the normal samples along the curve as PDS.

When extracting common features across the three large HCC co-
horts, we adopted the 2/3 power transformation of the expression
data from RNA-seq and microarray platform to stabilize variance in-
stead of the aggressive log2 transformation, aiming to ensure that the
curve found can explain sample variability close to reality. Log2-
transformedexpression datasets downloaded frommicroarray platform
were converted to original scale before power transformation. In addi-
tion, with only 5 non-tumoral samples (3 cirrhosis and 2 non-
cirrhosis) in E-TABM-36 cohort, we borrowed normal samples from
NCI cohort to assist PDS estimation after removing batch effect using
sva R package [32], as expression data of these two cohorts were both
from the microarray platform.

Gene sets of 322 pathways were obtained from the KEGG database
(http://www.kegg.jp/; [6]). Identity of genes in gene sets was decided
by their Ensembl IDs. Gene sets with b3 genes varying in the data
were omitted, leaving 320 KEGG pathways. PDS score was calculated
for each pathway.

2.4. Variance stabilization

Some genes had a large variation in expression levels, while some
genes showed a smaller variation which could also influence the func-
tionality of a pathway. Thus, we divided each gene's expression by the
standard deviation (SD) of its expression in normal tissues. To eliminate
the genes of which variations were mainly due to noise, we kept 5000
genes in KEGG pathway gene sets with highest Median Absolute Devia-
tion (MAD) over all samples for RNA-seq data in TCGA and LIRI-JP co-
horts, while for NCI and E-TABM-36 cohorts, we adopted the top 7000
probes to ensure the number of genes was comparable to the above
two cohorts due to redundant probes of microarray platform.
2.5. Feature prescreening

We applied prescreening procedure to remove survival irrelevant
pathways to accelerate calculation in the steps afterwards. For each co-
hort, we utilized Sure Independence Screening (SIS) method to keep
survival-correlated pathways with the limit of cutoff threshold n/log
(n) or 100 if n/log(n) smaller than 100, where n was the sample size.
[26].

2.6. Crosstalk correction and crosstalk matrix

For two pathways Pi and Pj with overlapping genes, Pi\j refers to the
remaining genes in pathway Pi when removing the overlapping genes
with Pj; similarly, Pj\i denotes the set of genes in Pj after subtracting
genes in Pi, and Pi∩j represents the set of genes that are in both Pi and
Pj. Then, the PDS of these sub-pathways (Pi∩j, Pi\j, and Pj\i) are calculated,
which is referred to crosstalk correction.

For eachpair of pathways [i, j]with nob3 commongenes,we applied
crosstalk correction, and computed the p-value for each pathway/sub-
pathway using univariate Cox proportional hazards (Cox-PH) model
built with survival information as well as its PDS [33]. The correction
step yields a k× kmatrix,where k is the number of pathways, thematrix
of p-values can be conveniently representedwith a heatmap of the neg-
ative log p-values. In this matrix, cell [i, j] denotes the significance of
sub-pathway Pi\j. The rows and columns of this matrix are organized ac-
cording to significance of the original pathways in descending order,
each of which can be found in the diagonal cell [i, i] for Pi. This matrix
is called as crosstalk matrix, which can demonstrate the crosstalk effect
between pathways conveniently.

2.7. Sub-pathway selection

After crosstalk correction, we selected significant features (FDR p-
value b.01) for each cohort, and the common significant sub-
pathways/pathways in three cohorts can be easily obtained. To deter-
mine the optimal gene set for each sub-pathway, we chose the gene-
list of this sub-pathway from one of these three cohorts, whose PDS
showed most robust significance (lowest mean and SD of p-values)
across three cohorts in the univariate Cox-PH model.

2.8. K-means clustering and supervised classification

Similar to the procedures in the DL-based study, we performed
K-means clustering using the obtained features to get labels for TCGA
cohort with the same cluster number of two. With these labels, we
built a classifier utilizing SVM framework (Fig. 1). In CV with TCGA
dataset, we trained a classification model where the 355 HCC samples
were split into 10 folds for model training and test with a 6/4 ratio. To
predict the other three cohorts, we built a classification model using
whole TCGA samples.

As to data normalization, two scaling steps were employed on both
the training data and validation datasets. Median scaling was applied
to discovered pathways of each cohort at first, where PDS of each path-
way was scaled by its median and MAD across all samples. Then, each
feature was scaled and centred by the mean and Standard Deviation
(SD) of its equivalent from the TCGA training dataset.

We used the e1071 package [34] available from https://CRAN.R-
project.org/package=e1071 to build SVM classifiers. The optimal
hyperparameters of the classifier were determined in CV using grid
search algorithm.

2.9. Evaluation metrics for models

We used the same three metrics with the DL-based study which
reflected the prediction accuracy.

https://tcga-data.nci.nih.gov/tcga/
https://dcc.icgc.org/projects/LIRI-JP;
ncbi-geo:GSE14520
http://www.kegg.jp/;
https://CRAN.R-project.org/package=e1071
https://CRAN.R-project.org/package=e1071
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2.9.1. Concordance index (C-index)
This metrics can quantify the proportion of patient pairs from a co-

hort whose risk prediction are in good agreement with survival out-
come [27]. Generally, higher C-index score means more accurate in
prediction performance, and a score close to 0.50 implies prediction
no better than random. To calculate C-index, a Cox-PH model was
built with the cluster labels and survival outcome from training data
and used to predict survival using the labels of the test data. The
C-index was calculated with R survcomp package [35].

2.9.2. Log-rank p-value
The log-rank test compares the survival difference of two groups at

each observed event time (R survival package [36] available from
http://CRAN.R-project.org/package=survival). Kaplan-Meier analysis
was applied to obtain survival-curve plot of HCC subtypes.

2.9.3. Brier score
The metrics calculates the mean of the difference between the ob-

served and the predicted survival beyond a certain time in survival anal-
ysis [28]. A smaller score implies higher accuracy. The score is obtained
using R survcomp package.

2.10. The DL-based approach

We compared the prediction accuracy of the pathway-based fea-
tures with SGs from recently reported DL-based approach using the
same four cohorts [15]. In step 1 of the DL-based approach, the author
used mRNA features in the TCGA cohort as input for the DL framework
of autoencoder; then 100 nodes from the bottleneck layer were respec-
tively used to build univariate Cox-PH model for feature selection (log-
rank p-value b 0.05); then group labels of each samplewere determined
by K-means clusteringwith these features. In step 2, themRNA features
were ordered according to the correlation with the cluster labels indi-
cated by ANOVA test F values, common features with the validation
data were kept, then the top 100 of which were utilized to train classi-
fication model for survival-risk labels prediction of validation datasets.

2.11. Functional analysis

2.11.1. Clinical covariate analysis
Using Fisher exact tests, we examined the associations of inferred

subgroups with other clinical covariates, including grade, stage, cirrho-
sis and multinodular.

2.11.2. TP53 mutation analysis
The somatic mutation frequency distributions of the TP53 gene be-

tween HCC survival subgroups were compared with Fisher exact test
for TCGA and LIRI-JP cohorts, both of which had sequencing data for
HCC samples.

2.12. Construction of the nomogram

To provide individualized risk prediction of HCC subtype, a nomo-
gram was constructed using clinical characteristics and 13 identified
features. As the classifier above was built with SVM model, we thus
used VRPM package to generate a color-based nomogram to explain
the SVM classifier [37]. Tomake itmore concise, we set the contribution
of interaction between predictors to be zero.

3. Results

3.1. Crosstalk affects pathway deregulation on survival significance

Crosstalk effect was discussed in classical over-representation stud-
ies [38], but never addressed for Pathifier methodology. We came up
with the hypothesis that strong correlations of PDS between pathway
pairs could be expected if the expression levels of common genes be-
tween them governed the deregulation of these two pathways. To vali-
date it, we computed the Jaccard similarity index [39] of each pair of
survival-correlated pathways with at least 3 common genes, and the
Pearson correlation coefficient between their PDSs. The Jaccard similar-
ity index JS was defined as follows:

JS ¼ j Pi∩P j j
j Pi∪P j j

;

where ∣Pi ∩ Pj∣ represented number of genes in both pathway Pi and Pj,
and ∣Pi ∪ Pj∣ denoted the size of gene set from the union of pathway Pi
and Pj. Pathway pairs with high Jaccard index showed considerable cor-
relation in PDSs of all three cohorts (Fig. 2), implying the presence of
crosstalk in prescreened PDS features [40].

Furthermore, to demonstrate the effect of removing common genes
on the significance of the pathways, we applied crosstalk correction for
those survival-correlated features. Among the pathways including the
100 pathways screened by SIS for each cohort, and the common ones
only discovered from the other two cohorts, we calculated the crosstalk
matrix as illustrated in the Materials and Methods section to show the
significance shifts of these pathways after crosstalk correction for each
cohort. The matrices illustrated the effect of the common genes re-
moved on the p-values of pathways in different cases (Fig. S1). Fig. 2d
gave an heatmap example of crosstalkmatrix, where negative log trans-
formation of original p-values of pathway iwere placed in the diagonal
cell [i,i] and recalculated negative log p-values after removing overlap
part with pathway j were shown in cell [i,j]. After crosstalk correction,
high significance (bright red in cell [2]) of pathway 2 disappeared
(deep blue in cell [2,6]) when the crosstalk due to pathway 6 elimi-
nated, while pathway k (firebrick in cell [k,k]) became more significant
(bright red in cell [k,1]) when the crosstalk due to pathway 1 elimi-
nated. The heatmaps in Supplementary Fig. S1 gave more detailed rep-
resentations of cross matrices for three cohorts (TCGA, LIRI-JP and NCI).
For simplicity, we represented the pathways with the KEGGmap IDs in
the heatmaps. These findings implied that overlapping gene sets could
affect considerably to the significance of related pathways.

In order to discover survival-significant pathways/sub-pathways,
we conducted overlapping analysis on significant features (FDR
p-value b 0.01) after crosstalk correction among three cohorts and
identified 76 common sub-pathways and pathways. Among them, sur-
vival significant subsets from 8 pathways were uncovered after correc-
tion, while the original pathways were not identified as significant,
including pyrimidinemetabolism, cGMP-PKG pathway, HIF-1 pathway,
sphingolipid pathway, cellular senescence, toll-like receptor pathway,
salmonella infection and pancreatic cancer. Notably, 70 features from
7 groups represented deregulations of sub-pathways from the corre-
sponding 7 pathways after removing overlapping gene with others.
For those in the same group, we chose the representative sub-
pathway with lowest mean and SD in p-values among all three cohorts.
Finally, we identified 13 non-redundant sub-pathways/pathways
whose PDSs were significantly associated with survival in HCC
(Table 1).

3.2. Performance comparison within TCGA dataset

To compare the classification performance of the 13 features with
the 100 SGs by the DL-based approach, we implemented the feature se-
lection and model building of the DL-based procedure proposed by
Chaudhary et al. [15] using our curated TCGA dataset. Due to the sto-
chastic gradient descent algorithm in optimization process, we repeated
the training process for 100 times using autoencoder and chose the op-
timal split with similar ratio of 103/252 (vs. 105/255 by Chaudhary
et al.) and drastic survival difference between the split subgroups
(log-rank p-value = 8.37e-7). Then group labels were utilized to build
an SVM classification model using CV, where the 355 TCGA samples

http://CRAN.R-project.org/package=survival


Fig. 2. Crosstalk effect on PDS correlation and example of crosstalk matrix. (a) TCGA cohort. (b) LIRI-JP cohort. (c) NCI cohort. Each point represents the Pearson correlation coefficient
between PDSs of an overlapping pathway pair with the Jaccard similarity index. The lines represent the fitting of quadratic models. Both three cohorts show strong correlations when
Jaccard similarity indices are high. (d) Example of a crosstalk matrix. On the diagonal, we find the significance in univariate Cox-PH model built with survival information and original
PDS of K pathways is ordered by p-value. The p-values in the matrix have been log-transformed (base 10 log), and the sign of the result has been inverted. The color of the cell
represents the p-value: bright red for p-values close to zero, bright blue for p-values close to 1.
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were split into 10 folds and used for training and test with a 6/4 ratio.
We assessed the prediction accuracy with C-index as well, which mea-
sured the proportion of all patient pairswhose risk predictionwere con-
sistent with observed survival outcomes [41]. Furthermore, the error of
themodel fitting on survival informationwas evaluatedwith Brier score
[28].

We observed that PDS features produced considerable improvement
in prediction accuracy in terms of C-index andmore significant log-rank
p-value in survival difference between survival-risk subgroup S1 and S2
comparedwith the 100 SGs derived using DL-based approach (Table 2).
Also, we obtained lowBrier error rates inmodel fitting. Compared to the
DL-based study in CV, on average, the test data from TCGAHCC samples
produced higher C-index (0.77 ± 0.05 vs. 0.70 ± 0.08), low Brier score
(0.21 ± 0.02 vs. 0.21 ± 0.02), and more significant average log-rank p-
value (5.85e-4 vs. 3.89e-3) on survival difference (Table 2). Meanwhile,
the lower SD of C-index (0.05 vs. 0.08) in our result indicated more ro-
bust performance of prediction in CV within TCGA dataset.

When compared with the results in TCGA dataset (360 samples)
analysed by Chaudhary et al. (C-index: 0.68 ± 0.07, Brier score: 0.20
± 0.02, average log-rank p-value: 0.01), our method provided more
considerable improvement in prediction accuracy as well as risk-
stratification. Worth noticing, in addition to the DL-based approach
using only expression data, our method outperformed the three-
omics-based procedure by Chaudhary et al. (C-index: 0.69 ± 0.08;
Brier score: 0.20 ± 0.02; log-rank p-value: 0.005). Moreover, only 16
genes out of the 100 features proposed by Chaudhary et al. were identi-
fied by us, implying the instability of the SG features byDL-based proce-
dure. It could be argued that the comparison was unfair due to 5 less
HCC samples in TCGA dataset we used, however, validations in other
three datasets with nomore than one-unit difference in sample size be-
tweenChaudhary et al. and us showed that the PDS-based approach still
outperformed the DL-based method (Table 2).

To evaluate the improvement due to PDS without removal of
crosstalk effect, we identified 5 pathways which were significant with
HCC survival. With these features, we reimplemented the classifier to
predict risk subgroups for above four HCC cohorts. Compared with DL-
based model, the PDS without crosstalk removal using TCGA HCC sam-
ples produced higher C-index (0.79 ± 0.01 vs. 0.70 ± 0.08), low Brier
score (0.20 ± 0.01 vs. 0.21 ± 0.02), and more significant average log-
rank p-value (8.49e-5 vs. 3.89e-3) on survival difference (Supplemen-
tary Table S2). For the LIRI-JP cohort, PDS-based approach without
crosstalk correction provided a lower C-index (0.80 vs. 0.84). When ap-
plied toNCI cohort, the results showed amoderate improvement in pre-
diction accuracy (C-index: 0.65 vs. 0.62). Similar with the TCGA cohort,
PDS-based approach without crosstalk removal offered a much higher
C-index (0.79 vs. 0.73) than DL-basedmethod in the E-TABM-36 cohort.
Thus, in TCGA cohort and E-TABM-36 cohort, the improvement was
mostly due to the PDS-pathway analysis instead of the crosstalk



Table 1
The list of 13 identified survival significant sub-pathway/pathways and function
summary.

Pathway
identifier

Function summary

04071\04012 Sphingolipid signaling pathway\ErbB signaling pathway
00240\00230 Pyrimidine metabolism\Purine metabolism
04218\04110 Cellular senescence\Cell cycle
05167\01521 Kaposi sarcoma-associated herpesvirus infection\EGFR

tyrosine kinase inhibitor resistance
05132 ∩ 05231 Salmonella infection ∩ Choline metabolism in cancer
00520 Amino sugar and nucleotide sugar metabolism
04022 ∩ 04210 cGMP-PKG signaling pathway ∩ Apoptosis
00480 Glutathione metabolism
00030 Pentose phosphate pathway
04620\05130 Toll-like receptor signaling pathway\Pathogenic Escherichia

coli infection
04540 Gap junction
05212\05206 Pancreatic cancer\MicroRNAs in cancer
04066\05211 HIF-1 signaling pathway\Renal cell carcinoma

i\j represents the set of genes that are in KEGG pathway i but not in KEGG pathway j.
i∩j represents the set of genes that are in both KEGG pathway i and pathway j.
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removal. Put the PDS-based approach with crosstalk removal, the PDS-
based approach without crosstalk removal, the DL-based approach to-
gether for comparison in three validation cohorts: in LIRI-JP cohort,
the three approaches performed similarly (C-index: 0.83, 0.80, 0.84)
(Supplementary Table S2); for theNCI cohort, the PDSwith crosstalk re-
moval, without crosstalk removal, and the DL-based method obtained
C-indexes of 0.76, 0.65 and 0.62; for the E-TABM-36 cohort, the three
methods produced C-indexes of 0.80, 0.79, and 0.73. The improvement
derived from both the PDS-based method and the crosstalk removal,
and the relative magnitudes varied among cohorts, and the PDS-based
approach with crosstalk correction performs more robustly in all three
validation cohorts. Thus, the crosstalk correction procedure is necessary
for accurate prediction. Moreover, even without crosstalk correction,
our results still outperform the counterpart by deep learning-based
approach.
3.3. Validation on independent HCC datasets

To demonstrate that the conclusionwould robustly hold for external
datasets, we validated the model trained from TCGA dataset on the
other three cohorts of HCC, which had expression data from RNA-Seq
and microarray platforms. For the LIRI-JP dataset (n = 231), we ob-
tained decent results which were comparable to the counterpart by
DL-based approach we applied (Table 2), including high C-index (0.83
vs. 0.84), low Brier score (0.15 vs. 0.15) and more significant log-rank
p-value (1.69e-9 vs. 1.07e-7) between the survival subgroups
(Fig. 3b). However, the DL-based approach could not offer competent
performance in other two datasets. In the NCI cohort (n = 221), the
two subgroups identified by our method showed a much higher C-
index (0.76 vs. 0.62), low Brier error rate (0.17 vs. 0.19) and more
Table 2
Performance of cross-validation based robustness of SVM classifier on test set in TCGA cohort a
the DL-based approach implemented by us as well as Chaudhary et al.

Cohort Omics data
type

PDS-based method DL-based

Samples
(N)

C-index Brier
score

Log-rank
P

Samples
(N)

TCGA RNA-Seq 355 0.77
(±0.05)

0.21
(±0.02)

5.85e-4 355

LIRI-JP RNA-Seq 231 0.83 0.15 1.69e-8 231
NCI mRNA

microarray
221 0.76 0.17 1.46e-7 221

E-TABM-36 mRNA
microarray

41 0.80 0.18 1.57e-2 41
significant log-rank p-value (1.46e-7 vs. 7.653e-2), compared with the
results by the SGs from the DL-based approach (Fig. 3c). In addition,
we applied this model to a small validation dataset of E-TABM-36 (n
= 41) and also obtained preferable results including a higher C-index
(0.80 vs. 0.73), a lower Brier score (0.18 vs. 0.19) and amore significant
log-rank p-value (0.0157 vs. 0.0776) (Fig. 3d). As to the E-TABM-36 co-
hort, the DL-based model did not differentiate the survival-risk sub-
groups significantly; in contrast, we obtained higher C-index and
more significant log-rank p-value (Table 2), implying superior
survival-risk stratification. When compared with the results analysed
by Chaudhary et al., our method provided more considerable improve-
ment in prediction accuracy as well as risk-stratification for all valida-
tion datasets (Table 2).

3.4. The PDS-based methodology outperforms alternative approach

In second approach, we applied univariate Cox-PH analysis on ex-
pression data from TCGA cohort, kept the top 100 features and obtained
labels with K-means clustering (K = 2) which gave a remarkable log-
rank p-value of 5.74e-15. In CV, SVM classifier on TCGA dataset pro-
duced higher C-index (0.81 ± 0.03), lower Brier score (0.20 ± 0.02),
and significant log-rank p-value (4.16e-6) than our pathway-based
model did (Supplementary Table S3). However, validations on external
datasets did not yield competent results as in CV. For the LIRI-JP cohort,
we obtained a lower C-index of 0.80, a higher Brier score of 0.16, and a
less significant log-rank p-value of 4.75e-6 (Supplementary Table S3).
When validated on NCI dataset, we reached a lower C-index of 0.56, a
higher Brier score of 0.19, and a non-significant log-rank p-value of
0.784 (Supplementary Table S3). In the smallest cohort of E-TABM-36,
the model could not stratify the samples into 2 risk groups efficiently.

3.5. Associations of survival subtypes with clinical and genomic features

We tested the associations between the two survival subtypes and
clinical features from the TCGA cohort using Fisher exact test and dis-
covered that clinical stage (P = 2.77e-5) and grade (P = 5.55e-6)
were both significantly different between two subgroups, as expected.
For the LIRI-JP cohort, we also obtained significant result for the stage
covariate (P= 1.93e-5). The NCI cohort provided several clinical covar-
iates including stage (P = 0.00150), cirrhosis (P = 0.000475) and
multinodular (P = 0.0494), and all these covariates were significantly
associated with survival subtypes.

Tumor suppressor gene TP53 is one of the most frequently mutated
genes in many cancers and associated with poor prognosis of patients
[42]. Using Fisher exact test between two survival subtypes in TCGA co-
hort, TP53mutation is significantlymore frequent in the aggressive sub-
group S1 than the S2 subgroup (P= 8.93e-8; OR= 3.66). Consistently,
patients from subtype S1 have much higher risk of TP53mutation than
S2 subtype (P = 1.25e-2; OR = 2.17) in LIRI-JP cohort.

UtilizingDESeq2 package (log2 fold change N1 and FDR b0.05) for dif-
ferential expression analysis between two HCC subgroups [43],
we found 1677 upregulated and 762 downregulated genes in the
nd external validation on three confirmation cohorts using 13 features in comparison with

method DL-based method by Chaudhary et al.

C-index Brier
score

Log-rank
P

Samples
(N)

C-index Brier
score

Log-rank
P

0.70
(±0.08)

0.21
(±0.02)

3.89e-3 360 0.68
(±0.07)

0.20
(±0.02)

0.01

0.84 0.15 1.07e-7 230 0.75 0.16 4.4e-04
0.62 0.19 7.65e-2 221 0.67 0.18 1.05e-03

0.73 0.19 7.76e-2 40 0.77 0.19 0.103



Fig. 3. Significant survival differences for four cohorts. (a) TCGA cohort, (b) LIRI-JP cohort, (c) NCI cohort, (d) E-TABM-36 cohort. S1: aggressive (higher-risk survival) subtype; S2:
moderate (lower-risk survival) subtype.

257B. Fa et al. / EBioMedicine 44 (2019) 250–260
aggressive subgroup S1 from the TCGA cohort. The upregulated genes
included stemness marker gene CD133 (1.16e-12), AFP (P = 4.34e-
08), KRT19 (P = 8.32e-14) and tumor marker gene BIRC5 (P = 2.00e-
20), the increased expression level of which were identified to be asso-
ciated with aggressive subtype in HCC [44–47]. Moreover, 29 genes
(ADH1B, ADH6, ALDOA, APOC3, AQP9, CDO1, COBLL1, CRAT, CYB5A,
CYP4F12, EPHX2, HN1, KHK, LECT2, PAH, RGN, PKLR, PFKFB3, PKM2, PLG,
RGS2, SERPINC1, RNASE4, SLC2A2, SLC22A7, SLC38A1, TM4SF1, SULT2A1,
SPHK1) in common with a 65-gene signatures in previous study were
differentially expressed in similar pattern [1].

3.6. Characterization of survival risk progression and individualized
prediction

The survival risk of tumor samples is characterized by inherently
gradual progression, rather than by clear, abrupt changes between dis-
crete subgroups. For such case supervised classification algorithms,
which try to split the samples into distinct groups, thus fails to depict
the gradual nature of the phenomenon. In this study, we have utilized
SPIN, an unsupervised sorting method, to characterize the gradual
changes of survival risk in HCC samples.

Of all samples from four datasets, the ranking profiles by SPIN were
not only able to characterize risk progression continuously in HCC sam-
ples, but reproduced the stratification of survival-risk subtypes pre-
dicted by SVM model aforementioned (Fig. 4 a-d). The deep blue end
represented samples which had minimal pathway deregulation from
normal liver tissue, while the samples adjacent to the bright red side
were far away from the normal tissue in pathway functionality,
implying higher risk compared with the samples in the opposite end.
To demonstrate it quantitatively, a Cox-PHmodel built with the ranking
and survival outcomewas used to infer survival risk for each individual.
Similarly, we used C-index to evaluate the fraction of patient pairs
whose risk prediction by SPIN ranking were correctly ordered
(Table 3). Of note, this metric here wasmore aggressive than before be-
cause it treated these samples as continuous individuals rather than dis-
crete groups, thus more pairs would be evaluated. To compare with the
SG features by the DL-based approach, we applied same procedure to
these features to predict individualized risk in the same four cohorts.
Consistently, we obtained higher accuracy in terms of C-index for all co-
horts compared with the SGs (Table 3). According to the order by SPIN,
we plotted the expression profile of 2439 differential expression genes
mentioned earlier between risk subgroups in TCGA dataset (Fig. 4e),
which characterized the progression of HCC in gene expression level.

3.7. Cancer hallmark analysis

PDS of the 13 pathways identified were found significant associated
with survival in HCC patients, thenwe expected the dominate genes be-
longing to them to be functionally enrichedwith tumor etiology. To ver-
ify it, we applied PCA analysis for each pathway using the same data
with which were used to calculate PDS and obtained 40 common
genes in TCGA, LIRI-JP and NCI cohorts after applying the filter of cumu-
lative proportion N 0.8 and loading N0.3. Multiple knownHCC therapeu-
tic targets, such as FOXM1, RAF1, TGFA, ENO1, EGF, UAP1L1, GNAS, GPI,
IRAK1, MAPK1, MAPK9, IKBKG, MAP2K2, RAC1, CDK1, SQSTM1, TYMS,
G6PD, and RAD51, were among the list. The 40-gene list also contained



Fig. 4. PDS and expression heatmapwith samples ranking by SPIN for four cohorts. (a) TCGA cohort, (b) LIRI-JP cohort, (c) NCI cohort, (d) E-TABM-36 cohort. The 13 pathways (rows) are
represented with KEGG map ID for clarity, and the samples (columns) are ordered by SPIN methodology and labeled by supervised classification. S1: aggressive (higher-risk survival)
subtype; S2: moderate (lower-risk survival) subtype. (e) Differential expressed genes including 1677 upregulated and 762 downregulated in the two subgroups from the TCGA cohort.
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several less-described genes, such as PLCB1, GPX7, HKDC1, MAPK13,
RRM2, RALBP1 and GMDS [48], as well as novel HCC markers such as
UGDH, UCK2, DUT, NPL, ITPR1, GNG4, RENBP, PPP2R5A, GNB5, WASF1,
CYB5R1, HEXA, TKT and TK1.

3.8. Construction of a nomogram using PDS-based features

Tomake risk predictionmore intuitive for clinicians, we constructed
a color-based nomogram from the SVM classifier above using the 13
features (Supplementary Fig. S2). The whole samples of TCGA cohort
were used, aiming to build a more accurate nomogram, thus, no clinical
covariate was embedded due to high missing rate. Moreover, evidence
shows that classifier with clinical information integrated produced no
improvement compared with the counterpart without clinical covari-
ates in the study of Chaudhary et al., whichwas also observed in our ex-
ploration. To obtain a risk estimate for a patient with this nomogram,
the color corresponding to the feature's value needs to be determined
using the color bar specific to each feature. This color is transformed
to a value with the color legend at the right. Repeating this for each fea-
ture and summing the resulting values, yields the score. This score is



Table 3
Performance of survival risk prediction by Cox-PHmodel builtwith SPIN rank and survival
data in all four cohorts comparedwith the counterpart utilizingmRNA features by the DL-
based approach.

Cohort Samples(N) PDS-based features DL-based features

C-indexa p-valueb C-indexa p-valueb

TCGA 355 0.70 4.31e-17 0.66 1.49e-9
LIRI-JP 231 0.74 3.25e-8 0.72 1.02e-7
NCI 221 0.65 3.85e-7 0.63 1.91e-5
E-TABM-36 41 0.68 4.03e-4 0.62 3.67e-2

a C-index, more pairs would be evaluated than in Table 2.
b P-value, for the statistical test if the estimate is significantly different frombackground

(0.5).
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then converted into the risk estimate by means of the bottom color bar.
The importance of the features is represented by means of the bright-
ness of the color: variables with a higher intensity in yellow have a
larger impact on the risk prediction. Of note, this nomogram is actually
not easy to use as the counterpart based on linear models, because the
color-value conversion is not straightforward and accurate by sight.
More powerful tools for nomogram construction are desired for nonlin-
ear models like SVM.

4. Discussion

Molecular signatures by statistical models like machine learning
trained with high-throughput expression data have long been appreci-
ated and discussed for precisionmedicine in cancer. However, poor sta-
bility and prediction accuracy of SG features have been observed in
multiple studies and pose challenges to clinical application. Categories
of pathway-based approaches have thus emerged with robust features
which are extracted on the basis of molecular mechanisms such as
predefined pathways. Pathifier algorithm quantifies pathway deregula-
tion and produces continuous features which can be used to character-
ize pathway functionality during disease progression. This approach has
been utilized in subtypes classification of multiple cancer types with re-
markable outcomes, where crosstalk between pathways has never been
discussed. A recent procedure filtering SG features with DL framework
was applied to prognosis prediction in HCC, a cancer type of high het-
erogeneity. To demonstrate whether PDS features could outperform
these SGs by DL-based approach, we proposed a novel pipeline based
on Pathifier with crosstalk accommodated to predict prognosis in the
same four HCC datasets. Our pathway-level features led to a substan-
tially better performance of prediction than the SG features by DL-
based methodology not only in terms of accuracy but also survival dif-
ference between subtypes.

One major advantage of our PDS-based features was in survival risk
stratification. Compared with the DL-based approach [15], we found
that statistically significant survival difference between aggressive sub-
group (S1) and moderate subgroup (S2) was more pronounced in the
TCGA cohort of HCC patients in CV. This finding also held in other
three HCC datasets (LIRI-JP, NCI and E-TABM-36), especially for the
small cohort of E-TABM-36where the DL-basedmodel could not obtain
statistically significant outcome. Furthermore, we also evaluated sub-
type distinction in terms of other clinical criterions. More importantly,
more decent performance in all four HCC cohorts showed the robust-
ness of our methodology (Table 2), whereas the DL-based approach
could not offer comparable results in other three datasets than LIRI-JP
cohort.

The robustness and accuracy of our classifier is supported not only
by the inherent stability of pathway-level features but also by eliminat-
ing false positive features as possible. The general philosophy of
Pathifier algorithm is to extract coarse-grained variables from expres-
sion space of genes belong to each pathway to represent the extent of
deregulation from normal behavior [5]. With coarse-grained PDS
which is less sensitive to noise, we can thus construct simple models
with less features that capture the essential aspects of the problem.
On the other hand, to avoid false positive features which may
dampen performance of validation on independent datasets, we
have adopted the survival-significant pathways/sub-pathways only
shared by the three large datasets (TCGA, LIRI-JP and NCI) as HCC-
specific features, rather than use significant features from one arbi-
trary dataset.

More importantly, in addition to classification of survival subtypes,
the ranking profiles of HCC samples generated by these features can
not only characterize tumor progression continuously among patients,
but also provide individualized risk prediction as well as pathway de-
regulation details for each patient. Governing genes identified in these
pathways provides important biological insight in selecting treatment
strategies for HCC patients. For example, repeated overexpression of
the mammalian transcription factor Forkhead Box M1 (FOXM1) has
been implicated in all major hallmarks of cancer [49]. Findings such as
these have generated interest in the development of targeted inhibitors,
in this case for FOXM1 [50,51].

Thoughwe have developed a pipeline for robust stratification of sur-
vival subtypes and accurate prognosis prediction in hepatocellular car-
cinoma, it has a few limitations. First, similar to Chaudhary et al., we
obtain class label of the TCGA HCC samples using whole TCGA dataset.
Therefore, when we implement CV on TCGA dataset using SVMmodel,
the C-statistics can be inflated; however, validations on other external
datasets produce more unbiased C-statistics. Another limitation is that
the sample size of one of the three validation datasets (E-TABM-36) is
only 41, whichmay introduce bias into validation. However, validations
on the other two large datasets (LIRI-JP, NCI) with sample size of 232,
221 indicate that our model is generally predictive; in addition, we
have applied our approach to a relatively large HCC dataset from
GSE54236 (N = 78) [52], and still obtained very good prediction accu-
racy (C-index = 0.88) as well as drastically different risk subgroups of
HCC (log-rank p-value=1.54e-8). An additional hurdle is that a certain
number of normal samples are required to estimate PDS more accu-
rately. Hopefully, we have gained improved result in E-TABM-36 cohort
with the aid of normal samples fromNCI cohort after batch effect adjust-
ment. In terms of prediction accuracy, it may be argued that the sample
size differences contribute to improvements in our prediction model in
comparisonwith the results by Chaudhary et al. Thoughwe have used 5
less samples (355 vs. 360) from TCGA cohort in CV than the DL-based
study, validations on the other three datasets with very close sample
size (LIRI-JP: 231 vs. 230, NCI: 221 vs. 221, E-TABM: 41 vs.40) to the
DL-based study still provide better performance consistently. Further-
more, we have also implemented the DL-based approach with our cu-
rated datasets and obtained similar outcomes, indicating the higher
accuracy and robustness of our approach.

In summary, the PDS-based features derived from Pathifier with
crosstalk accommodated provides an accurate and robust stratification
of HCC patients with prognostic significance, with the promise to im-
prove precision therapy with subtype-specific efficacy. The dominant
genes identified were well consistent with therapeutic targets of HCC
from other independent studies. We also expect that our procedure is
applicable to other cancer types with good performance. Validations
on other cancer types with large sample size are desired for future
research.
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