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ecSOD function has prototypically been associated with the extracellular space due
to its secretion and localization to the extracellular matrix. A myocyte-specific ecSOD
transgenic mouse has shown that it can also be localized to the myocyte intracellular
compartment and is capable of attenuating Reactive oxygen species (ROS) formation and
increasing NO bioavailability after ischemia reperfusion. Here, the subcellular localization
of transgenic ecSOD was further defined by subcellular fractionation, immunofluorescent
confocal microscopy, and Western analysis. Its impact on mitochondrial function was
assessed by mitochondrial permeability transition (MPT). ecSOD was found to exist
in cytosolic and nuclear fractions in addition to membrane. Colocalization of ecSOD
with myocardial mitochondria was further demonstrated by confocal microscopy and
subcellular fractionation of mitochondria and Western analysis. Isolated ventricular
myocytes from cardiac-specific transgenic ecSOD mice were protected from hypoxia
reoxygenation injury. Increased ecSOD colocalization to myocardial mitochondria in ecSOD
Tg hearts limited MPT in response to Ca2+ challenge. These results demonstrate that
ecSOD is not restricted to the extracellular space and can alter MPT response to Ca2+
suggesting mitochondrial localization of ecSOD can affect key mitochondrial functions such
as MPT which are integral to cell survival.
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INTRODUCTION
Reactive oxygen species (ROS), including superoxide anion (O−

2 ),
are an ubiquitous product of several cellular processes. ROS
are important in signal transduction through the activation of
NADPH oxidases and by several other mechanisms (Griendling
et al., 1994) including, xanthine oxidase (Ekelund et al., 1999),
nitric oxide synthase (Xia et al., 1998), a product of cellular
metabolism, and may be increased as a consequence of myocar-
dial ischemia reperfusion, with tissue injury, and other patholo-
gies (Sawyer et al., 2002). Uncontrolled ROS formation results
in oxidative tissue damage that results in progressive dysfunc-
tion and eventual cell death. A broad range of proteins exist to
buffer the oxidative stress of ROS, of which, the trio of super-
oxide dismutases (SOD), exist to specifically degrade the highly
reactive radical, superoxide. Three SODs, extracellular (ecSOD),
manganese (MnSOD), and copper-zinc (CuZnSOD) are present
in cells to varying degrees and differentially localized to spe-
cific compartments that orchestrate the dismutation of O−

2 to
hydrogen peroxide (H2O2) and O2.

Extracellular SOD, as one of the family of SOD enzymes, con-
verts O−

2 to H2O2 and has been shown to protect cells against
the effects of this oxygen free radical. ecSOD, as its name implies,
has been characterized as a secreted protein that binds to the
extracellular matrix by its heparin binding domain (Sandstrom

et al., 1993; Oury et al., 1994). In the myocardium, ecSOD is
expressed at much lower levels with MnSOD and CuZnSOD
accounting for over 90% of total SOD activity (Obal et al., 2012).
Targeted deletion of ecSOD has shown that it contributes to pro-
tect in the response to doxorubicin induced myocardial injury
(Kliment et al., 2009) and infarction (van Deel et al., 2008). We
have also shown that ecSOD gene therapy ameliorates myocar-
dial ischemia reperfusion injury (Li et al., 1998, 2001). Here it
has been shown to protect cells from oxidative stress. Recently,
we described a cardiac-specific ecSOD transgenic mouse that
provides increased O−

2 dismutation that subsequently supports
increased NO bioavailability (Obal et al., 2012). Notably, ecSOD
expression in this mouse was found to be elevated in both extra-
cellular and intracellular compartments. Here we extend these
findings by further characterizing the intracellular localization of
ecSOD and demonstrate the functional consequences of mito-
chondrial ecSOD.

MATERIALS AND METHODS
CARDIOMYOCYTE-SPECIFIC ecSOD TRANSGENIC MICE
All procedures were conducted under the approval of the
University of Louisville IACUC in accordance with the NIH
Guide for the Care and Use of Laboratory Animals [DHHS
publication No. (NIH) 85-23, rev. 1996] (Dai et al., 2010).
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Cardiac-specific ecSOD Tg mice heterozygous for the transgene
used in experiments were produced by crossing with WT C57BL/6
mice with littermate WT mice used as controls as previously
described (Obal et al., 2012).

CARDIAC MYOCYTE ISOLATION FOR HYPOXIA REOXYGENATION
INJURY
Adult cardiac myocytes from WT and ecSOD Tg mice were iso-
lated as previously described and ∼ 2 × 105 myocytes plated per
well in 24-well culture plates with inserts (NUNC) (Hu et al.,
2007). After equilibration in myocyte culture media, the culture
medium was immediately changed to oxygen depleted (bubbled
with N2 for 10 min) hypoxia buffer (NaCl 118 mM, NaHCO3

24 mM, NaH2PO4 1 mM, CaCl2 2.5 mM, MgCl2 1.2 mM, sodium
lactate 20 mM, KCl 16 mM, 2-deoxyglucose 10 mM, pH 6.4) and
myocytes maintained under hypoxic conditions, 1% O2, 5%
CO2, and 94% N2, for 30 min in a hypoxia chamber (Billups-
Rothenberg). Myocytes were then reoxygenated when the hypoxia
buffer was replaced with normoxic culture media (Hu et al.,
2007). Myocytes were reoxygenated for 120 min. Lactate dehydro-
genase (LDH) activity in media collected from myocyte culture
media immediately after 120 min in normoxic buffer under nor-
moxia was detected by colorimetric assay by measuring the for-
mazan product at 492 nm as previously described (Roche Applied
Science) (Hu et al., 2007). Total LDH release was determined in
media after treating cells with 2% triton X100. LDH release in
each well was expressed as a percentage of total LDH normalized
to protein content determined by Bradford assay.

MITOCHONDRIA ISOLATION AND MPT MEASUREMENT
Mitochondria from WT and ecSOD hearts were isolated as pre-
viously described (West et al., 2008). WT and ecSOD hearts were
minced and homogenized in buffer A, 225 mM mannitol, 70 mM
sucrose, 5 mM MOPS, 2 mM EGTA, and 0.2% fatty acid-free
BSA, using 5 strokes of a glass-Col homogenizer. The homogenate
was centrifuged at 500×g for 10 min at 4◦C and the supernatant
filtered through cheesecloth. Mitochondria were obtained after
centrifugation at 5000×g for 10 min at 4◦C followed by 2 washes.
Mitochondria (150–200 µg protein/assay) were then resuspended
in 200 µl swelling assay buffer, 40 mM HEPES, 195 mM man-
nitol, 25 mM sucrose, and 0.01 mM EGTA for mitochondrial
permeability transition (MPT) studies.

MPT activation was determined by measuring the change
in optical density with Ca2+-induced mitochondrial swelling at
520 nm as previously described (West et al., 2008). Mitochondria
were loaded into wells of a 96 well plate with 1 µM rotenone and
5 mM succinate and read at 37◦C for 30 min. Mitochondria from
WT and ecSOD Tg hearts were also treated with cyclosporine
A (CsA, 10µM) as a control. Mitochondrial swelling was initi-
ated with the injection of Ca2+ into each corresponding well with
shaking after recording 5 min of baseline. Swelling was recorded
for 20 min.

MYOCYTE SUBCELLULAR FRACTIONATION AND EXTRACTION
Subcellular fractions were extracted from isolated WT and ecSOD
myocytes using the ProtoExtract Subcellular Proteome Extraction
kit (Calbiochem). Myocytes from WT and ecSOD Tg mice were

homogenized in Fraction I buffer and gently agitated for 10 min
at 4◦C and centrifuged at 1000×g for 10 min. The supernatant
was removed and stored on ice (Fraction I, cytosolic). Extraction
buffer II with protease inhibitor cocktail was added to the pel-
let and the pellet resuspended and incubated for 30 min at 4◦C
with gentle agitation. The suspension was centrifuged at 6000×g
for 10 min at 4◦C and the supernatant collected (Fraction II,
membrane) on ice. Extraction buffer III with protease inhibitor
and Benzonase Nuclease were added to the pellet and the pel-
let resuspended and incubated for 10 min with agitation at 4◦C.
The suspension was centrifuged at 7000×g for 10 min at 4◦C
and the supernatant (Fraction III, nuclear) collected on ice. The
pellet was resuspended with extraction buffer IV with protease
inhibitor cocktail (Fraction IV, cytoskeletal). Protein concentra-
tion was determined by the Non-interfering Protein Assay Kit
(Calbiochem).

WESTERN ANALYSIS
Hearts from WT and ecSOD Tg mice were isolated, frozen, pul-
verized, and homogenized in buffer and homogenates prepared
and processed for PAGE and Western analysis as described pre-
viously (Hu et al., 2007). Blots were probed with anti-ecSOD
(1:1000, Sigma Aldrich, S4946), anti-CytC (1:1000, Abcam,
7H8.2C12), anti-vimentin (1:2000, Sigma Aldrich, V6389),
Histone H3 (1:1000, Cell Signaling, 9715), and anti-E-cadherin
(1:1000, Cell Signaling, 4065) antibodies, visualized by enhanced
chemiluminescence and quantitated either by densitometry of
film or by phosphorimager (GE, Typhoon) and analysis with
ImageQuant (GE).

IMMUNOFLUORESCENT CONFOCAL MICROSCOPY
ecSOD was detected and colocalized to the mitochondrial via the
electron transport protein, cytochrome C (CytC) in 4 µm sections
cut from paraffin embedded ecSOD Tg hearts by immunofluores-
cent confocal microscopy (Zeiss LSM 510). Sections were stained
with anti-ecSOD (1:100, Sigma Aldrich, S4946) and counter-
stained with CytC (1:100, Abcam, 7H8.2C12) for mitochondrial
colocalization and DAPI for nuclear staining. Line analysis of
ecSOD and CytC channel intensity in confocal images was used
to provide further delineation of ecSOD and CytC colocalization
using NIH ImageJ(1.48Ver).

STATISTICAL ANALYSIS
Data are presented as the mean ± SEM. Groups were compared
by unpaired Student’s t-test where a P < 0.05 was considered
significant.

RESULTS
ecSOD Tg CARDIAC MYOCYTES ARE RESISTANT TO
HYPOXIA/REOXYGENATION INJURY
Our previous studies have shown that cardiac specific ecSOD
overexpression protects the heart from ischemia reperfusion
injury supporting earlier studies showing ecSOD is cardiopro-
tective (Obal et al., 2012). Cardiac-specific ecSOD expression
also demonstrated that ecSOD could be detected in the intra-
cellular compartment of cardiac myocytes in addition to its
prototypic extracellular localization. To further investigate the
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action of intracellular localization of ecSOD, the effect of over-
expression on hypoxia reoxygenation injury was examined in
myocytes isolated from ecSOD Tg and WT mice. Myocytes,
enzymatically isolated from Tg and WT hearts, were incubated
under ambient oxygen conditions for 30 min after isolation.
Myocytes were then incubated under 1% O2, 94% N2, and 5%
CO2 in hypoxic medium for 30 min followed by 2 h reoxygena-
tion under ambient oxygen with 5% CO2. Supernatants from
WT and ecSOD Tg myocytes were collected to determine LDH
release after normoxic incubation and after 120 min reoxygena-
tion. Under normoxic conditions little difference was seen in LDH
release between WT and ecSOD Tg myocytes (Figure 1). After
hypoxia and reoxygenation, LDH release was significantly ele-
vated in WT myocytes whereas release was unchanged in ecSOD
Tg myocytes compared to WT (Figure 1). These results con-
firm our earlier results and demonstrate that the resistance to
hypoxia reoxygenation injury in ecSOD Tg hearts is myocyte
autonomous.

MITOCHONDRIAL LOCALIZATION OF ecSOD
Based on the intracellular localization of ecSOD highlighted
by myocyte-specific transgenic overexpression, we further

FIGURE 1 | ecSOD Tg cardiac myocytes are resistant to

hypoxia/reoxygenation injury. Cardiac myocytes from WT and ecSOD Tg
mice were isolated, cultured, and incubated under hypoxic conditions, 1%
O2, 94% N2, and 5% CO2 in hypoxic media for 30 min followed by 120 min
reoxygenation (Upper panel, scale bar = 1 mm). Myocyte viability was
assessed by measuring LDH activity in supernatants collected from cells
under normoxia and after reoxygenation (Lower panel). Values are the
mean ± SEM of 3 experiments performed in duplicate. ∗p < 0.05 vs. Nx
(WT or Tg), †p < 0.05 vs. WT 2 h Hx/Rx.

investigated the intracellular localization of ecSOD by subcellu-
lar fractionation and determination of ecSOD distribution by
Western analysis. WT and ecSOD Tg hearts were processed
for isolation of cytosolic, membrane, nuclear, and cytoskele-
tal fractions. Fractions from WT mice resolved by SDS PAGE
and detection by Western analysis showed that ecSOD is mainly
associated with the membrane fraction but was also seen at a
similar level in the nuclear fraction and to a lesser degree in
the cytosol (Cytosol:Membrane:Nuclear: 10%:45%:45%) and was
not detectable in the cytoskeletal fraction (Figure 2A). ecSOD
was markedly increased in Tg mice in all fractions. ecSOD was
also shown to be associated with mitochondria isolated from
both WT and ecSOD Tg hearts (Figure 2B). Notably, ecSOD
levels could be detected in the mitochondrial fraction in WT
mice and these levels were again markedly increased in ecSOD
Tg mice compared to WT (Figure 2B). Mitochondrial localiza-
tion was further examined in sections of ecSOD Tg hearts by
colocalization with the mitochondrial transport chain protein,
cytochrome C oxidase (CytC) by immunofluorescent confocal
microscopy. In Figure 2C, intracellular ecSOD colocalizes exten-
sively with CytC. In line analysis of ecSOD and CytC channel
output in representative confocal images of myocytes stained
for ecSOD (red), CytC (green), and DNA (blue), registration
between ecSOD and CytC channels is very strong (Figure 2D).
A fraction of cytosolic ecSOD is also found not to be associ-
ated with CytC. These results validate subcellular fraction results
which demonstrate ecSOD in transgenic hearts may be found
in cytosolic and nuclear (perinuclear) fractions. These results
demonstrate ecSOD is capable of cytoplasmic localization with
the ability to associate with intracellular organelles, specifically
mitochondria.

INCREASED RESISTANCE TO Ca2+ INDUCED SWELLING IN ecSOD Tg
MITOCHONDRIA
The enrichment of mitochondrial ecSOD in Tg mice provides
an additional mechanism that can protect the myocardium from
ischemia reperfusion injury. The localization of ecSOD to intra-
cellular fractions and mitochondrial and increased resistance of
ecSOD Tg myocytes to hypoxia reoxygenation injury as described
above suggest alternate mechanisms may account for this action.
As ecSOD was found to be specifically associated with isolated
mitochondria, the effect of this association on MPT was tested
by examining Ca2+-induced mitochondrial swelling in WT and
ecSOD Tg hearts. To investigate the role of increased mito-
chondrial ecSOD, mitochondria were isolated from WT and
ecSOD Tg hearts and swelling was measured as an index of
Ca2+ induced MPT. Under basal conditions, WT and ecSOD
Tg mitochondria exhibited similar and stable baseline OD in
the presence of CsA, which binds cyclophilin D to block pore
opening (Figure 3). Under control conditions in the absence of
Ca2+, MPT was greater in WT than in ecSOD Tg mitochondria
but did not reach statistical significance. With increasing Ca2+,
WT mitochondria displayed significantly increased swelling and
concomitant increased MPT. In ecSOD mitochondria, swelling
was consistently and significantly less compared to WT indi-
cating attenuated MPT. The heterogeneity of transgenic ecSOD
expression in myocytes as seen in confocal microscopy images
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FIGURE 2 | ecSOD is expressed in intracellular compartments.

ecSOD expression was determined in membrane, cytosolic,
cytoskeletal, and nuclear fractions from WT and ecSOD Tg myocytes
(A). ecSOD was further colocalized to mitochondria isolated from WT
and ecSOD Tg hearts by Western analysis (B). ecSOD colocalization

with mitochondrial CytC in sections from ecSOD Tg hearts by
immunofluorescent confocal microscopy (C). Colocalization of ecSOD
with mitochondrial CytC was demonstrated by line analysis of ecSOD
and CytC emission signals from confocal images (D) ∗∗∗p < 0.001 vs.
WT.

(Figure 2C) would suggest that homogeneous ecSOD expres-
sion would further accentuate the prevention of MPT in ecSOD
mitochondria. These results demonstrate that MPT in ecSOD Tg
mitochondria with increasing Ca2+ is attenuated and provides a
mechanism by which transgenic ecSOD protects myocytes from
hypoxia reoxygenation injury.

DISCUSSION
In defining the role of ecSOD in protecting the myocardium from
ischemia reperfusion injury we extend our current understand-
ing of its actions using the cardiac specific ecSOD Tg mouse.
Here we demonstrate two important findings, first, that ecSOD
is expressed within the myocyte intracellular compartment with
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FIGURE 3 | Mitochondrial ecSOD contributes to mitochondrial

permeability transition. Mitochondria isolated from WT and ecSOD
Tg hearts were incubated with control (0 µ M Ca2+), 20, 100, and
200 µ M Ca2+ to trigger MPT. MPT was measured as the percent
decrease in optical density (OD) at 592 nm due to mitochondrial
swelling. Mitochondrial swelling was increased with increasing Ca2+.
Cyclosporine A (10 µM), which stabilizes mitochondrial permeability
transition pore, blocked Ca2+-mediated swelling. Values are the mean
± SEM of 3 experiments. *p < 0.05 vs. Control (WT or Tg),
†p < 0.05 vs. WT.

increased expression seen in membrane, cytoplasm, and nuclear
fractions in addition to the cytoskeletal fraction, although to
a lesser degree. Localization of ecSOD expression is further
narrowed to mitochondria, where, in ecSOD Tg mice, it is
increased. Second, the increase in ecSOD associated with mito-
chondria in the ecSOD Tg mouse was able to attenuate MPT
in response to Ca2+ challenge. These findings are important
as they demonstrate that ecSOD is also expressed within the
myocyte cytoplasm, is associated with mitochondria conferring
resistance to Ca2+-induced injury through stabilization of MPT,
and can contribute to protection from ischemia reperfusion
injury.

ecSOD, as its name infers, has characteristically been found
in the extracellular space. Previous studies have shown ecSOD
nuclear translocation with oxidative stress and intracellular dis-
tribution in neurons (Oury et al., 1999; Ookawara et al., 2002).
We have shown recently that myocyte-specific overexpression is
able to confer myocardial protection against ischemia reperfusion
injury which is associated with increased NO bioavailability (Obal
et al., 2012). The intracellular location of ecSOD in myocytes
demonstrated here will have significant impact on ROS and NO
levels that affect cell function. ROS are generated from several
intracellular locations during normal function, dysfunction, and
disease. The intracellular location of ecSOD will protect myocytes
from intracellular ROS induced damage in addition to extracellu-
lar ROS. We have seen that despite a relatively small contribution
to total SOD activity (13%) in ecSOD Tg hearts, ecSOD has a sig-
nificant survival effect (Obal et al., 2012). Mn and Cu,Zn-SOD
constitute greater than 90% of activity and MnSOD has been
found to be upregulated with PC and to contribute to protection
and its deletion leads to postnatal lethality with cardiomyopa-
thy (Li et al., 1995). MnSOD is predominantly localized to the
mitochondrial cytosol (Slot et al., 1986). Although we have not

defined the relationship with which ecSOD associates with mito-
chondria, association with the mitochondrial outer membrane
may provide an important alternate mechanism to diminish ROS
induced mitochondrial dysfunction or cell death. Mitochondrial
MPT experiments are instructive, as even in the absence of Ca2+
MPT tended to be higher in the WT compared to ecSOD Tg
and with Ca2+ this relationship is further exacerbated. This sug-
gests ecSOD has a significant impact on MPT and consequential
apoptotic signaling. In addition to mitochondrial localization
of ecSOD in transgenic hearts, it is also found in the cytosol
clearly separated from mitochondria. This may suggest ecSOD
affects other intracellular functions in addition to those of the
mitochondria. In the conventional ecSOD KO, deletion exac-
erbated myocardial dysfunction after MI and doxorubicin (van
Deel et al., 2008; Kliment et al., 2009). After MI in the ecSOD
KO, LV dysfunction was associated with increased nitrotyrosine
which is a consequence of peroxynitrite. The decrease in per-
oxinitrite we have shown in the ecSOD Tg would contribute to
improved function which can be associated with preserved mito-
chondrial function (Obal et al., 2012). As mitochondria are key
contributors in ROS production with ischemia reperfusion, tar-
geting ecSOD to mitochondria may serve as a relevant therapeutic
goal.

Both constitutively expressed NOS isoforms, eNOS, and
nNOS, play a role in myocyte physiology and pathophysiology
(Hare, 2003). Intracellular localization of NOS isoforms and
ecSOD can play a significant role in NO regulation. Localization
of NOS to mitochondria has been established, however, whether
one of the two isoforms or both colocalize is still controver-
sial (Schulz et al., 2005). Originally, a mitochondrial-specific
isoform, mtNOS, was proposed which has now been sup-
planted by either nNOS or eNOS mitochondrial localization.
Regardless, with the presence of a NOS isoform in close prox-
imity to mitochondria, ecSOD, which would be expected to be
present in the extramitochondrial space, would serve to both
diminish superoxide contributing to increased NO stability and
bioactivity. We have shown that increased mitochondrial NO
through myocardial- specific iNOS expression is able to pre-
vent MPT in response to ischemia/reperfusion (West et al.,
2008). Here we were able to show MPT was attenuated by
decreased [3H] DOG uptake, loss of NAD+, and cytochrome
C release. Importantly, we showed NO was able to directly
prevent Ca2+ induced MPT. This effect of NO could be due
to either NO attenuation of metabolism which would lead to
decreased ROS (Trochu et al., 2000) or a direct effect on oxida-
tion (O’Donnell et al., 1997) and these effects would be enhanced
in the ecSOD Tg heart as indicated with attenuated MPT in the
above discussion.

The findings presented in this study support a novel role
for ecSOD in cardiac myocytes. The cardiac-specific overex-
pression of ecSOD demonstrates that this enzyme is capable of
localizing to the intracellular space, and, in this report, with
mitochondria. Myocyte-specific ecSOD is shown to be capable
of providing protection from hypoxia reoxygenation; a myocyte
autonomous effect. Mitochondria from ecSOD Tg mice are resis-
tant to Ca2+-induced MPT that constitutes a mechanism by
which it can contribute to myocyte survival from the intracellular
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space. In contrast to MnSOD or CuZnSOD that may be con-
strained by localization to the mitochondrial matrix, ecSOD
can expand its antioxidant capabilities by boosting intracellu-
lar expression. These insights are important in understanding
ecSOD’s contributions to protecting the myocardium and its
potential as a therapeutic such as that in gene therapy (Li et al.,

1998, 2001; Qi et al., 2007a,b; Deng et al., 2010; Saqib et al.,
2011).
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