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Abstract

Extracellular bacteria that spread via the vasculature employ invasive mechanisms that mir-

ror those of metastatic tumor cells, including intravasation into the bloodstream and survival

during hematogenous dissemination, arrestation despite blood flow, and extravasation into

distant tissue sites. Several invasive bacteria have been shown to exploit normal platelet

function during infection. Due to their inherent ability to interact with and influence other cell

types, platelets play a critical role in alteration of endothelial barrier permeability, and their

role in cancer metastasis has been well established. The highly invasive bacterium and

causative agent of syphilis, Treponema pallidum subspecies pallidum, readily crosses the

endothelial, blood-brain and placental barriers. However, the mechanisms underlying this

unusual and important aspect of T. pallidum pathogenesis are incompletely understood. In

this study we use darkfield microscopy in combination with flow cytometry to establish that

T. pallidum interacts with platelets. We also investigate the dynamics of this interaction and

show T. pallidum is able to activate platelets and preferentially interacts with activated plate-

lets. Platelet-interacting treponemes consistently exhibit altered kinematic (movement)

parameters compared to free treponemes, and T. pallidum-platelet interactions are revers-

ible. This study provides insight into host cell interactions at play during T. pallidum infection

and suggests that T. pallidum may exploit platelet function to aid in establishment of dissem-

inated infection.

Introduction

Syphilis, caused by the spirochete Treponema pallidum subsp. pallidum (hereafter T. pallidum),

is a chronic, sexually transmitted infection affecting an estimated 36 million people worldwide,

with 11 million new cases occurring annually [1,2]. In recent years rates of primary and sec-

ondary syphilis have risen sharply in particular populations, most prominently amongst men

who have sex with men, while a general increase in infectious syphilis cases in both heterosex-

ual men and women has been observed in cities across North America, Europe, and Asia

[1,3,4]. Paralleling the rise in syphilis cases amongst women, congenital syphilis cases have

increased in middle and high income countries and continue to be a leading cause of stillbirth
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in low income nations, affecting an estimated 1.36 million pregnant women each year and

resulting in over 500,000 adverse outcomes from maternal syphilis [5].

Syphilis is a multistage disease punctuated by asymptomatic periods of latency. The primary

and secondary stages of syphilis present with a painless chancre at the initial site of infection

followed by a non-pruritic rash, respectively, both of which spontaneously resolve [2]. Trepo-

nemes rapidly disseminate from the initial site of infection via the circulatory system, with

invasion of the central nervous system occurring in up to 40% of early infections [6]. Indeed,

neurological symptoms such as stroke may occur at any stage of infection, as can ocular

involvement which is often accompanied by abnormal cerebrospinal fluid (CSF) [7–10]. In the

absence of antibiotic treatment, the majority of infected individuals exhibit lifelong latency

while approximately 30% of patients exhibit symptoms of tertiary syphilis, which can include

gummatous lesions, neurosyphilis and/or cardiovascular syphilis [2,11,12].

Circulating near the blood vessel walls as flattened disks, inactive platelets are optimally sit-

uated to rapidly respond to deviations in the vascular environment and perform central roles

in hemostasis and in the modulation of inflammation, immune responses and endothelial per-

meability [13]. Ligand binding to platelet receptors induces specific signaling and secretion of

granule components [14,15]. Cytoskeletal restructuring occurs and the platelet transforms

from the inactive state to the active spheroid state, which becomes spherical and characterized

by pseudopod extensions and up-regulation of key receptors on the platelet surface including

P-Selectin, αIIbβ3 integrin and LAMP-3 (lysosomal-associated membrane protein 3) [13].

Platelets tether to the endothelium via the pseudopods and may further activate to a spread

fully activated form [13]. Platelet aggregates may be composed of both spheroid and spread

platelets [16]. Activated platelets have been shown to loosen endothelial cell junctions [17] and

promote leukocyte recruitment via secreted platelet chemokines [18]. Responding leukocytes

localize to these foci of increased endothelial permeability and extravasate. This strategy has

been shown to be exploited by tumor cells to promote perivascular infiltration [19–21].

Platelets have also been shown to be a target of several invasive pathogens including Staphy-
lococcus aureus, Streptococcus pyogenes and Borrelia species [22–27]. Upon pathogen interac-

tion, platelets can become activated by direct or indirect receptor contact with bacterial

virulence factors, with the latter occurring via a bridging plasma protein [28]. Further, platelets

have been shown to promote S. pyogenes dissemination in a murine sepsis model, where signif-

icantly fewer bacteria disseminated to the blood, lungs and spleen in platelet-depleted animals

[29]. Surprisingly, despite the potential importance of platelet interactions in bacterial patho-

genesis, pathogen-platelet investigations remain a relatively unexplored field of study.

Treponema pallidum is an obligate human pathogen that can rapidly invade the circulatory

system and traverse the blood-placenta, blood-retina and blood-brain barriers [2]. This inva-

sive capacity, together with the known ability of several other invasive pathogenic bacteria to

target platelets, prompted us to investigate whether platelet exploitation may also play a role

during T. pallidum infection. Previous studies have determined that T. pallidum binds a variety

of nucleated mammalian cells in culture [2,30–32], but to date no studies have been under-

taken to investigate the capacity of T. pallidum to interact with platelets. Disease symptoms

associated with syphilis that are consistent with potential T. pallidum-platelet interactions

include occlusive stroke, congenital thrombocytopenia, and aortic aneurism [7,33–35].

In this study we investigate the potential interaction of T. pallidum with human platelets

using a modified method of darkfield video microscopy to compile high resolution datasets of

live treponemes with fresh human platelets and flow cytometry to quantitate treponeme-plate-

let interactions and determine the dependence of this interaction upon treponeme viability.

Herein we demonstrate that T. pallidum interacts with platelets in a manner that correlates

with the degree of platelet activation. We investigate treponeme-platelet interactions during

Treponema pallidum-platelet interactions
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stationary adhesion and show that T. pallidum displays phenotypic changes during platelet

interactions by forming a more compact shape and by increasing its axial rotation and the

velocity of its translational motility. We also demonstrate that platelet-tethered treponemes

exhibit reduced displacement under the force of moving plasma and that treponemes are able

to induce platelet activation. This study may reveal a role for treponeme-platelet interactions

in T. pallidum pathogenesis.

Materials and methods

Ethics statement

All human blood studies were approved by the local Institutional Review Board at the Univer-

sity of Victoria and samples were obtained by informed consent from volunteer donors. All

animal studies were approved by the local Institutional Review Board at the University of Vic-

toria and were conducted in strict accordance with standard accepted principles as set forth by

the Canadian Council on Animal Care, National Institutes of Health and the United States

Department of Agriculture in a facility accredited by the Canadian Council on Animal Care

and the American Association for the Accreditation of Laboratory Animal Care.

T. pallidum propagation and extraction

Propagation and harvesting of T. pallidum was performed as per Lukehart and Marra [36],

with the exception that testicular extractions were performed under microaerophilic condi-

tions of ~5% oxygen in a Coy Laboratory Products anaerobic chamber (Mandel Scientific

Company Inc., Guelph, ON, Canada) to enhance T. pallidum viability [11,37,38].

T. pallidum heat treatment

A subset of viable treponemes were incubated at 56˚C for 45 minutes to abrogate motility

[39,40]. Heat-treated treponemes were then assessed by darkfield microscopy to ensure they

were non-motile yet remained morphologically consistent with viable treponemes.

Platelet purification

Donor blood was extracted from healthy volunteers into BD Vacutainers ACD-A tubes (BD

Canada, Mississauga, ON), transferred into sterile 15 mL conical tubes (Sarstedt Inc., Mon-

treal, QC) and centrifuged at 180 x g for 15 minutes at 22˚C (no acceleration or brake). The

platelet rich plasma (PRP) portion was transferred, with care not to disturb the buffy coat, into

fresh conical tubes, and allowed to slowly run down the inside of the tube. This process yielded

an average of 5.0 x 105 platelets/μL. Platelet poor plasma (PPP) was obtained from the superna-

tant of PRP centrifuged at 15,000 x g for 15 minutes. All PRP and PPP samples were stored at

room temperature. Platelet activation stages were assigned as described in Zhao et al. [41].

T. pallidum-platelet co-incubation

All co-incubations of treponemes and platelets were initiated in a microaerophilic chamber

(5% oxygen). Samples were then either maintained at 34˚C and 5% oxygen or tightly sealed

and transferred to co-incubate at 37˚C in atmospheric oxygen. All live treponeme treatments,

such as staining or fixation, occurred only under microaerophilic conditions.

Treponema pallidum-platelet interactions
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Darkfield microscopy

To achieve optimal magnification and high resolution, the T. pallidum-platelet sample volume

was limited to 4 μL per 1.0–1.2 mm thick glass slide with a 22 x 36 mm cover glass (Fisher Sci-

entific Company, Ottawa, ON) gently pressed into place. Slides were viewed at 1000x oil mag-

nification with a 100x oil pan-fluor objective lens set to 0.7 on a Nikon Eclipse 80i darkfield

microscope with a Nikon DS-Qi1Mc digital camera with NIS-Elements imaging software

(Nikon Canada Inc., Mississauga, ON). For video microscopy (high resolution real-time imag-

ing), exposure times were set at 3–40 ms. For additional brightness, gain was increased to

9–16. Image clarity was directly related to the level of platelet activation and platelet micropar-

ticle (PMP) secretion. As activation and PMP secretion increased, additional light was scat-

tered, resulting in a brighter field, and exposure times were further reduced to compensate.

The quality of imaging samples with reduced light scattering was improved by increasing the

exposure time to� 60 ms and opting for still imaging rather than videos.

Live treponeme and platelet analysis

Treponeme motility and platelet interactions were monitored by darkfield microscopy. For

field of view (FOV) counts, 20 random fields per slide were counted. Treponeme viability was

associated with vigorous to moderate activity consisting of axial rotation, flexing, bending and

translational motility (forward and backward motion). Platelet sub-populations spontaneously

adhere to glass slides during microscopic observation; the number of treponemes bound to

slide-adhered platelets were enumerated as above. Treponeme speed and relative displacement

in plasma currents were calculated from microscopy video segments obtained prior to the

plasma reaching steady state.

Image and video acquisition and analysis

Micrographs and videos were captured with a Nikon DS-Qi1Mc digital camera (Nikon Cam-

era Inc.). Images were saved in uncompressed JPEG format or as AVI movies. ImageJ (ImageJ

v1.6.0_24/1.51h, embedded in Fiji) [42,43] and GIMP software (GIMP 2.8.18, http://www.

gimp.org/) were used to adjust brightness and contrast, scale, dpi and sharpness. Contrast in

multi-panel images was harmonized during figure construction in Excel 2016 (version 1806,

Microsoft, Redmond, WA). For optimum definition of the treponeme to measure wavelength,

amplitude and bacterial cell length, images were imported into Excel, enlarged to 400% and

contrast-enhanced. Images were selected with all or the majority of the treponeme flat-wave in

the imaging plane [44]. Wavelengths were measured from peak apex to peak apex and aver-

aged. Amplitude was measured from peak apex to trough and divided by two at five separate

points along the cell body and averaged per treponeme. Cell length was measured from pole to

pole. Time-stamped image capture for relative displacement and speed calculations was per-

formed with Frameshots software (version 3.1.3, EOF Productions, http://www.frame-shots.

com/) or ImageJ then imported into Excel and measured with an imported ruler calibrated to

the scale bar on each image. Speed was calculated by dividing the displacement by the elapsed

time [45]. This measurement technique enabled greater image magnification and was validated

by comparison to displacement measurements in both ImageJ and Tracker (version 4.11.0,

http://www.cabrillo.edu/~dbrown/tracker/), an Open Source Physics tool (https://physlets.org/

tracker/). To compare the velocity, rotation, and displacement of platelet-interacting versus

non-interacting treponemes, AVIs were imported into Tracker with frame by frame manual

image position correction. Velocity and displacement were calculated as a function in Tracker,

and full peak rotations were manually counted. Treponeme rotation was calculated only when

an individual peak remained in focus and was averaged per treponeme (mean = 160.90 ± 14.59

Treponema pallidum-platelet interactions
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frames/ video). Video contrast, brightness, and/or sharpness was enhanced, and video format

was change from AVIs to MP4s with PowerPoint 2016 (version 1806, Microsoft, Redmond,

WA).

Flow cytometry

All treatments occurred in microaerophilic conditions with treponemes in tightly closed sterile

conical (Sarstedt) or BD Falcon 5 mL polystyrene tubes (BD Canada) when removed from the

microaerophilic chamber. For platelet binding assays, viable treponemes were stained with

10 μM carboxyfluorescein succinimidyl ester (CFSE, AAT Bioquest, Sunnyvale, CA) for 30

minutes at room temperature in the dark with gentle rocking. Treponemes were then

quenched with one to two volumes of PPP, divided in two, and half the volume was then heat-

treated [46,47] (heat-treated treponemes retain CFSE staining). Treponemes and platelets

were combined at a ratio of 3:5 treponemes per platelet in PPP at room temperature in the

microaerophilic chamber in 5 mL polystyrene tubes (BD Canada), tightly sealed and incubated

in the dark at 37˚C. Platelets were pre-activated with 0.1 U/mL bovine thrombin (Sigma-

Aldrich, Oakville, ON) for two minutes prior to use. Following 19–24 hours of co- incubation,

sample tubes were returned to 5% oxygen and the mixture was incubated with a 1/20 dilution

of platelet-specific mouse anti-human CD41a (αIIb integrin) monoclonal antibodies labeled

with either PE or PE/Cy5 (clone HIP8, BioLegend, San Diego, CA). After 45 minutes at room

temperature, samples were fixed with one volume of ice-cold 2% paraformaldehyde (PFA) in

PBS, stored at 4˚C, then diluted with sterile PBS just prior to flow cytometry. Samples were

acquired on a BD Fascalibur (BD Canada) with platelet and treponeme populations co-localiz-

ing and identified with BD CellQuest acquisition software (BD Canada). Software was set to

log scale for both forward scatter (FSC E-1) and side scatter (SSC), and gating was aided by

using the SPHERO Flow Cytometry Size Standard Kit (containing polystyrene beads between

2.0 and 9.96 μm from Spherotech, Inc., Lake Forest, IL). Forward and side scatter gating was

used to acquire at least 5000 events, and up to four biological replicates were analyzed per sam-

ple type. After initial gating by forward and side scatter, FlowJo V10 (FlowJo, LLC, Ashland,

OR) analysis further separated subpopulations by the mean fluorescence intensity (MFI) of

both platelet (PE or PE/Cy5) and treponeme (CFSE) markers. The shift of platelet and trepo-

neme events positive for both markers to quadrant 2 was counted as a treponeme-platelet

binding event. Heat-treated treponemes with or without platelet co-incubation exhibited an

auto fluorescence signal that was gated and removed from all samples. For platelet activation

assays, co-incubations were conducted in PPP under microaerophilic conditions at either

34˚C or 37˚C for 2, 4, 8, 20 or 24 hours at a ratio of 5 treponemes to 1 platelet and samples

were stained, fixed and prepared for flow cytometry as above. Unlabeled treponemes and

platelets were co-incubated, followed by platelet staining with a 1/20 dilution of mouse anti-

human monoclonal anti-CD62P (clone AK4, BioLegend, San Diego, CA) labeled with FITC.

At least three biological and technical replicates of each sample type were used per experiment.

Forward and side scatter gating was conducted as above, followed by quantification of the rela-

tive median fluorescence intensity (MFI) of either the activation marker CD41a (PE) or

CD62P (FITC). MFI comparisons included platelets that were resting, pre-activated with

either 160 μM SFLLRN peptide (Biomatik Corporation, Cambridge, ON) or 5 μg/mL rat colla-

gen I (R & D Systems, Inc., Minneapolis, MN) or co-incubated with T. pallidum.

Plate-based fibrin clot production assay

Fibrin clot production by activated platelets was measured in 96 well tissue culture plates (Thermo

Scientific Nunc, Waltham, MA) using a method modified from Vinholt et al [48]. Control wells

Treponema pallidum-platelet interactions
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included 150 μL of resting PRP + 50 μL of NS/10% NRS. To prepare control activated platelets,

either 0.5 U/mL bovine thrombin or 5 μg/mL rat collagen I prepared in NS/10%NRS was added

to PRP. Test wells included 50 μL of T. pallidum (~4.0 x 107 treponemes/mL) in NS/10% NRS

added to 150 μL of resting PRP. Plates were incubated at 34˚C for 18 hours under microaerophilic

conditions, after which the absorbance at 600 nm was read with a BioTek Synergy HT plate reader

(Fisher Scientific, Waltham, MA), Results were analyzed using Excel.

Statistics

A two-way ANOVA analysis evaluated the overall statistical significance of three independent

binding experiments assessed by flow cytometry with results shown as means ± the standard

deviation (SD). The statistical significance of three independent binding experiments assessed

by darkfield microscopy was calculated using an unpaired, two-tailed Student’s t-test and

shown as mean ± SD. A Student’s two-tailed t-test was used to assess statistical significance of

differences in T. pallidum morphology, kinematics and levels of platelet activation in individ-

ual experiments and is shown as mean ± standard error of the mean (SEM). Statistics were per-

formed, and graphs were constructed, using GraphPad Prism (version 7.04) (GraphPad

Software, La Jolla California, USA).

Results

Treponema pallidum interacts with human platelets

Numerous bacterial species are recognized to interact with human platelets during infection,

including the spirochetes Borrelia burgdorferi and Borrelia hermsii [24,48,49], but to date this

potential host cell interaction has remained unexplored for T. pallidum. To identify potential

interactions, human platelets and viable treponemes were co-incubated and observed by dark-

field microscopy. High resolution video imaging demonstrated that treponemes interacted

with platelets primarily with tip-mediated contact (Fig 1 green arrows). This analysis also

revealed interactions to be dynamic with frequent coiling and rotation against (Fig 1 cyan

curved arrow) or gliding across the platelet (S1 Video).

Treponema pallidum-platelet interactions correlate with T. pallidum
viability

To determine if T. pallidum-platelet interactions were dependent upon viable treponemes, we

compared the binding of heat-treated (nonviable) treponemes and viable treponemes to

human platelets by flow cytometry (Fig 2A–2D). Platelets and treponemes co-localize and this

population formed the first gate on the FSC by SSC plot (blue broken line Fig 2A). The binding

events (lime gates) of platelets with either heat-treated (Fig 2B) or viable (Fig 2C) treponemes

were compared. Viable treponeme-platelet binding events (mean = 55.13% ± 2.91 [SD]

P<0.0001, Fig 2C and 2D) were significantly higher than events associated with heat-treated

treponemes (mean = 19.05% ± 2.29 [SD], Fig 2B and 2D). Microscopic analysis consisted of

determining the percent of platelet-interacting treponemes out of the total treponemes

observed in 20 random locations per slide and confirmed viable treponemes co-incubated

with human platelets bound significantly more platelets (mean = 31.73% ± 0.96 [SD]

P<0.0001, Fig 2E) compared with heat-treated treponemes (mean = 6.47% ± 0.71 [SD], Fig

2E). Viable treponemes were also observed to disengage from interactions with platelets (Fig

2G panels 0.01, 8.10 & 9.05 s, S3 Fig and S2 Video). Heat treatment resulted in non-motile

treponemes (Fig 2F top) that remained morphologically consistent with viable treponemes

(Fig 2F bottom).

Treponema pallidum-platelet interactions
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Treponema pallidum–platelet binding positively correlates with increasing

platelet activation

We hypothesized that fully activated, spread platelets would be preferentially targeted by trepo-

nemes given the direct adhesion of spread platelets in vivo to the endothelium during hemosta-

sis and modulation of vascular permeability [50]. Indeed, when the collection of darkfield

images was analyzed there were 125 treponeme-platelet interactions (75 individual images

sampled from co-incubations of platelets with 11 independent treponeme extractions), and the

majority of treponeme-platelet interactions (57.8%, n = 72) occurred between fully activated,

spread platelets (Fig 3A and 3B, right panel, S3 Video) followed by 37.6% to the next most acti-

vated state, the spheroid form with fully extended pseudopods (n = 47) (Fig 3A and 3B [middle

panel], S3 Video). Platelets in the earliest visible stage of activation, with at least one pseudo-

pod bud (Fig 3A and 3B [left panel], yellow), were observed to interact with treponemes to a

much lesser degree at 4.8% (n = 6), whilst at no time were fully inactive, discoid platelets (Fig

3B left panel, grey) observed to interact with T. pallidum. The preferential interaction between

treponemes and spread, activated platelets regularly occurred adjacent to platelets in lesser

states of activation in the same FOV, confirming specificity (S1 and S2 Figs). The relative bind-

ing of treponemes to pre-activated platelets was close to double that observed for resting plate-

lets (mean = 1.98 ± 0.08 [SEM] P = 0.0003; S5 Fig).

The interaction of T. pallidum with platelets is dynamic

Darkfield and electron microscopy studies have previously demonstrated that 90% of T. palli-
dum cells adhere to cultured rabbit epithelial by one or both tips, with over a third of trepo-

nemes using both tips [51]. Initial darkfield observations revealed a complexity to treponeme-

Fig 1. Treponema pallidum exhibits a dynamic interaction with human platelets. Darkfield video microscopy panels at 1000x show a treponeme attached to a fully

activated platelet by both tips (green arrows 43.21 s). This treponeme alternated between coiling with vigorous axial rotation (2.68 Hz) against the platelet membrane (cyan

curved arrow indicates the direction of rotation) (1.68–10.07 s, 28.77 s) and extending above the platelet (15.15 s, 21.12 s, 34.40 s), then remained attached by both tips

(43.21 s) for a further 18 min 23 s of observation. Scale bar = 10 μm.

https://doi.org/10.1371/journal.pone.0210902.g001
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Fig 2. Treponema pallidum-platelet interactions. (A) Flow cytometry isolates the co-localized platelet and treponeme populations by SSC and FSC gating. Dot plots

of (B) CFSE-labeled heat-treated treponemes demonstrate reduced binding to human platelets labeled with PE/Cy5 anti-CD41a compared with (C) CSFE-labeled

viable treponemes. (D) CFSE-labeled viable treponemes bound significantly more human platelets (mean = 55.13% ± 2.91 [SD] �P<0.0001) compared with heat-

treated treponemes (mean = 19.05% ± 2.29 [SD]) following co-incubation for 16 hours at 37˚C and ~ 5% oxygen. Results represent the mean of three independent

experiments with statistical significance computed by two-way ANOVA, with a minimum of 3 replicates per sample type per experiment. (E) Darkfield microscopy

FOV counts (20 random locations/slide) demonstrate viable treponemes bind significantly more human platelets (mean = 31.73% ± 1.19 [SD] �P<0.0001) than heat-

treated treponemes (mean = 6.47% ± 1.19 [SD]) following co-incubation at 5% oxygen at 34˚C for 48 hours. Results represent the mean of three independent

experiments with statistical significance computed by unpaired two-tailed Student’s t test, n = 3. (F) Heat-treated treponemes (top) are non-motile yet

Treponema pallidum-platelet interactions

PLOS ONE | https://doi.org/10.1371/journal.pone.0210902 January 18, 2019 8 / 22

https://doi.org/10.1371/journal.pone.0210902


platelet interactions beyond simple adhesion. Over the course of platelet co-incubations with

11 independent treponeme extractions we assembled a collection of live, high resolution

images. We categorized and quantified four major types of interactions (227 interactions in

158 micrographs); (1) adhesion by one or both tips (Fig 4A and 4B [left panel], S3 and S4 Vid-

eos) occurring at a rate of 69% (n = 227); (2) “edgewise” binding along the axial plane of the

cell body (Fig 4A and 4B [middle panel], S4 Video) occurring at a rate of 14%; (3) “indirect”

binding by adhesion to a platelet-interacting treponeme or extended platelet pseudopod (Fig

4A and 4B [right panel], S4 Video) occurring at a rate of 14% and; (4) “dynamic” binding,

characterized by coiling and uncoiling against the platelet membrane and/or rapid back and

forth translations, (Fig 4A and 4C, S4 Video) comprised approximately 3% of interactions.

Binding by both tips was observed in less than 1% of T. pallidum-platelet interactions (S4

Video). “Dynamic” binding involved continuous contact with the platelet but rather than “tip”

or “edgewise”adhesion, the treponeme remained in constant motion (Fig 4C, S4 Video).

Treponema pallidum increases rotation and translational velocity upon

interacting with platelets

The ability to observe the interaction of treponemes and platelets at high resolution prompted

us to compare the motility characteristics of platelet-interacting and non-interacting trepo-

nemes in the same FOV. By performing frame-by-frame kinematic comparisons, we detected

a significant increase in both the translational velocity (forward and backward motility) and

axial rotation of treponemes when engaging with platelets (Fig 5A–5D, S5 Video shows axial

rotation of both a platelet-interacting and a non-interacting treponeme). The translational

velocity of platelet-interacting treponemes (mean = 1.68 ± 0.10 μm/s [SEM] P< 0.0001) was

observed to be over two-fold that of non-interacting treponemes (mean = 0.65 ± 0.01 μm/s

[SEM]), with a maximum observed velocity of 2.58 μm/s (Fig 5C). Accompanying this, the

rotation rate increased (mean = 2.47 ± 0.86 hertz [SEM] ��P = 0.0060) in contrast with non-

interacting treponemes (mean = 1.58 ± 0.77 hertz [SEM]) (Fig 5D). Subtle phenotypic changes

occurred as the cell body became more compact with a significantly shorter wavelength (ʎ)

(mean = 0.79 ± 0.02 μm [SEM] P = 0.0237) compared to that of non-interacting treponemes

(mean = 0.86 ± 0.02 μm [SEM]) (Fig 5A green bracket and Fig 5E top). Platelet-interacting

treponemes also showed a trend towards a correspondingly higher amplitude (Α)

(mean = 0.30 ± 0.02 μm [SEM], Fig 5A yellow bracket and Fig 5E middle) and shorter cell

body (L) (mean = 9.56 ± 0.65 μm [SEM], Fig 5B magenta bracket and 5E bottom) than non-

platelet interacting treponemes (A mean = 0.26 ± 0.01 μm [SEM], Fig 5E middle, L

mean = 10.46 ± 0.66 μm [SEM], Fig 5E bottom).

T. pallidum-platelet interactions reduce treponemal speed and

displacement upon plasma movement

To measure the ability of T. pallidum-platelet interactions to reduce treponeme displacement,

we used high resolution videos to record T. pallidum movements across the FOV on slides.

Prior to reaching equilibrium, plasma currents propelled non-adherent treponemes and plate-

lets across the FOV. Three video image sets that contained both short-term platelet-interacting

and non-interacting treponemes were used to compare the effect of platelet adhesion on the

ability of treponemes to resist fluid motion until plasma reached a steady state. Treponemes

morphologically similar to viable treponemes (bottom). (G) Darkfield microscopy at 1000x magnification demonstrates platelet interactions are reversible. Image

capture from video micrographs show edgewise attachment of a treponeme to an activated platelet (0.01 s to 8.10 s) which then detaches and moves away (9.05 s).

https://doi.org/10.1371/journal.pone.0210902.g002
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bound to platelets prior to plasma movement maintained attachment, and treponemes that

established an interaction with a platelet reduced their speed and overall displacement across

Fig 3. Binding of T. pallidum to platelets increases with platelet activation. (A) Treponemes displayed preferential binding to fully activated spread platelets

(blue), with 57.8% of viewed images showing an interaction between fully activated platelets and T. pallidum. Treponemes bound to activated spheroid platelets

(lime) in 37.6% of images, while platelets in early activation (yellow) constituted only 4.8% of the observed interactions. Treponema pallidum was never observed to

bind to inactive platelets in 125 interactions analyzed from 75 images containing a total of 422 platelets (S1 Table). Interactions and activation states were observed at

1000x magnification using darkfield microscopy. (B) Images of platelets at different stages of activation at 1000x magnification using darkfield microscopy. Inactive

platelets circulate as disks (grey) and bud pseudopods during early activation (yellow). Activated platelets may be spheroid with extended pseudopods (lime) or fully

activated with an enlarged surface area and a very thin spread form (blue).

https://doi.org/10.1371/journal.pone.0210902.g003
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the FOV (Fig 6, S3 and S4 Tables). For these measurements the ratio of values for non-interact-

ing to interacting treponemes was compared to determine the differences in relative speed and

displacement between different FOV (S3 and S4 Tables). Non-interacting treponemes experi-

enced a higher speed (mean = 2.40 ± 0.16-fold [SEM]) and larger displacement (mean = 2.10 ±
0.30-fold [SEM]) across the FOV compared to platelet-interacting treponemes (S6 Fig, S3 and

S4 Tables). The interactions observed in one representative video are shown in Fig 6. By estab-

lishing an interaction with a platelet, treponeme 1 (Fig 6 green) reduced its overall speed to

3.64 μm/sec and displacement to 48.64 μm during 13.35 s of viewing. In comparison, trepo-

neme 2 (Fig 6 cyan), which did not interact with platelets as it passed across the FOV, had a

speed of 8.73 μm/sec and displacement of 82.98 μm during the 9.51 s it was visible in the FOV

(S3 Table, S6 Video).

Treponema pallidum activates human platelets

The potential for T. pallidum to activate platelets was investigated by quantifying platelet

receptor CD41a expression by flow cytometry. Co-incubation of T. pallidum with resting

platelets elicited a significant increase in CD41a expression (mean = 806.0 ± 37.76 MFI [SEM],

P = 0.0118) compared to resting platelets (mean = 545.5 ± 104.4 MFI [SEM]) (Fig 7A). The

level of platelet activation by treponemes was comparable to that seen with agonist-activated

platelets (mean = 746.5 ± 124.3 MFI [SEM], Fig 7A).

Platelet activation by T. pallidum was also assessed by probing for the production of fibrin

clots using a plate-based assay to measure absorbance at 600 nm. In this assay, an increase in

absorbance is indicative of fibrin clot formation, which occurs as a result of platelet activation.

As shown in Fig 7B, incubation of resting platelets with T. pallidum resulted in an absorbance

Fig 4. Treponemes bind in multiple ways to activated platelets. (A) Image analysis of 227 interactions in 158 micrographs demonstrated that 69% of treponemes

bind platelets using one or both tips (dark blue). Both edgewise binding along the axial plane of the cell body (medium blue) and indirect binding via a platelet-bound

treponeme or platelet pseudopod (lime) occurred in 14% of interactions, followed by “dynamic” binding (yellow), which occurred in 3% of interactions. (B)

Treponemes interact with one or both tips (left), edgewise (middle) or indirectly via another treponeme (right). (C) Image capture of two treponemes with an activated

platelet. Coiling of the treponeme on the platelet (0.79, 14.33, 16.21, 20.16, 21.47 and 24.41 s) with intervening periods of translation and extension away from the

platelet by one (2.77, 20.16, 21.47 and 28.60 s) or both (6.70 s) treponemes was observed. White arrowheads indicate fully activated platelets. Scale bars = 5 μm.

https://doi.org/10.1371/journal.pone.0210902.g004
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increase (mean = 0.4137 ± 0.007 [SEM], P = 0.0221) compared to that of resting platelets alone

(mean = 0.3730 ± 0.018 [SEM]). As with the flow cytometry experiments, the level of platelet

activation by treponemes was comparable to that seen with agonist-activated platelets

(mean = 0.3791 ± 0.027 [SEM], Fig 7B).

Upon initial exposure to T. pallidum, platelets displayed no significant increase in the

CD62P MFI (S7A Fig, blue box, mean = 59.69 ± 1.11 [SEM]) compared to inactive platelets

(mean = 56.18 ± 0.37 [SEM]). After this 4 hour lag period, treponeme co-incubated platelets

expressed significantly more CD62P (mean = 64.77 ± 1.57 [SEM], P = 0.0002) compared with

Fig 5. Motility parameters associated with Treponema pallidum-platelet interactions. The movement and cell characteristics were contrasted between platelet-

interacting (shaded circles) and non-interacting (open circles) treponemes utilizing high-resolution darkfield videos at 1000x magnification. (A) Treponeme

wavelength (green bracket) and amplitude (yellow bracket) were measured only when the cell body waveform was in the plane of focus (grey bracket). Two activated

platelets (white arrowheads) are bound by one treponeme. The grey bracket shows a segment of the treponeme with cell peak and troughs in the same focal plane. (B)

Treponeme length was measured when the full treponeme was in the same focal plane (magenta bracket). (C) Platelet-interacting treponemes demonstrated a higher

translational velocity (mean = 1.68 ± 0.10 μm/sec [SEM] �P< 0.0001, n = 24) compared with non-interacting treponemes (mean = 0.65 ± 0.10 μm/sec [SEM],

n = 12). (D) Frame by frame analysis determined platelet-interacting treponemes rotate at a higher frequency (mean = 2.60 ± 0.27 Hz [SEM] ��P = 0.0060, n = 12)

versus non-interacting treponemes (mean = 1.46 ± 0.25 Hz [SEM], n = 11). (E) Top panel: Platelet-interacting treponemes maintained a more tightly coiled helix

resulting in a shorter wavelength (mean = 0.79 ± 0.02 μm [SEM] ���P = 0.0237) versus non-interacting treponemes (mean = 0.86 ± 0.02 μm [SEM]), n = 15. Middle

panel: Platelet-interacting treponemes demonstrated a trend towards a higher amplitude (mean = 0.30 ± 0.02 μm [SEM]) compared with non-interacting treponemes

(mean = 0.27 ± 0.01 μm [SEM]), n = 15. Bottom panel: Platelet-interacting treponemes also displayed a trend towards a shorter, more compact coiled shape (mean

cell length = 9.56 ± 0.65 μm [SEM]) compared with non-interacting treponemes (mean cell length = 10.46 ± 0.66 μm [SEM]), n = 15. Student’s unpaired two-tailed t

tests were used to calculate statistical significance. Scale bars = 5 μm.

https://doi.org/10.1371/journal.pone.0210902.g005
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inactive platelets (mean = 53.62 ± 0.72 [SEM]|) and this trend continued with significant

results at 8 hours (P< 0.0001), 20 hours (P< 0.001) and 24 hours (P = 0.0013).

A similar lag period was observed in a separate experiment which tested the platelet binding

potential of heat-treated versus viable treponemes, with no significant difference in platelet

binding after 1 hour co-incubation (blue box S7B Fig) with viable (mean = 23.39 ± 3.92

[SEM]) or heat-treated treponemes (mean = 17.36 ± 0.73 [SEM]). Significantly increased plate-

let binding was seen after 3 hours (mean = 31.65 ± 4.75 [SEM], P = 0.0342) and 15 hours

(mean = 31.12 ± 1.67 [SEM], P = 0.0016) of co-incubation with viable treponemes, compared

to the level of binding observed with heat-treated treponemes at 3 hours (mean = 16.44 ± 0.83)

and 15 hours (mean = 17.17 ± 0.77 [SEM]).

Discussion

In this study we have established, for the first time, that live T. pallidum interacts with human

platelets. By using a modified darkfield microscopy method, wherein the slide volume is

reduced to enhance resolution, we were able to compare physical and kinematic parameters

Fig 6. Platelet-tethered treponemes experience reduced displacement and a lower speed than non-interacting treponemes. An overlay of several video microscopy

frames demonstrates the reduced speed and displacement experienced by a treponeme (green) that interacted with a slide-adhered platelet (asterisk). This interaction

reduced its overall speed to 3.64 μm/sec and displacement to 48.64 μm (green dotted line) compared with a treponeme that did not interact (cyan) which has a speed of

8.73 μm/sec and displacement of 82.98 μm (cyan dotted line). Treponemes engaged in stationary adhesion (magenta arrowheads) maintained attachment when slide

movement induced plasma movement. White arrow indicates the direction of flow. Scale bar = 5 μm.

https://doi.org/10.1371/journal.pone.0210902.g006
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between platelet-interacting and non-interacting treponemes. Platelet-interacting treponemes

increased their axial rotation and translational velocity and decreased their wavelength com-

pared with non-interacting treponemes, to an extent that achieved statistical significance. A

trend towards increased amplitude and decreased length was also observed with platelet-inter-

acting treponemes compared to non-interacting treponemes, although these parameters did

not achieve statistical significance. Interestingly, B. burgdorferi has demonstrated decreased

cell length following co-incubation with soluble fibronectin, present in plasma at 300–400 μg/

mL [52,53].

By comparison with a previous report that investigated the translational velocity, wave-

length and amplitude of free T. pallidum at a 400x magnification, our measured amplitudes

were comparable (0.30 ± 0.02 μm and 0.26 ± 0.01 μm compared to 0.28 ± 0.01 μm reported by

Harman et al [44]). However, notable differences in translational velocity and wavelength were

observed. In our study, the translational velocity of free treponemes in human plasma was

slower (mean = 0.65 ± 0.01 μm/sec) compared to the translational velocity previously reported

for T. pallidum in CMRL medium (mean = 1.9 ± 0.2 μm/s) [44]. Similarly, we observed a wave-

length of 0.86 ± 0.02 μm for free treponemes while Harman et al reported a wavelength of

1.56 ± 0.04 μm [44]. Possible reasons for these differences include the fact that our study was

conducted at a higher magnification, potentially allowing for increased accuracy of measure-

ments, as well as the possibility of altered environmental conditions increasing treponemal

health, with our use of a microaerophilic chamber for T. pallidum extraction and nutrient-rich

platelet suspensions. Further, Harman et al reported a reduction of T. pallidum translational

velocity upon increasing viscosity of the treponemal suspension buffer [42]. Since human

plasma has a higher viscosity than CMRL medium (1.10–1.60 cP [43,44] compared to 0.89 cP

Fig 7. Treponema pallidum activates human platelets. The potential for treponemes to activate platelets was assessed by flow cytometry (A) and using a plate-based

assay (B). (A) Following 18 hours co-incubation at 37˚C the results of two independent flow cytometry assays quantified platelet activation by the median fluorescence

intensity (MFI) associated with CD41a receptor up-regulation. Platelets co-incubated with treponemes (hatched bar) demonstrated a significantly higher MFI

(mean = 806.0 ± 37.76 [SEM], �P = 0.0118, n = 25) compared to resting platelets (white bar) (mean = 545.5 ± 104.4 [SEM], n = 18). There was no significant difference

between treponeme co-incubated platelets and agonist pre-activated platelets (black bar) (mean = 746.5 ± 124.3 [SEM], n = 18). (B) Following co-incubation for 18

hours at 34˚C the results of two independent platelet activation experiments were assessed by measuring the absorbance at 600 nm as a surrogate measure of fibrin clot

formation. Platelets co-incubated with T. pallidum (hatched bar) had a higher absorbance (mean = 0.4137 ± 0.007 [SEM], �P = 0.0221, n = 20) compared to resting

platelets (white bar) (mean = 0.3730 ± 0.018 [SEM], n = 12). There was no significant difference between treponeme-co-incubated platelets and activated platelets

(black bar) (mean = 0.3791 ± 0.027 [SEM], n = 7).

https://doi.org/10.1371/journal.pone.0210902.g007
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[45], respectively), this may explain the observed difference in translational velocity between

the two studies.

The current study shows that T. pallidum exhibits an altered phenotype upon interacting

with human platelets. Overall, we observed that T. pallidum achieves a more compressed spiral

shape and increased activity upon interaction with human platelets, and that T. pallidum pref-

erentially interacts with spread, activated platelets. Further, we observed that T. pallidum-
platelet interactions occurred only with viable (and not heat-killed) treponemes, were revers-

ible, and increased the translational velocity of T. pallidum. Collectively these findings suggest

the interaction of T. pallidum with platelets is an active process that could contribute to trepo-

nemal pathogenesis, rather than a platelet-initiated process to aid in treponemal elimination

during infection.

Relevantly, the current study suggests T. pallidum both interacts with activated platelets and

activates platelets from an unactivated state over a time period of approximately 4 hours after

the time of first interaction. Regardless of the route of activation, the interaction of T. pallidum
with spread, activated platelets could contribute to treponeme persistence and extravasation.

Activated platelets adhere to vascular breaches in a manner dependent upon the interaction of

the platelet receptor GlycoproteinVI with collagen, facilitating platelet retainment in situ for

several hours [54,55]; in vivo this would avoid the clearance observed with circulating, acti-

vated platelets [56–58]. Further, during inflammation endothelial cell engulfment of adherent

platelets occurs [59], which could aid in the extravasation of co-adherent T. pallidum.

The significance of the demonstrated association of T. pallidum with platelets, and in par-

ticular activated platelets, is expected to be two-fold. First, the association may provide T. palli-
dum with nutrients which enable enhanced fitness, since activated platelets secrete a vast array

of small molecules, ions and enzymes into the surrounding cellular milieu [46,48–50]. Second,

the activated platelet secretome has also been demonstrated to facilitate platelet-endothelial

cell adhesion and alter vascular permeability [19,47,49–51,60]. Endothelial-bound activated

platelets play a key role in mediating Streptooccus gordonii and Streptococcus oralis adhesion

during infective endocartitis [61–63]. Metastatic tumor cells have been shown to directly inter-

act with, and rely on, platelets to faciltiate extravasation [19,21,64], and extravasation and dis-

semination of T. pallidum may be similarly aided by T. pallidum-platelet interactions. In this

scenario, the interaction of T. pallidum with platelets would reduce treponemal speed and

limit treponemal displacement within the bloodstream, as suggested by the observations

reported in this study, allowing T. pallidum to be poised for extravasation. The T. pallidum-

platelet interactions would further assist with extravasation via the natural association of acti-

vated platelets with endothelial cells and the capacity of the secretome from activated platelets

to increase vascular permeability [60,65]. In the current study nearly one third of treponemes

bound to platelets in a heterogeneous manner, which differs from the preferential tip binding

noted to dominate direct binding of T. pallidum to endothelial cells from prior studies [40].

When considered in the context of the increased translational velocity observed for platelet-

interacting treponemes, this may provide an opportunity for T. pallidum to navigate platelet-

endothelial cell associations and access areas of increased vascular permeability.

In addition to increasing vascular permeability, platelets also increase blood-brain barrier

permeability through secretion of sCD40L, VEGF, IL-1, CXCL4/PF4 and serotonin [66–69].

Further, maternal platelets are incorporated into the lumen of blood vessels during placental

formation and are found in the placental villi and fetal endothelium during the first trimester

of pregnancy [70,71]. The ability of T. pallidum to interact with platelets may therefore also

play a role in the capability of T. pallidum to cross the blood-brain and placental barriers.

While the molecular details of the observed T. pallidum-platelet interactions have yet to be

elucidated, prior investigations focused on T. pallidum and other pathogens suggest multiple
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mechanisms may contribute to this interaction [72–74]. The related spirochetes B. burgdorferi
and B. hermsii bind directly to the platelet receptor β3 integrin via an outer membrane protein

[24,75], and T. pallidum proteins bind the plasma proteins fibrinogen and [76] fibronectin

[77], which in turn bind to the αIIbβ3, αvβ3 and α5β1 integrins found on platelets [72,78].

Platelet activation is both paracrine and autocrine, mediated by granule secretion and synergy

between signaling pathways [79]. Activation of platelets via collagen engagement of the Glyco-

proteinVI platelet receptor induces specific signaling, hemostasis-independent single platelet

adhesion to inflamed endothelium [54,55] and ADP secretion, which in turn promotes auto-

crine activation, high affinity integrin RGD-ligand interactions and platelet spreading [79–81].

The significance of platelet-mediated extravasation to metastasis also suggests an important

role for increased platelet sensitivity to ADP during late metastasis [82,83], a feature also

reported during syphilis infections [35]. Thus, T. pallidum may interact with platelets via

plasma proteins and platelet receptors using a mechanism common to many bacterial patho-

gens, and at the same time exploit mechanisms used by metastatic cells to facilitate hematoge-

nous dissemination.

The current study reports the novel finding that T. pallidum attaches to platelets, with a

preference for activated platelets. Determination of the relevance of this association to the pro-

cess of T. pallidum pathogenesis will require further investigations that extend beyond obser-

vational findings to probe the molecular details, and in vivo relevance, of the T. pallidum-

platelet interaction.

Supporting information

S1 Fig. Treponema pallidum preferentially binds activated platelets. UVDFM image of

platelets in the same FOV in both the inactive state and all stages of activation: inactive (grey

arrowhead), early activation (yellow arrowhead), activated spheroid (lime arrowhead) and

fully activated spread (blue arrowheads) with both direct and indirectly bound treponemes.

Scale bar = 5 μm.

(TIF)

S2 Fig. Treponema pallidum attached to a fully activated spread platelet. A treponeme is

attached by one tip to a fully activated, spread platelet (blue arrowhead) with an activated

spheroid platelet adjacent (lime arrowhead). Scale bar = 5 μm.

(TIF)

S3 Fig. Treponema pallidum adhesion to platelets is a reversible interaction. Frame capture

from UVDFM videos demonstrate interactions between two treponemes and a slide-anchored

activated platelet (yellow outline). The treponemes engage in dynamic binding with one trepo-

neme leaving the platelet at 4 min 6.5 s and returning to re-engage the platelet at 4 min 10.1 s.

Scale bar = 5 μm.

(TIF)

S4 Fig. Treponemes and platelets co-localize by size. Treponeme-platelet co-localization is

demonstrated in flow cytometry FSC x SSC dot plots showing the position of 1, 2, 5, and 10

micron sized beads (cyan) overlaid with representative dot plots of T. pallidum only (magenta),

platelet only (lime) and T. pallidum-platelet co-incubation (black) samples.

(TIF)

S5 Fig. Pre-activating platelets results in higher treponeme binding. Flow cytometry quanti-

fied the binding of CFSE-labeled viable or heat treated treponemes to either resting (defined as

resting prior to co-incubation) or pre-activated platelets stained with PE-labeled anti-CD41a
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(three biological replicates per sample type). The number of viable treponeme (hatched bars)-

resting platelet interactions was designated as the baseline (and set at 1.0) and used to compare

viable treponeme binding to pre-activated platelets. Platelet pre-activation nearly doubled the

binding events (mean = 1.98 ± 0.08 [SEM] ���P = 0.0003). Compared to viable treponemes,

heat treated treponemes bound significantly fewer resting platelets (grey bar) (mean = 0.187 ±
0.02 [SEM] ���P = 0.0003) and pre-activated platelets (black bar) (mean = 0.98 ± 0.02 [SEM]

P = 0.0003).

(TIF)

S6 Fig. Platelet interactions reduce the relative velocity and relative displacement of plate-

let-interacting treponemes. The ratio of non-interacting treponemes to platelet-interacting

treponemes was utilized to normalize the values for relative velocity and displacement of trep-

onemes between three different videos. Treponemes that did not engage platelets experienced

a greater than two-fold relative velocity (grey bars) and displacement (red line) increase com-

pared to treponemes engaged in platelet tethering.

(TIF)

S7 Fig. Treponemes bind to and activate platelets after a lag period. Two time course exper-

iments demonstrate a lag period (blue boxes) for platelet activation (A) and maximal binding

(B). (A) The MFI associated with the expression level of platelet activation marker CD62P was

compared between initially inactive platelets (white bars) and those co-incubated with viable

T. pallidum (hatched bars) after 2, 4, 8, 20 and 24 hours at 37˚C. After 2 hours (blue box) there

was no significant increase in CD62P up-regulation between inactive platelets (mean = 56.18 ±
0.37 [SEM], n = 4) and treponeme co-incubated platelets (mean = 59.69 ± 1.11 [SEM], n = 14).

Significant CD62P expression was seen in platelets co-incubated with treponemes after 4

hours (mean = 64.77 ± 1.57 [SEM], ���P = 0.0002, n = 7), 8 hours (mean = 60.84 ± 0.95 [SEM],
����P < 0.0001, n = 5), 20 hours (mean = 64.45 ± 1.20 [SEM], ����P < 0.0001, n = 5) and 24

hours (mean = 64.23 ± 1.56 [SEM], ��P = 0.0013, n = 4) compared to inactive platelets at 4

hours (mean = 53.62 ± 0.72 [SEM], n = 5), 8 hours (mean = 51.0 ± 0.42 [SEM], n = 5), 20

hours (mean = 53.98 ± 0.83 [SEM], n = 5) and 24 hours (mean = 56.56 ± 0.48 [SEM], n = 5).

(B) Platelet binding was compared by flow cytometry for CFSE-labeled viable (black circles) or

CSFE-labeled heat-treated treponemes (open circles) to platelets stained with PE-labeled

antiCD41a after 1, 3, or 15 hours co-incubation at 37˚C. After 1 hour co-incubation (blue box)

there was no significant difference in platelet binding between viable (mean = 23.39 ± 3.92

[SEM], n = 3) and heat-treated (mean = 17.36 ± 0.73 [SEM], n = 3) treponemes. Viable

treponemes bound significantly more platelets after 3 hours (mean = 31.65 ± 4.75 [SEM],
�P = 0.0342, n = 3) and 15 hours (mean = 31.12 ± 1.67 [SEM], ��P = 0.0016, n = 3) compared

to heat-treated treponemes after 3 hours (mean = 16.44 ± 0.83 [SEM], n = 3) or 15 hours

(mean = 17.17 ± 0.76 [SEM], n = 3).

(TIF)

S1 Table. Treponeme interactions with platelets increases with platelet activation state.

(DOCX)

S2 Table. A comparison of the physical and kinematic parameters of platelet-interacting

and non-interacting treponemes.
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S4 Table. Ratios of non-interacting to platelet-interacting treponemes compares relative

velocity and relative displacement.

(DOCX)

S1 Video. A treponeme interacts with a spread platelet in a complex manner.

(MP4)

S2 Video. Treponeme-platelet interactions are reversible.

(MP4)

S3 Video. Treponemes interact with activated platelets.

(MP4)

S4 Video. Treponemes bindi to activated platelets; by both tips, edgewise interactions,

edgewise binding by actively rotating ring-shaped treponemes, indirectly via another trep-

oneme, and by dynamic interactions. During dynamic interactions treponemes move vigor-

ously across an activated platelet.

(MP4)

S5 Video. Platelet-interacting treponemes rapidly rotate. A platelet-interacting treponeme

approaching cell division rotates rapidly on a spread platelet with a non-interacting treponeme

rotating more slowly (bottom of frame).

(MP4)

S6 Video. Platelet tethering reduces treponeme relative velocity and relative displacement.

(MP4)
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