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Abstract

Long-term predictions of forest dynamics, including forecasts of tree growth and mortality,

are central to sustainable forest-management planning. Although often difficult to evaluate,

tree mortality rates under different abiotic and biotic conditions are vital in defining the long-

term dynamics of forest ecosystems. In this study, we have modeled tree mortality rates

using conditional inference trees (CTREE) and multi-year permanent sample plot data

sourced from an inventory with coverage of New Brunswick (NB), Canada. The final CTREE

mortality model was based on four tree- and three stand-level terms together with two cli-

matic terms. The correlation coefficient (R2) between observed and predicted mortality rates

was 0.67. High cumulative annual growing degree-days (GDD) was found to lead to

increased mortality in 18 tree species, including Betula papyrifera, Picea mariana, Acer sac-

charum, and Larix laricina. In another ten species, including Abies balsamea, Tsuga cana-

densis, Fraxinus americana, and Fagus grandifolia, mortality rates tended to be higher in

areas with high incident solar radiation. High amounts of precipitation in NB’s humid mari-

time climate were also found to contribute to heightened tree mortality. The relationship

between high GDD, solar radiation, and high mortality rates was particularly strong when

precipitation was also low. This would suggest that although excessive soil water can con-

tribute to heightened tree mortality by reducing the supply of air to the roots, occasional

drought in NB can also contribute to increased mortality events. These results would have

significant implications when considered alongside regional climate projections which gen-

erally entail both components of warming and increased precipitation.

Introduction

Long-term predictions of forest dynamics, including growth and species composition, are cen-

tral to making sustainable forest-management decisions [1, 2]. Estimations of tree mortality
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rates are particularly important in developing long-term predictions of forest dynamics as

mortality not only influences total growing stock, but also affects stand structure [3], floristic

composition [3], as well as nutrient and carbon cycling [4]. Despite their importance, reliable

estimations of tree mortality rates under different biotic and abiotic site conditions are often

difficult to obtain. This is because tree mortality is one of the least understood processes in for-

est ecosystems due to the complex, multi-scale interactions between growing-environment

variables, as well as the influence of biotic and abiotic site factors [5]. Studies have attempted

to establish connections between mortality and external factors, such as fire [6, 7], insect defo-

liation [8], and climatic variability [9, 10], but attempts to quantify internal sources of tree

mortality are limited. These internal factors, including species identity [10], diameter at breast

height [11], basal area [12], tree and stand age [13, 14], diameter growth rate [15], and stand

competition [16–20] are known to each influence a tree’s likelihood of mortality, although to

what degree is frequently unclear.

Many models have been developed to estimate tree mortality probability distributions in

accordance with tree, stand, and environmental factors [15]. Logistic regression is broadly

used to model tree mortality rates and their inverse functions, tree survival rates [6, 15, 21–23].

The Kaplan-Meier method, which is a non-parametric method [10], as well as artificial intelli-

gence have both been used to model tree mortality [24]. However, the transformation of mod-

eled results from a probability distribution to meaningful tree mortality rates is seldom

straightforward. Further still, most results tend to focus on tree-level, binary predictions of

“dead or alive”; distributed randomly with a variance that is in accordance with tree character-

istics [25]. Such predictions are most suitable for more simplistic stand structures [25, 26].

Where mixed forests are concerned, the representation provided by these methods becomes

overly complex [6, 27]. The development of alternative methods to estimate tree mortality

rates is, as a result, an active and much needed research area in forestry.

Classification and regression trees (CART) are an implementation of recursive partitioning,

which has been applied across a diversity of fields, including data mining, wastewater treat-

ment studies, and estimating landslide susceptibility [28–31]. Tree-structured models have the

advantage that modeled results can be visually interpretable in the assessment of tree mortality

rates. However, CART is susceptible to overfitting and selection biases, which favors covariates

with more potential splits [28]. Conditional inference trees (CTREE) resolve the overfitting

and selection bias problems associated with CART by applying suitable statistical tests to vari-

able selection strategies and split-stopping criterion [32, 33]. The CTREE method has been

employed in various contexts, such as in the testing of automobile engines [34] and in the

characterization of myocardial infarctions [35, 36].

In this study, we use CTREE to model tree mortality rates for major commercial tree species

in New Brunswick, Canada, using long-term tree data sourced from the provincial permanent

sample plot (PSP) inventory [37]. We have also analyzed the impacts of environmental factors

on tree mortality rates by species, giving particular attention to the influence of climatic vari-

ables, including precipitation and temperature.

Materials and methods

Study area

The study area for this research is the province of New Brunswick (NB), Canada (Fig 1). For-

ested area makes up more than 85% of the NB’s seven million hectares (ha). The province is

comprised of seven distinct ecoregions [38] (Table 1, Fig 1), classified based on prevalent cli-

matic, geologic, topographic, and floristic communities and conditions [39]. NB’s climate has

characteristic cold, snowy winters, and warm, humid summers with an annual average
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temperature range from 2.0–6.3˚C. Mean annual precipitation ranges from 1,000–1,500 mm,

with about half occurring as snow [40].

New Brunswick is home to 39 native tree species, the majority of which are conifers. Of

these native species, 28 occur within the provinces permanent sample plot (PSP) inventory

(Table 2). Commercially significant conifers include balsam fir (Abies balsamea), red spruce

(Picea rubens), white spruce (Picea glauca), and black spruce (Picea mariana). Abundant shade

Fig 1. Location of permanent sample plots and ecoregions in New Brunswick of eastern Canada (inset). Ecoregion number in the legend

corresponds to that in Table 1.

https://doi.org/10.1371/journal.pone.0250991.g001

Table 1. Ecoregion and permanent sample plot (PSP) inventory summary, where Ar is the ecoregion land area (km2), Arp the proportion of NB that makes up the

ecoregion (%), Cr the number of PSPs within the ecoregion, and Crp the proportion of plots which constitute NB’s total PSP inventory within a specific ecoregion

(%).

Ecoregion No. Ecoregion Area Plots

Ar Arp Cr Crp

1 Highlands 4,908 6.74 421 11.65

2 Northern Uplands 8,761 12.03 577 15.97

3 Central Uplands 12,008 16.49 527 14.59

4 Fundy Coastal 2,223 3.05 39 1.08

5 Valley Lowlands 20,278 27.85 903 24.99

6 Eastern Lowlands 20,856 28.64 1,047 28.98

7 Grand Lake Lowlands 3,779 5.19 99 2.74

Total 72,813 3,613

https://doi.org/10.1371/journal.pone.0250991.t001
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intolerant hardwoods include trembling aspen (Populus tremuloides), red maple (Acer
rubrum), and white birch (Betula papyrifera), whereas shade tolerant hardwoods include yel-

low birch (Betula alleghaniensis), sugar maple (Acer saccharum), ironwood (Ostrya virginiana),

black cherry (Prunus serotina), white ash (Fraxinus americana), red oak (Quercus sp.), and

American beech (Fagus grandifolia) [41].

Permanent sample plot data

NB’s permanent sample plot (PSP) inventory is maintained by the NB Department of Energy

and Resources Development. The network containing nearly 1,900 PSPs, more than 165,000

individual trees, and 580,000 tree measurements spanning a period from 1985–2014 [37].

Plots in NB use a standard area of 400 m2 and are re-measured at periods of 3 or 5 years

depending on stand age [37]. The spatial distribution of NB’s network of PSPs is illustrated in

Fig 1. Tree species and diameter at breast height (DBH) are recorded by technicians for every

live tree in the plot with a DBH > 5.1 cm. All tree records from PSPs that had been subject to

fire, insect defoliation, windthrow, or timber harvesting were excluded from the analysis. The

modeling methods employed cannot account for the stochastic nature of large-scale mortality

(or ‘calamity’) events.

Table 2. Tree species common and scientific names, where N is the number of tree mortality observations.

Common Name Scientific Name Code N

American Mountain Ash Sorbus americana AA 305

Black Ash Fraxinus nigra AB 607

White Ash Fraxinus americana AW 1,294

Grey Birch Betula populifolia BG 3,751

White Birch Betula papyrifera BW 33,489

Yellow Birch Betula alleghaniensis BY 13,040

Pin Cherry Prunus pensylvanica CP 1,950

Eastern White Cedar Thuja occidentalis EC 16,816

American Beech Fagus grandifolia EE 15,874

Eastern Hemlock Tsuga canadensis EH 1,418

Balsam Fir Abies balsamea FB 163,119

Hoptree Ptelea trifoliata IW 878

Speckled Alder Alnus incana KA 436

Tamarack Larix laricina LT 3,739

Mountain Maple Acer spicatum MM 1,868

Red Maple Acer rubrum MR 56,676

Sugar Maple Acer saccharum MS 24,358

Striped Maple Acer pensylvanicum MT 5,436

Red Oak Quercus rubra OR 267

Jack Pine Pinus banksiana PJ 8,142

Red Pine Pinus resinosa PR 448

Balsam Poplar Populus balsamifera RB 776

Large-tooth Aspen Populus grandidentata RL 1,561

Trembling Aspen Populus tremuloides RT 21,137

Black Spruce Picea mariana SB 108,378

Red Spruce Picea rubens SR 62,614

White Spruce Picea glauca SW 21,158

Willow Salix nigra XW 257

https://doi.org/10.1371/journal.pone.0250991.t002
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In NB’s PSP inventory, tree age is estimated within plots using the measured age of sample

trees located immediately outside plots; this minimizes the potential of injuring trees within

the plot through the increment coring process. Sample tree age is then used to inform age class

(es) present within a plot. All stems within the plot are then assigned an age class by techni-

cians undertaking plot measurements. Age is only measured once within a plot’s lifecycle;

observed as part of the plot establishment record. A collection of approximately 27,500 sample

age measurements informs all tree age measurements in NB’s PSP inventory.

Model development

Data quality control and variable selection. A complete list of independent variables is

provided in Table 3. Tree species were coded as a nominal variable, with 28 species levels

(Table 2).

Tree-level variables. Tree age is often used as the basis for models of individual-tree rate

of mortality [23, 42–44]. In this study, four age classes were used as independent levels consti-

tuting the nominal AGE covariate: young, immature, mature, and overmature. Tree growth

rates are also commonly used to estimate the probability of tree survival [5, 45]. In this study,

the average annual basal area growth increment for individual trees (ΔBA), as measured

between two consecutive BA measurements, was also selected as an independent variable:

DBAi ¼
BAi � BAi� 1

ti � ti� 1

ð1Þ

where BAi is the tree basal area at the ith measurement, and ti is the corresponding year of mea-

surement. Observations of ΔBA> 0.02 cm yr-1 were considered outliers and were removed

from the study.

Competition. Trees in stands face competitive interactions [20, 46, 47]. We used two vari-

ables to capture the influence of competition on tree mortality, namely (i) the total basal area

of stands for trees thicker than the subject tree (BALi), and (ii) an extended relative density

index (ERD). The BALi index reflects the relative advantage of the tree as compared to other

trees in the plot, and was calculated as the sum of total basal area of all trees with DBH’s greater

than that of the subject tree [23, 48], i.e.,

BALi ¼
Xm

j¼1

BAj

 !
10000

AP

� �

ð2Þ

where BALi is the total basal area of trees greater than ith tree (m2), AP the size area of the PSP

(m2), BAj the basal area of the jth tree, and m the number of trees in the plot with DBH greater

Table 3. Listing of independent variables for tree rate of mortality modeling.

Variable Explanation Class

ΔBA Average annual basal area growth increment between two plot measurements (cm2 yr-1) Tree-level

SP Species Tree-level

AGE Age class Tree-level

BAL Total basal area of all trees with diameter > diameter of the subject tree (m2 ha-1) Tree-level

GDD Growing degree-days (degree-day units) Climatic

PCP Precipitation (mm) Climatic

INS Potential solar radiation (Wh m-2) Stand-level

SLP Slope (%) Stand-level

ERD Relative density (%) Stand-level

https://doi.org/10.1371/journal.pone.0250991.t003
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or equal to the DBH of the ith tree. ERD was developed in this study as a ratio between stand

density and the maximum potential density of the stand to further account for overall compe-

tition intensity within the stand. The maximum potential density of the stand was calculated

based on the law of self-thinning [46]. In accordance with the law, the maximum number of

trees a stand can support decreases exponentially with mean tree size, i.e.,

Nmax ¼ a
DBH
DBHr

� �� b

ð3Þ

where Nmax is the maximum potential density of the stand with mean DBH. Parameter α is the

maximum density at an arbitrary reference DBHr (set at 20 cm for this study, [68, 69]), and β
is a self-thinning coefficient. In this study, we assume Nmax to be constant irrespective of stand

composition and age. For a stand with density N (stems ha-1), the extended relative density is

then giving as,

ERD ¼
N

Nmax
¼

n
a

DBH
DBHr

� �b

ð4Þ

Because ERD and BAL are closely related, but represent different aspects of competition-

induced tree mortality, one interaction covariate, BAL×ERD was used to accommodate com-

petitive forces in the CTREE model. Observations of BAL×ERD> 7 were considered outliers

and were removed from further consideration.

Stand-level climatic factors. Four stand-level climatic (i.e., abiotic) factors were included

in the analysis, i.e., annual precipitation (PCP), potential solar radiation (INS), annual cumula-

tive growing degree-days (GDD), and slope. Slope was included here as a stand-level factor, as

it was anticipated to be a fair proxy of soil moisture conditions within a given PSP. Fine-scale

soils information, such as depth, porosity, and frost-depths were unavailable for the study area.

A percentage slope surface was calculated from a digital elevation model (DEM) interpolated

at 1-m resolution [49]. Plot slope was then estimated as the average slope within a 40-m radius

from the plot center. Plots where slope observations > 40% were considered outliers and were

removed from the study. Potential solar radiation was calculated as the sum of direct and dif-

fuse solar radiation. DEM-based INS was determined as a function of solar angle by latitude,

slope, as well as aspect, and was evaluated as a raster surface [50]. As with the slope variable,

plot estimations of INS (in Wh m-2) were calculated as the average within a 40-m radius from

the plot center.

Utilizing the same methods leveraged in the JABOWA-family of forest gap models, GDD

was estimated using only monthly mean daily temperatures [51]. In the estimation of GDD,

the base temperature below which tree growth is assumed to be negligible [51] was assumed to

be 4.4˚C for all species. Monthly mean daily temperatures at each PSP were determined

through monthly mean daily maximum and minimum temperatures, as generated with

ANUSPLIN, a non-parametric surface-fitting procedure [52]. The ANUSPLIN-generated

datasets used herein were based on records obtained from weather stations and then interpo-

lated over topographic surfaces. Through the same approach we also obtained estimates of

cumulative monthly PCP, which we then used to determine cumulative annual PCP. The his-

torical monthly models generated with ANUSPLIN have 95% confidence limits of approxi-

mately ±1.1 and ±1.3˚C for maximum and minimum daily temperatures, respectively, and 10–

40% for monthly PCP [52]. Both cumulative annual PCP and GDD were employed as the

annual average between previous and current subject measurements.

A five-year tree rate of mortality during the period between two consecutive measurements

served as the only dependent variable. Rate of mortality was estimated based on tracking
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individual trees over time and taking note of their mortality-status change. As a general prac-

tice, tree status was coded as “alive” or “dead” at the time of inventory measurement. In this

study, living trees were coded as 1, and dead trees as 0. Repeated codes of 0 for the same tree

were deleted following the earliest instance of code 0. This avoided repeated counting of dead

trees. To calculate rate of mortality, all data were divided into groups according to species and

other independent variables (Table 2), with an objective to minimize the within-group mortal-

ity rates. Those groups with insufficient records (< 20) were eliminated. After that, the five-

year mortality rates were calculated based on the number of dead trees during the measure-

ment period in the group and the total number of living trees at the beginning of the measure-

ment period. For a remeasurement period of other than five years, the method introduced by

Flewelling and Monserud [70] was used to convert 3-year mortality rates (Pm3) to five-year

rates by means of Pm5 = 1-(1-Pm3)5/3.

Covariate testing

To test for multicollinearity, a correlation matrix was prepared using each of the nine covari-

ates (Fig 2). Spearman rank correlation was used to determine correlation values [53].

Fig 2. Correlation matrix for the nine independent variables used in the modeling methods. Variable distribution is shown along the diagonal,

Spearman rank correlation between the corresponding independent variables in the upper right quadrant.

https://doi.org/10.1371/journal.pone.0250991.g002
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Commonly, Spearman correlation coefficients between 0.10 and 0.29 represent a slight associ-

ation, those between 0.30 and 0.49 represent some association, and those> 0.50 represent a

significant association or relationship. We found most independent variables to have no corre-

lation with one and other (Fig 2). Potential solar radiation (INS), however, correlated slightly

with precipitation (PCP), as did growth increment (ΔBA) with BAL×ERD; ΔBA was also found

to correlate slightly with slope (SLP). Correlation amongst model covariates was determined

to not be of significant concern.

Model structure

The CTREE mortality model was fitted using the “partykit” package in R [36, 54]. CTREE gen-

erates a nonlinear mortality diagram, which gives a tree-shape probability map of tree mortal-

ity rates. The initial bifurcation was determined through multiplicity-adjusted p-values, in

accordance with Bonferroni’s criterion [36, 54]. CTREE is implemented through the following

protocol [36, 54], i.e., at each stage, CTREE determines the optimal split of a region in the fea-

ture space assembled by variables that affect tree mortality and partitioned according to the

Bonferroni criterion [36]. The splitting process starts by using the entire feature space and

repeats, informing successive splits using the remaining feature space. This process continues

with risk-tree development and pruning until the terminal node is realized and no subsequent

splits are possible. The probability of a tree dying is calculated at each terminal node, which

yields a stratified model.

Model evaluation and comparison

Correlation coefficients between observed measurements and model predictions, as well as

mean square error (MSE) and mean biases were used to assess the model. Furthermore, cross

validation of CTREE model was completed through a k-fold test [55]. The original dataset was

randomly partitioned into 5 subsamples (k = 5). One subsample (20% of the data in the origi-

nal dataset) was chosen to serve as the test series for cross validation, and the remaining four

subsamples (20% each) for model development (training). The cross-validation process was

repeated 5 times, with each subsample being utilized once for training purposes. A two-tailed

p-value< 0.05 was considered statistically significant.

Results and discussion

The correlation coefficient between observed and predicted mortality was 0.67, with a MSE of

0.006. Mean bias was observed to be< 0.001. The final mortality model had 56 inner nodes

and 57 terminal nodes (Figs 3 and 4). For purposes of discussion, notation N36 refers to Node

36, N47 to Node 47, and so forth.

Through the k-fold test, correlation coefficients ranged from 0.59 to 0.62 with a mean of

0.61, and MSE ranged from 0.006 to 0.008, with mean of 0.007. The difference in correlation

coefficients between each k-fold subset was< 0.03, suggesting that the accuracy of the CTREE

procedure to be relatively stable, even with a reduced sample size. CTREE’s branching struc-

ture was affected by the reduced sample size used in the k-fold validation, i.e., the number of

terminal nodes in the k-fold mortality models ranged from 43 to 52, and the number of inner

nodes from 42 to 51. We observed that despite these structural differences, the higher-order

splits from 1 to 4 of the CTREE did not change between k-fold subsets (Figs 3 and 4). Rather,

most differences in split structure were found to occur amongst the lower branches of the

probability tree. The split in Node 28 (the one associated with PCP) was not common to all

data subsets. One instance was found to appear after the species split. Precipitation (PCP) was

an important contributor to tree mortality in both probability tree structures, but the
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Fig 3. Nodes 1–76 of the conditional inference tree (CTREE) of rate of mortality for 28 boreal and temperate species (see Table 2, for

code definition). Tree-level variables include species (SP), average annual basal area growth increment (ΔBA), basal area of the largest tree

and relative density interaction (BAL×EDR). Stand-level variables include potential solar radiation (INS) and slope (SLP). Climatic variables

include cumulative annual growing degree-days (GDD) and cumulative annual precipitation (PCP). The terminal nodes, 38 in total, show

the proportion of dead trees. Nodes shaded yellow were consistent in all folds in model cross-validation.

https://doi.org/10.1371/journal.pone.0250991.g003
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Fig 4. Nodes 77–108 of the conditional inference tree (CTREE) of rate of mortality for 28 boreal and temperate species (see Table 2, for code

definition). Tree-level variables include species (SP), average annual basal area growth increment (ΔBA), basal area of the largest tree and relative

density interaction (BAL×EDR). Stand-level variables include potential solar radiation (INS), and slope (SLP). Climatic variables include cumulative

annual growing degree days (GDD) and cumulative annual precipitation (PCP). The terminal nodes, 19 in total, show the proportion of dead trees.

Nodes shaded yellow were consistent in all folds in model cross-validation.

https://doi.org/10.1371/journal.pone.0250991.g004
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relationship to other covariates markedly differed. Such an observation confirms the signifi-

cance of sample size in the fit of the probability tree. In more than one of the CTREE-models

prepared as part of the k-fold testing, the splits at N4 and N7 were not present (Fig 3). This

result identifies that the CTREE method can avoid issues of overfitting by eliminating frivolous

nodes where the input dataset does not support additional branching before the terminal

node. The CTREE method offers a mortality modeling approach where complex nonlinear

relationships between covariates and mortality rates are determined through the CTREE

model package. This is in contrast to many established mortality modeling approaches, where

the nonlinear relationships between covariates and mortality rates depend on having a prior

understanding and stipulating through model development [56, 57]. Frequently, the empirical

study of such nonlinear relationships between variables in the growing environment and tree

mortality is not available.

Influence of tree-level variables on tree mortality

We found that the species covariate SP was the most important discriminator, appearing not

only for the first split, but for subsequent splits as well (Figs 3 and 4). Red oak and eastern hem-

lock have the lowest rate of mortality range between 1.00–1.90% (N105, N108, and N109; Fig

4). Balsam fir was found to have significant variability in rate of mortality, ranging from 8.80%

(N33) to 20.3% (N71; Fig 3). The high variability in balsam fir mortality rate is intuitive, given

the species is short-lived and has a tendency to form high-density cover [58], whereas oak and

hemlock are long-lived, shade tolerant hardwoods [59]. Annual growth rate was found to be

the most important predictor of tree mortality [5, 45]. Studies have previously found tree mor-

tality and growth to be inversely related [60, 61], and furthermore, that tree growth is continu-

ous through life in uneven aged stands [62]. Low ΔBA was also found to lead to higher

mortality rates (Fig 2a). Mortality was as high as 23–37.4% (moderated by species) whenever

ΔBA� 1 cm2 5-yr-1, as compared to 12.1–20.4% (moderated by competition indices) when

ΔBA> 1 cm2 5-yr-1 (Fig 3). Similar results were observed through N12, N45, N51, N65, N70,

and N77 (Figs 3 and 4). When ΔBA> 10 cm2 5-yr-1, rate of mortality was generally reduced,

e.g., a rate of mortality of 2.4% was observed when ΔBA> 10 cm2 5-yr-1, but 8.4% when ΔBA
� 10 cm2 5-yr-1 (i.e., N40; Fig 3).

The AGE covariate appeared only once in the CTREE mapping (i.e., N41; Fig 3); branching

trembling aspen mortality rates. Aspen mortality rates were 6.5% and 10.3% for immature

trees and mature/overmature trees, respectively. This split only occurred where aspen ΔBA<
10 cm2 5-yr-1 through the preceding five years. When ΔBA> 10 cm2 5-yr-1, aspen mortality

rate was 2.4%, regardless of AGE class. Perhaps contrary to intuition, our results do not sup-

port age effects as a significant contributor to rate of mortality. This could be attributed to two

causalities, (i) the forests in the study area are intensively managed with few trees reaching full

maturity and succumbing to age-related mortality, and (ii) given the inclusion of ΔBA as an

independent variable, age effects may be indirectly applied through that term, as overmature

trees tend to stop growing before mortality occurs. Still, the correlation matrix (Fig 2) identi-

fied no collinearity between ΔBA and AGE.

Influence of competition on tree mortality

The impacts of BAL appear to be absorbed by the interaction between BAL and EDR, i.e.,

greater interaction-values associated with higher mortality rates. As shown in Fig 3, through

N10, the average rate of mortality was 10.85% when BAL×EDR� 20, as compared to 17.52

when BAL×EDR>20 (BAL in cm2 and EDR in number of stems per ha). Similar results were

observed with CTREE N14, N25, N46, N79, N53, N87, and N92 (Figs 3 and 4). Variables
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representing competitive interactions were associated with higher mortality rates. As the two

variables were used to reflect different competitive concerns, we found an interaction term to

offer the best means to include the two otherwise intimately related parameters. Due to the

generalized significance of this interaction to tree mortality, we can conclude that competition

is one of the important factors causing death in trees. Indeed, studies have found that the

majority of trees die young due to competitive pressures [63]. Other studies have found mor-

tality rates to increase with increased water deficits and stand basal area [64].

Influence of climate and site conditions on tree mortality

We found PCP to appear three times in N28, N64, and N104, and again in N35, N74, and N95

for SLP (Figs 3 and 4). High tree mortality rates were often coincidental with PCP < 1000 mm

yr-1 (Figs 3 and 4). Through N28 (Fig 3), mortality rates for American beech, balsam fir, tama-

rack, and trembling aspen were 4.1–8.1% when PCP was< 1000 mm yr-1, and 2.4–19.2%

when > 1000 mm yr-1. The mean slope (SLP) appeared to have a synergistic relationship with

PCP, as observed in N35, where the rate of mortality for American beech was 19.2% when

PCP > 1000 mm yr-1 and SLP< 5%, as compared to 10.3% when SLP> 5%. Still, SLP < 5%

was not always associated with lower rate of mortality. Through N99 (Fig 4), SLP< 5% was

associated with a lower white birch and red maple mortality rate (7.1–10.3%) as compared to

10.9–14.4% when SLP was> 5%. A similar trend was observed for balsam fir (N74), with a

mortality rate of 7.5% with SLP> 5%, compared to 11.2% with SLP< 5%. In general, the

impact of PCP and SLP were species dependent, and often synergistic with other independent

terms in the CTREE model.

Solar radiation (INS) was found to increase the rate of mortality in four CTREE splits (N29,

N57, N66 and N82; Figs 3 and 4). Through N29, mortality rates in four tree species (i.e., Amer-

ican beech, balsam fir, tamarack, and trembling aspen) were 4.1% when INS� 10000 Wh m-2

and 8.1% when INS> 10000 Wh m-2. As INS has a warming effect on microclimate, in addi-

tion to direct impacts on photosynthetic potential, there may have been some overlap between

GDD and INS. In this study, INS did not consider the year-to-year variations in cloud cover

and associated reductions in available sunlight. Furthermore, our correlation matrix did not

identify significant collinearity between the independent terms (Fig 2). We found the relation-

ship between GDD and tree mortality to be mixed, splitting at six locations (N54, N83, N88,

N96, N99, and N105), and involving 18 special interactions (Figs 3 and 4). In all cases,

GDD > 1500 was associated with increased rate of mortality. Through N96, as an example,

rate of mortality for white birch and red maple was 7.1% at< 1500 and 10.3% at> 1500

degree-days. Essentially, this characterization would suggest that a mean increase in regional

temperatures, as is often attributed to changing climate, could lead to greater mortality in

some tree species in NB.

PCP < 1000 mm yr-1 and GDD > 1500, possibly indicative of localized drought, contrib-

uted to a high rate of mortality (N106 vs. N107; Fig 4). This indicates that although excessive

soil water content can lead to high mortality rates (i.e., SLP < 5%, PCP > 1000 mm yr-1, N36;

Fig 3), occasional drought can also lead to high tree mortality rates, in agreement with other

researchers’ findings [65]. For example, Peng et al. [65] found that drought conditions can

induce an increase in tree mortality rate in old-growth forests. In general, our results identify

that climatic variables, including GDD, cumulative annual PCP, and INS had significant

impact on tree mortality rates for some tree species. There is a wealth of scientific literature

that support the significance of climate to tree growth [9, 66, 67].

CTREE offers a viable method for estimating mortality rates in mixedwood, boreal-temper-

ate ecotone making up the New England-Acadian forest. This study included nine
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independent variables within the CTREE model, none of which have been determined to be

significantly collinear with one and another (Fig 2). Through the design phases of this study

program, we undertook various tests to explore the value of an array of potential covariates,

eliminating those which did not offer a significant contribution to the final mortality model.

While we recognize that certain covariates may have a lesser influence on tree mortality rate

(e.g., BAL×EDR and INS), the inclusion of these terms improved the overall explanatory

power of the model in our analysis. If either term (i.e., BAL×EDR and INS) was removed from

the final CTREE model, the correlation coefficients would have been reduced from 0.671 to

0.597 or to 0.659, respectively. The decision to include the nine variables we ultimately chose

was governed in large part by the breadth of the datasets available. While we recognize that

tree mortality is an incredibly complex process, which is influenced by an exhaustive array of

forest variables and interactions, the modeling methods employed in this study do not attempt

to illuminate the influence of stochastic [68, 69] or periodic [70] disturbance on tree mortality

rates. The influence of these type of disturbances on mortality would need to be considered

alongside our CTREE model in any practical application of the methods.

Conclusions

Perhaps intuitively, our CTREE approach to mortality confirmed rate of tree growth and com-

petitive interactions at the stand-level as important determinants of tree mortality rate. We

found GDD and INS to increase mortality for 18 species, including white birch, black spruce,

sugar maple, and tamarack. We also found that high PCP and shallow SLP commonly contrib-

uted to and increased tree mortality rates, presumably as a result of excess soil water in some

parts of NB. We observed that low PCP in combination with high GDD or high INS often led to

elevated tree mortality, potentially indicative of the effects of drought. These observations may

have significant implications when considered alongside regional climate projections for NB,

which generally entail both components of warming and increased precipitation. The major

contribution offered by the CTREE approach is the expanded capacity to reveal complex nonlin-

ear relationships in mortality, without the relationships needing to be known a priori, as is com-

monly the case in tree mortality modeling. There is potential that the CTREE method may offer

an improved means to modeling tree mortality in complex forested ecosystems, such as the New

England-Acadian forest ecotone. In addition, the CTREE model could be directly integrated

with forest growth and yield models, further bolstering the approach’s operational potential.
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