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Summary
Background During surgery, intraoperative hypotension is associated with postoperative morbidity and should
therefore be avoided. Predicting the occurrence of hypotension in advance may allow timely interventions to prevent
hypotension. Previous prediction models mostly use high-resolution waveform data, which is often not available.

Methods We utilised a novel temporal fusion transformer (TFT) algorithm to predict intraoperative blood pressure
trajectories 7 min in advance. We trained the model with low-resolution data (sampled every 15 s) from 73,009
patients who were undergoing general anaesthesia for non-cardiothoracic surgery between January 1, 2017, and
December 30, 2020, at the General Hospital of Vienna, Austria. The data set contained information on patient
demographics, vital signs, medication, and ventilation. The model was evaluated using an internal (n = 8113) and
external test set (n = 5065) obtained from the openly accessible Vital Signs Database.

Findings In the internal test set, the mean absolute error for predicting mean arterial blood pressure was 0.376
standard deviations—or 4 mmHg—and 0.622 standard deviations—or 7 mmHg—in the external test set. We also
adapted the TFT model to binarily predict the occurrence of hypotension as defined by mean arterial blood pressure <
65 mmHg in the next one, three, five, and 7 min. Here, model discrimination was excellent, with a mean area under
the receiver operating characteristic curve (AUROC) of 0.933 in the internal test set and 0.919 in the external test set.

Interpretation Our TFT model is capable of accurately forecasting intraoperative arterial blood pressure using only
low-resolution data showing a low prediction error. When used for binary prediction of hypotension, we obtained
excellent performance.
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Introduction
General anaesthesia for surgical interventions routinely
involves administrating hypnotics and opioid analgesics
to induce a loss of consciousness and tolerance to sur-
gery. Commonly used anaesthetics interfere with the
cardiovascular system by reducing cardiac inotropy and
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systemic vascular resistance, ultimately leading to hy-
potension.1 This is further amplified by additional
stressors such as hypovolemia, blood loss during sur-
gery or intraoperative positioning (e.g., Trendelenburg
position). Intraoperative hypotension, which is
commonly defined as mean arterial pressure (MAP)
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Research in context

Evidence before this study
We searched PubMed database, from January 01, 2000, to
June 01, 2024, for papers published in English using the terms
“blood pressure”, “prediction”, “hypotension”, and
“forecasting”. Our search yielded 131 results, indicating that
intraoperative hypotension is a common occurrence during
anaesthesia for non-cardiac surgery that is thought to be
associated with postoperative morbidity. Predicting
intraoperative hypotension before its occurrence could help
anaesthesiologists to initiate prophylactic measures and
thereby reduce the incidence of intraoperative hypotension.
Existing machine learning algorithms mostly rely on the
presence of high-resolution waveform data, which may not
be available in many settings.

Added value of this study
We implemented the temporal fusion transformer (TFT)
algorithm to predict intraoperative blood pressure trajectories
using low-resolution data sampled at 15-s intervals from a

large cohort of patients undergoing non-cardiothoracic
surgery. We obtained robust predictive performance using
low-resolution data, which renders our algorithm potentially
more practical in clinical use. In addition to predicting
continuous blood pressure values, the TFT model also
provides binary predictions of hypotension with excellent
discrimination and calibration. In contrast to previous studies,
we incorporated data on intraoperative medication.

Implications of all the available evidence
The prediction algorithm developed by us is capable of
accurately predicting intraoperative hypotension using low-
resolution data. Implementation of our algorithm into clinical
practice could help reduce the incidence of intraoperative
hypotension, and thereby potentially reduce postoperative
morbidity. Future research should prioritise integrating this
predictive model into the clinical workflow and evaluating its
impact on patient outcomes.
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below 65 mmHg,2 is potentially harmful, being linked to
conditions such as myocardial injury,3 kidney injury,3,4

delirium5 and postoperative nausea and vomiting.6

Therefore, anaesthesiologists monitor patients under
general anaesthesia and typically respond to hypoten-
sion when it occurs, for example, by administering va-
sopressors, by giving an intravenous fluid bolus, or by
adjusting the depth of anaesthesia, in a reactive fashion.3

However, the actual prevention of hypotensive episodes
may be advantageous, yet this requires accurate predic-
tion of hypotension in advance.

As a result, several tools for predicting intraoperative
hypotension in advance have been developed through
the use of conventional machine learning methods7–9

and neural networks.10–12 These models do not forecast
actual MAP values but either make binary predictions
(i.e., the patient will be hypotensive or not)9,13 or provide
a dimensionless number indicating the probability of
hypotension.14 In addition, those models are limited in
terms of the input variables used for prediction because
they mainly employ past vital signs and data on patient
demographics. There is also discussion whether existing
prediction models are superior to simply extrapolating
the MAP trajectory.15 Finally, most of the existing
models require the use of high-quality arterial blood
pressure waveform data and cannot be used when
invasive arterial blood pressure monitoring is not in use.

There have been recent technical advances in time
series data forecasting: The novel temporal fusion
transformer (TFT) algorithm is an attention-based
model that is designed for advanced multi-horizon
forecasting.16 It employs recurrent layers to effectively
process short-term temporal patterns while using
interpretable self-attention layers to understand
long-term dependencies.17 Hence, it can appropriately
integrate static, time-stamped and time series data. In
addition, the TFT algorithm can selectively focus on the
relevant data points that are the most important for its
forecast while filtering out nonessential elements.18

We hypothesised that the TFT algorithm would be
well suited to predict intraoperative blood pressure tra-
jectories and that it could be used to predict the occur-
rence of intraoperative hypotension, even with low
resolution vital sign data. Therefore, we trained a TFT
model to predict intraoperative MAP using a data set
consisting of pre- and intraoperative data collected
during routine patient care. To evaluate our model’s
performance, we assessed discrimination and calibra-
tion in both internal and external validation.
Methods
This retrospective observational study was performed
after approval of the Ethics Committee of the Medical
University of Vienna (reference number 2387/2020,
January 19, 2021). Given the retrospective nature of the
study, the requirement for informed consent was
waived.

We screened all patients who underwent anaesthesia
at the General Hospital of Vienna between January 1,
2017, and December 30, 2020, for eligibility. The Gen-
eral Hospital of Vienna is a tertiary academic hospital in
Vienna, Austria. Anaesthesia is conducted by resident
and consultant anaesthetists from the Department of
Anaesthesia, Intensive Care Medicine and Pain Medi-
cine of the Medical University of Vienna.

Patients older than 18 years at the time of surgery
who had general anaesthesia performed for a diagnostic
www.thelancet.com Vol 75 September, 2024
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or surgical intervention were included. We excluded
patients who had cardiac, thoracic and/or vascular sur-
gery and patients who had neuraxial, regional or local
anaesthesia without general anaesthesia. We defined
general anaesthesia as the administration of sedatives
and invasive mechanical ventilation (either via laryngeal
mask, endotracheal intubation or tracheostomy).

Preprocessing
We generated the data set from pre-, intra-, and post-
operative data recorded for routine patient care in the
patient data management system (IntelliSpace Critical
Care and Anaesthesia, Philips Austria GmbH, Vienna,
Austria). The following variables were static: age, sex,
weight, American Society of Anaesthesiologists (ASA)
score and surgical urgency (elective/urgent/emergency).
The following variables were time series: heart rate
(beats per minute), pulse rate (beats per minute), pe-
ripheral transcutaneous oxygen saturation (SpO2, %),
non-invasive systolic, diastolic, and mean blood pres-
sures (each in mmHg), invasive systolic, diastolic, and
mean blood pressures (each mmHg) and end-tidal par-
tial pressure of carbon dioxide (etCO2; mmHg).
Anaesthetic agents, ventilation parameters and perfu-
sion parameters were time-stamped but processed as
time series; Supplemental Table S1 lists all the input
variables.

The vital parameters heart rate, pulse rate, and SpO2
were available at a 15-s resolution. Invasive blood
pressure was also available at a 15-s resolution while
non-invasive blood pressure was available at a 3-min
interval. We sampled all other time series variables
including non-invasive blood pressure up to a 15-s
resolution.

We grouped input features by type, differentiating
between categorical and numerical variables as well as
time-dependent and static variables. We checked the
values of the input features for plausibility by analysing
the maximum, minimum, and frequency distribution.
Using the ‘forward fill’ method,19 we replaced implau-
sible and missing values, as detailed Supplemental
Table S2, which lists their frequency of missingness.
We scaled numerical variables to a standard deviation of
1 and a mean value of 0. Categorical variables under-
went a one-hot encoding process, transforming each
categorical variable into a dichotomous variable.

We split the complete data set into training set
(70%), validation set (20%) and holdout test set (10%).
This was done by randomly assigning patient IDs to
each set. To prevent any potential leakage of data be-
tween different patients, we grouped each patient’s data
independently.

Model development
Google DeepMind’s GitHub repository served as the
foundational framework for the development of this
TFT model.20 We modified the model to handle data sets
www.thelancet.com Vol 75 September, 2024
lacking future-known time points. To enhance the
model’s performance evaluation, we incorporated the
metrics discussed in model evaluation. We integrated
TensorBoard—a tool to visualise metrics—to track the
training process.

We configured the TFT model to use the previous 32
values, corresponding to an input time interval of 8 min,
for each variable to predict the subsequent 28 MAP
values spanning 7 min. If the surgery duration was
shorter than the combined duration of the input and
output time intervals, the patients were excluded from
training. When less than 8 min of history were available,
we padded the oldest data point to form a complete
input window for prediction.

We trained the model on the training set and eval-
uated its performance on the validation set every 10
epochs. To prevent overfitting, we stopped the training
early if the error in the validation set did not reach a new
optimal value for three consecutive iterations.

The TFT model was optimised using a ‘Random-
Search’ algorithm, focusing on the optimisation of
several parameters, including batch size, learning rate,
number of attention heads, number of hidden neurons,
dropout rate and length of the input sequence; the final
hyperparameters can be found in Supplemental
Information S1.

Internal and external validation
We evaluated both MAP predictions themselves as well
as binary predictions of whether hypotension will occur
(defined by MAP < 65 mmHg). We used the holdout test
set for internal validation and generated an external test
set using the open public database ‘Vital Signs Data-
Base’ (VitalDB),21 which contains high-resolution intra-
operative data from 6388 patients. We transformed
VitalDB data to match the format of our training
data set.

Continuous MAP prediction
We evaluated continuous MAP predictions using two
different metrics: mean squared error (MSE) and mean
absolute error (MAE). MSE is the average of the squared
differences between predicted and actual values, and
MAE is the average of the absolute differences between
predicted and actual values. MSE emphasises large er-
rors, whereas MAE treats all errors equally, is easy to
interpret and can be directly translated into units such
as mmHg. We calculated the cumulative average of
these metrics across all patients in the holdout test sets.
This involved calculating the mean of all errors from the
28 predicted values for each data point of each patient in
the test set.

Binary prediction of hypotension
To generate binary predictions of hypotension, we
extracted the continuous MAP predictions at one, three,
five, and 7 min (Fig. 1). We used these values to
3

http://www.thelancet.com


MAP =
[103,104, ..., 79]

HF =
[60,59, ..., 52]

Attention
LayerInput Output

Observed Data

Datatypes

Numeric

Example Values

Propofol =
[0,0,...,100,0]

Gender = FemaleCatagorical

TFT Model

Predicted MAP = [...67.7,..., 57.54, ..., 56.47, ..., 58.47,...]

Fig. 1: Prediction of mean arterial pressure. A graphical representation of the temporal fusion transformer (TFT) model prediction process for
mean arterial pressure (MAP). The top graph shows the observed MAP over time, the model predicted values and expected future MAP. The
lower left section details the data input structure, separating real values and categorical data, with example values given. The bottom right
shows a simplified architecture of the TFT model, highlighting the input, attention layer and output. The blue, orange, green and red lines
indicate the specific time points used to assess hypotension, corresponding to predictions made 1, 3, 5, and 7 min into the future, respectively.
The hypotension threshold was set at 65 mmHg. Propofol leads to arterial hypotension which is counteracted by the alpha-adrenergic agent
phenylephrine. As the administration of phenylephrine occurs after the prediction start, it cannot be taken into account for forecasting MAP.
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construct a binary prediction model that could estimate
the likelihood of hypotension, defined as a MAP <
65 mmHg.

The model provided a range (lower and upper limits)
for each of the 28 values. To evaluate the model using
metrics such as which require probabilities rather than
‘true’ or ‘false’, we fit a Gaussian curve with the lower and
upper limits. This allowed us to calculate probabilities.

For example, in the scenario shown in Fig. 1, the
MAP values [68, 58, 57, 59] over four consecutive time
points translated into a binary sequence of [false, true,
true, true] with a decision threshold of 0.5, meaning that
any probability greater than 50% was interpreted as a
prediction of hypotension.

We calculated the following metrics for evaluating
the binary hypotension predictions: Accuracy quantified
the overall correctness of the model across all classes.
Sensitivity (true positive rate) and specificity (true
negative rate) measured the model’s ability to correctly
identify positive and negative cases, respectively. The
positive predictive value (PPV) and negative predictive
value (NPV) reflected the accuracy of positive and
negative predictions. The area under the receiver oper-
ating characteristic curve (AUROC) assessed the ability
of the model to discriminate between classes. Calibra-
tion slope, intercept and expected calibration error
(ECE) together measured the agreement of the predicted
probabilities with the observed outcomes and indicated
the probabilistic accuracy of the model. To visualise
these metrics, we plotted the receiver operating charac-
teristic (ROC) curve and calibration plot.

Comparison with the XGB model
To establish a benchmark for the TFT model, we also used
the extreme gradient boosting (XGB)22 algorithm on the
same training data set used for the TFT model as a way to
train several models predicting the binary occurrence of
hypotension at one, three, five, and 7 min.

We vectorised time-dependent variables into se-
quences and transformed them into unit scale. Separate
XGB models were trained and optimised to predict oc-
currences of hypotension at one, three, five, and 7 min
into the future.

We assessed the performance of the XGB model using
the same metrics as those applied to the TFT model.

Interpretability
The attention mechanism allowed the model to focus on
the most relevant aspects of the input data by assigning
different levels of attention to different input parameters
and acting as a filtering mechanism.17

To visualise the model’s focus and determine the
importance of temporal inputs, we computed the sum of
the attention values assigned to all features at each time
point. This allowed us to visualise the importance of
each time step within the input sequence. In parallel, we
assessed the weight of each input parameter across
www.thelancet.com Vol 75 September, 2024
the data set by summing its attention values across all
time points, thereby ranking its overall importance to
the model’s output.

In addition, we conducted experiments to investigate
the influence of medication data on the behaviour of the
model. After completing the training, we artificially
manipulated the input data by omitting medication in-
formation and measured the effect of these differences
on the predicted MAP over the next 3 min. This
approach was only undertaken to provide insight into
the extent to which the model was being influenced by
medication data.

Statistical analysis
Because of patient privacy concerns and the regulations
of the Medical University of Vienna, all data used to
train the model are not available for public release in
their current format. The external database, which was
utilised for validation purposes, is openly available,
enabling replication of the validation process.21 The code
for model training and evaluation is available (https://
github.com/lorenzkap/MAP_TFT). We performed all
calculations with R and Python 3.11.3, TensorFlow
2.12.0, and Scikit-learn 1.2.2.

Role of the funding source
This study was funded by institutional funds of the
Medical University of Vienna, Department of Anaes-
thesia, Intensive Care Medicine and Pain Medicine and
the Ludwig Boltzmann Institute Digital Health and Pa-
tient Safety.
Results
We screened data from 88,016 anaesthesia cases and
included data from 81,122 cases in the final data set.
The baseline characteristics of the anaesthesia cases
analysed are given in Table 1. The internal data set was
split randomly into training (70%), validation (20%), and
holdout (10%) test sets, consisting of 56,785, 16,224 and
8113 cases. We tested the final algorithm in an external
test set consisting of 5065 cases. Details of the external
test set are given in Supplemental Table S3.

Continuous MAP prediction
We trained the TFT model to predict the continuous
MAP trajectory for the next 7 min (Fig. 1; Supplemental
Fig. S1), here by utilising 52 input features
(Supplemental Table S2). In the internal test set, MSE
was 0.405 standard deviations and MAE 0.376 standard
deviations, corresponding to an average prediction error
of 4 mmHg off the actual measurements. In the external
test set, the average MSE was 1.165 standard deviations,
and the average MAE was 0.622 standard deviations, or
7 mmHg. In both the internal and the external test sets,
MAE was reduced when the forecast distance was lower
and vice-versa (Fig. 2).
5
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N = 81,121

Age (years) 52 (34, 70)

Male sex (−) 35,730 (44%)

ASA score

1 36,272 (27%)

2 36,272 (45%)

3 20,251 (25%)

4 2066 (2.5%)

5 730 (0.9%)

Surgical urgency (−)

Elective 64,855 (80%)

Emergency 3459 (4.6%)

Urgent 12,808 (16%)

Duration of surgery (min) 132 (6, 296)

Surgical discipline

General surgery 20,881 (26%)

Orthopaedics/Trauma surgery 16,098 (20%)

Plastic surgery 3153 (3.9%)

ENT 6110 (7.5%)

Maxillofacial surgery 3532 (4.4%)

Neurosurgery 5240 (6.5%)

Gynaecology 8905 (11%)

Obstetrics 5569 (6.9%)

Urology 6849 (8.4%)

Ophthalmology 4123 (5.1%)

Dermatology 656 (0.8%)

Undefined 6 (<0.1%)

1 Median (IQR); n (%)

Table 1: Patient characteristics: primary data set.

Articles

6

A key feature of the TFT model was considering past
data to predict blood pressure. The TFT model utilised
medication data, for example, intravenous anaesthetics
or vasopressors, to predict blood pressure. The model
a b

Fig. 2: Performance for continuous blood pressure prediction. Mean ab
continuous prediction of intraoperative blood pressure in the internal (
indicated by the lighter blue area.
reacted to medication and its predictions became better
when medication data was present (Fig. 3, Panel a). The
model’s attention mechanism can filter the data for
more relevant time stamps (Fig. 3, Panel c). The top
features selected for blood pressure predictions are
shown in Fig. 3, Panel b, and the influence of the most
common drugs on the prediction of the model in the
data set is depicted in Fig. 3, Panel d.

Binary prediction of hypotension
We predicted the likelihood of blood pressure falling
below 65 mmHg at one, three, five, and 7 min in the
future by using specific quantiles of blood pressure
predictions and compared these predictions with
those from an XGB model (Fig. 4). In the internal test
set, both the TFT and XGB models had area under the
receiver operating characteristic curve (AUROC) scores
above 0.9 (Table 2; Fig. 4) although the XGB model had
slightly superior discrimination compared with the TFT
model at the five- and 7-min marks. For both models,
discrimination was reduced in the external test set. The
TFT model was consistently able to discriminate be-
tween timepoints with and without hypotension when
the forecast distance was increased from one to 7 min,
but discrimination of the XGB model declined with
increasing forecast distance, as evidenced by lower
AUROC (Table 2; Supplemental Tables S4 and S5).

The calibration plots are shown in Fig. 5. The TFT
model demonstrated an ECE ranging from 0.05 to 0.11
in the internal test set and from 0.06 to 0.08 in the
external test set (Table 3). In both test sets, the TFT
model had a calibration slope of less than one, indi-
cating a tendency to overestimate the likelihood of hy-
potension (Fig. 5 Panel a, c; Supplemental Table S6).
The XGB models showed good calibration in the inter-
nal test set (ECE < 0.03). However, the XGB models
were poorly calibrated in the external test set (ECE >
solute error (MAE) of the temporal fusion transformer model for
a) and external (b) test sets. The standard deviation of all MAEs is
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Fig. 3: Importance of medication and attention mechanism. (a) is a representative example of continuous mean arterial pressure (MAP)
predictions using the temporal fusion transformer (TFT) model and shows that predicted MAP varies significantly when data on the use of
propofol is included in the model vs. when these data are omitted. (b) shows the impact of the 10 most administered drugs on the predicted
MAP over the next 3 min as predicted by the TFT model. The drugs are normalised by their average dosage because of their varying effects per
milligram. (c) shows the relative importance of each time step in the model’s input window. Self-attention in transformer models selectively
focuses on the most relevant parts of the input. It highlights a significant increase in the importance of the time steps when propofol is
administered, underscoring its influence on the model’s output. (d) depicts the top 10 features that the model considers as being the most
critical to its blood pressure predictions. Among these, historical MAP data stand out as the most influential factor for subsequent MAP
predictions.
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0.15 for 7 min) and overestimated the occurrence of
hypotension (Fig. 5 Panels b, d; Supplemental Table S6).
Discussion
In the present study, we used the TFT algorithm to
develop a predictive model 1) for continuously fore-
casting intraoperative blood pressure trajectories for the
next 7 min and 2) for binarily predicting the occurrence
of hypotension (defined as MAP below 65 mmHg)
within the next one, three, five, and 7 min. We validated
our model using internal and external test sets and
found that our model predicted MAP with a low pre-
dictive error of 4 mmHg, respectively 7 mmHg in the
internal and external test sets. Using the dichotomised
TFT model, we obtained excellent discrimination and
reasonable calibration for binary prediction of the
occurrence of hypotension.

Predicting vital sign derangements, such as hypo-
tension, is a well-established problem, and multiple
www.thelancet.com Vol 75 September, 2024
studies from the field of anaesthesia and critical care
medicine have used different study designs and
computational algorithms to solve it.8,10,11 For instance,
Kendale et al. utilised multiple machine learning tech-
niques to binarily predict the occurrence of hypotension
(defined as a single MAP value below 55 mmHg) after
the induction of anaesthesia. Jo et al. used deep learning
models trained on high-resolution waveform data from
VitalDB to predict intraoperative hypotension.23 Hatib
et al. and Davies et al. similarly applied deep learning to
binarily predict hypotension (defined by them as MAP
below 65 mmHg). Their model, which is commercially
available11,14, provides users with the hypotension pre-
diction index (HPI), a dimensionless number ranging
from 0 to 100, which indicates the likelihood of hypo-
tension within the next 15 min. One of the key features
distinguishing our TFT model from those works is the
fact that our model directly predicts the course of MAP
together with an uncertainty interval. In theory, this
could be more readily interpretable by clinicians than an
7
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Fig. 4: Performance in binary prediction of hypotension. Receiver operating characteristic (ROC) curves for the temporal fusion transformer
(TFT) model (a, c) and extreme gradient boosting (XGB) model (b, d) across time frames of 1, 3, 5 and 7 min for the prediction of hypotension
in the internal and external validation. Area under receiver operating characteristic (AUC) values demonstrate high accuracy for both classifiers
internally, with a modest decline externally. The TFT classifier shows a small drop in performance over time, while the XGB-classifier exhibits
excellent internal but diminished external performance.

Forecast time Internal validation External validation

TFT XGB TFT XGB

1 min 0.9883 (0.9880, 0.9886) 0.9941 (0.9939, 0.9943) 0.9598 (0.9590, 0.9607) 0.9607 (0.9602, 0.9612)

3 min 0.9544 (0.9536, 0.9553) 0.9874 (0.9871, 0.9878) 0.9453 (0.9444, 0.9462) 0.8909 (0.8900, 0.8918)

5 min 0.9095 (0.9083, 0.9107) 0.9893 (0.9890, 0.9896) 0.9032 (0.9017, 0.9046) 0.8420 (0.8409, 0.8432)

7 min 0.8800 (0.8785, 0.8816) 0.9908 (0.9905, 0.9910) 0.8667 (0.8648, 0.8686) 0.7981 (0.7968, 0.7994)

Area under the receiver operating characteristic (AUROC) of the temporal fusion transformer (TFT) and the extreme gradient boosting (XGB) model in internal and external
validation. The forecast time indicates the time before a hypotensive event. The 95% confidence interval is indicated by the values within the brackets.

Table 2: AUROC in internal and external test set.
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Fig. 5: Calibration curves for binary prediction of hypotension. Calibration curves for the temporal fusion transformer (TFT) model (a, c) and
extreme gradient boosting (XGB) model (b, d) at 1, 3, 5 and 7 min for both internal and external validation for the prediction of hypotension.
The graphs compare the predicted probabilities of positives against the actual proportion of positives, with the dotted line representing perfect
calibration. The corresponding histograms below the calibration curves show the distribution of predicted probabilities at each time interval.
The closer the calibration curve is to the dotted line, the better the calibration of the model. The histograms give an indication of the frequency
and confidence of the classifier’s predictions.
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arbitrary index, and in addition, the length and severity
of hypotension is easily visible, which is not the case
with the models from Kendale et al. and with the HPI.
The second key feature of the TFT model is the use of
low-resolution data. In contrast to previous works,
which have used waveform data that requires the inva-
sive placement of an arterial line, we utilised vital signs
data that is sampled every 15 s. Still, our TFT model
showed similar discriminative performance compared
with the HPI for predicting hypotension 5 min before it
occurred, with an AUROC of 0.909 (TFT) compared
with 0.926 (HPI). The higher specificity of the TFT
model (0.960 compared with 0.858 for the HPI) could be
advantageous because false positive predictions are less
likely with our model, potentially reducing alarm fa-
tigue. Notably, the HPI has recently been criticised for
selection bias being present during training and vali-
dation, leading to data leakage which potentially falsely
Forecast time Internal validation

TFT XGB

1 min 0.0259 (0.0255, 0.0264) 0.0008 (0.0004, 0.0

3 min 0.029 (0.0283, 0.0298) 0.0008 (0.0005, 0.00

5 min 0.0346 (0.0337, 0.0353) 0.0007 (0.0004, 0.0

7 min 0.0398 (0.0391, 0.0404) 0.0008 (0.0005, 0.00

Expected calibration error (ECE) of the temporal fusion transformer (TFT) and the extr
forecast time indicates the time before a hypotensive event. Low values represent a low e
within the brackets.

Table 3: Expected calibration error in the internal and external test sets.

www.thelancet.com Vol 75 September, 2024
elevates its performance metrics.24 As such, it has been
suggested that HPI may not be superior to setting the
mean blood pressure alarm threshold in the range of
70–75 mmHg.24 Because our model utilises the TFT
algorithm that is specifically designed for the prediction
of time series data, we avoided such bias.

We conducted a series of tests on a range of models
(LSTM, ARIMA, XGB, transformers) for the continuous
MAP forecast. However, the results indicated that these
models were not optimal. The TFT model demonstrated
superior performance when applied to medical data.
Consequently, we concentrated our efforts on the TFT
model in our publication.

To the best of our knowledge, only the prediction
model from Lee et al. could forecast continuous intra-
operative blood pressure values similar to our TFT
model; they applied a deep learning technique to predict
blood pressure as well as hypotension (i.e., the
External validation

TFT XGB

011) 0.0529 (0.0524, 0.0533) 0.0791 (0.0788, 0.0793)

12) 0.0478 (0.0473, 0.0482) 0.1060 (0.1057, 0.1063)

010) 0.0465 (0.0459, 0.0469) 0.1076 (0.1073, 0.1079)

11) 0.0471 (0.0466, 0.0475) 0.1166 (0.1163, 0.1169)

eme gradient boosting (XGB) model in the internal and external validation. The
rror, thus better calibration. The 95% confidence interval is indicated by the values
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occurrence of blood pressure below 65 mmHg) within
the next 5, 10, and 15 min using data from VitalDB, the
database we used for external validation.12 However, in
the present study, we obtained lower predictive errors
than in their study (MAE 4 mmHg in the internal test
set and 7 mmHg in the external test set vs. 7 mmHg in
the study from Lee et al.), even though we utilised
lower-resolution data (sampled once every 15 s) as
opposed to high-quality waveform data. In addition,
their model was limited to predicting a single MAP
value, whereas our model predicted an entire curve
consisting of 28 different values, which can facilitate
easier interpretation in the operating room. The TFT
model also incorporates data on administered medi-
cation, such as hypnotics, analgesics and vasoactive
agents, intraoperative ventilation parameters and
intraoperative positioning. These features set our
model apart from previous studies and are—in our
opinion—the most important factor explaining the
model’s good performance. Our analysis also showed
that data on administered medications were critical for
the TFT model in predicting the blood pressure tra-
jectory. Data on the use of propofol were especially
used to improve MAP predictions, and the predictive
error increases, for example, when data on the use of
propofol were missing.

Fig. 3, Panel b, illustrates the directional influence of
commonly administered drugs on blood pressure. The
graph, created by excluding these drugs from the test set
and analysing the prediction curves from Fig. 3, Panel a,
shows an expected decrease in blood pressure when
fentanyl or propofol are administered; however, the ef-
fect of noradrenaline varies widely, despite its known
pressure-increasing effect. This variability may be
attributed to patients entering the dataset with an active
noradrenaline perfusor or the fact that the noradrena-
line perfusor is often initiated and adjusted early to
stabilise blood pressure, then maintained at a consistent
level, resulting in minimal fluctuations during surgery.
This may mask the actual influence of noradrenaline on
blood pressure. Another potential use case of our TFT
model could be the calculation of the ‘optimal’ dose of
hypnotics/analgesics during the induction of anaes-
thesia. Furthermore, the black box problem of machine
learning algorithms was alleviated by indicating the
probability of the occurrence of hypotension as well as
the time-resolved representation (Fig. 3, Panel d) of the
essential features for decision-making.25 For example,
the model primarily uses the past MAP-values (Fig. 3,
Panel d) for predicting MAP. Furthermore, it can
identify significant occurrences such as the adminis-
tration of propofol (see Fig. 3, Panel c).

To facilitate a comparison with previous studies, we
used the results of the TFT model for binary predictions
of the occurrence of hypotension. The discrimination of
our model was superior to previously published
works.8,11,12 The generalisability of an algorithm was a
persistent challenge that complicated the implementa-
tion of machine learning algorithms in clinical prac-
tice.26 Our approach to predicting hypotension by
directly calculating the MAP curve rather than providing
an index offered additional robustness, as confirmed by
external validation. Compared with the XGB models,
which have previously been shown to have excellent
performance in binary classification tasks, such as pre-
dicting hypotension13,27 trained on the same data set, our
model demonstrated greater robustness. This was evi-
denced by its superior performance on the external test
set, even though the XGB models performed better on
the internal test set and were trained on simpler tasks
(hypotension: yes/no).

Although the model was reasonably calibrated in the
internal test set, it overestimated the occurrence of
hypotension in the external test set (Fig. 5). Mis-
calibration is a common phenomenon when predictive
models are tested in a population that they were not
developed in28, highlighting that predictive models
should be carefully tested prior to implementation into
clinical practise.29 However, this overestimation is not
necessarily an error of the TFT model but is rather a
reflection that the model is not anticipating future
medical interventions, even though we trained the
model on retrospective surgical cases in which clini-
cians intervened during adverse events. For instance, if
the model detected a potential drop in blood pressure, it
could predict the onset of hypotension. However, in an
actual OR scenario, clinicians often intervene to prevent
such events. Therefore, a ‘good’ model should over-
estimate the likelihood of hypotension because it does
not know these interventions at the time of prediction
and therefore cannot and should not take them into
account. In addition, these concerns were alleviated by
the fact that our model could directly output blood
pressure values.

Our study has several strengths and limitations.
First, TFT is a state-of-the-art, novel algorithm that can
utilise data on administered medication, a factor plau-
sibly related to the occurrence of hypotension. We
assembled a large and diverse patient cohort and had
surgical cases from many specialties. We adhered to the
transparent reporting of a multivariable prediction
model for individual prognosis or diagnosis (TRIPOD)
guidelines30 for the development and validation of pre-
dictive models and performed internal and external
validation. However, the present retrospective study
used data recorded for routine patient care, which
likely introduced errors in our data set. Some data
highly relevant for changes in blood pressure were not
captured in our data set, such as bleeding, surgical
compression of blood vessels or incorrectly documented
medication regarding timing of data entry. Similarly,
VitalDB lacks information on bolus drugs, which affects
the performance of the models in the external valida-
tion. A 15-s sampling interval was employed to benefit
www.thelancet.com Vol 75 September, 2024
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from higher resolution data and accurately time the ef-
fects of medication. However, this may result in inac-
curacies due to the mismatch with standard 3-min blood
pressure measurements. Although this approach offers
increased detail, the use of forward filled values between
actual measurements may impact the performance of
the model and introduce noise into the learning process.
In addition, medical interventions such as administra-
tion of vasopressors in response to hypotension were
captured in our data set, which may have biased the TFT
model towards an expectation of these interventions.
Due to the extensive training time requirements, cross-
validation was not employed to train the TFT model,
which may have an impact on the final results’ accuracy.
While the TFT model performs well in continuous
prediction tasks, the XGB model demonstrated superior
results in binary predictions during internal validation,
highlighting the importance of selecting the appropriate
model for specific needs.

In summary, we applied the novel TFT algorithm to
predict intraoperative blood pressure trajectories for the
upcoming 7 min. Our model used easily obtainable
input data available during routine care—most impor-
tantly, data on intraoperatively administered medica-
tions—and only required low-resolution data, which can
be obtained without the placement of an arterial line.
We obtained a low predictive error for continuous blood
pressure predictions and—regarding the binary predic-
tion of hypotension—and excellent discrimination with
reasonable calibration. Future studies should investigate
how our prediction model could be integrated into the
anaesthesiologist’s workflow and how this would affect
patient outcomes.
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