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We present a revisedmathematical model of the immune response to Bacillus Calmette-Guérin (BCG) treatment of bladder cancer,
optimized according to biological and clinical data accumulated during the last decade.The improvedmodel accounts for cytotoxic
T lymphocyte differentiation as an integral element of the delayed immune response, as well as the logistic growth terms for cancer
cell proliferation. Three equilibria are demonstrated for the proposed model, which is assumed to be influenced by white noise
stochastic perturbations that are directly proportional to the system state deviation from an equilibrium. Stability conditions for all
equilibria are analyzed using the Kolmanovskii-Shaikhet general method of Lyapunov functionals construction.

1. Introduction

Bladder cancer (BC) is 7th most common cancer (the 4th
most common for men) with approximately 356,000 new
cases each year and more than 145,000 deaths per year. The
highest incidence occurs in industrialized and developed
areas such as Europe, North America, and Australia (Jemal
et al., [1]). Tobacco smoking is the main BC risk factor,
accounting for at least 50%of BC cases. Roughly 10%of all BC
cases have been related to occupational exposure to chemicals
and dye, mostly in industrial areas processing paint, metal,
and petroleum products (Bunimovich-Mendrazitsky et al.
[2]).

The treatment of the BC has improved during last 40
years due to development of high definition of cystoscopy,
newly technology in the bladder drugs instillation. However,
the prognosis of advanced bladder cancer has not improved
during the last years (Alexandroff et al. [3]). The high rates
of recurrence, invasive surveillance strategies, and high treat-
ment costs combine to make bladder cancer the single most
expensive cancer in both England and the United States
(Eylert et al. [4]).

BC is most frequently treated with intravesical instil-
lations of an adjuvant immunotherapy with the Bacillus
Calmette-Guérin (BCG) bacteria. BCG immunotherapy,

originally established by Morales et al. [5], is administered
after surgical removal of the tumor at a point where no
visual lesions or morphologically evident malignant cells
present in randombiopsies (Brandau and Suttman, [6]). BCG
immunotherapy has proven its superiority over chemother-
apy in reducing tumor recurrence rates for patients with high
grade or high risk nonmuscle invasive BC. While Lamm et
al. [7] found BCG to even reduce disease progression, there
is a need to understand why the standard BCG treatment
protocol is not effective for nonresponding or relapsing
patients. The BCG treatment protocol remains to be opti-
mized specifically for those patients who do not achieve
remission from treatment with the standard regimen.

In last three decades, it has been commonly accepted
that a qualitative understanding of dynamic cancer treatment
requires a mathematical framework in which the essential
features of this complex process are represented (Byrne,
[8]). The model proposed in [9] was the first mathematical
model to describe tumor-immune system interactions in the
bladder as a result of continuous BCG therapy. Bunimovich-
Mendrazitsky et al. [9–12] have modeled the use of BCG in
noninvasive bladder cancer, identifying stability points of the
mathematical system to ensure durability of the simulated
results, and found a tolerable bacteria threshold and effective
treatment regimens to minimize undesirable side effects. A
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system of ordinary differential equations (ODE) was used
for effective description of BCG treatment dynamics. In this
manuscript, we present an improved BCGmodel based upon
that of B-M et al. [9] which describes the tumor-immune
system interactions in the bladder in response to BCG
therapy, updated according to newly published biological and
clinical data. Three equilibria for the optimized model are
demonstrated.

One of the main problems encountered in mathematical
models described by differential equations is that of their
stability. In this work, equilibria stability is analyzed using
the Kolmanovskii-Shaikhet general method of Lyapunov
functionals construction [13–17] and the method of linear
matrix inequalities (LMIs). Equilibria stability in probability
of a system of nonlinear stochastic differential equations
possessing the order of nonlinearity higher than one can be
reduced to investigation of asymptotic mean square stability
of the linear part of the considered nonlinear system. The
proposed method of stability investigation is based upon a
preliminary approximation in which the nonlinear system is
centralized and linearized around an equilibrium point, and
the zero solution of the obtained linear system is investigated
for asymptotic mean square stability. Obtained asymptotic
mean square stability conditions of the linear system zero
solution at the same time are sufficient conditions for stability
in probability of a corresponding equilibrium of the initial
nonlinear system. This method can be applied to a system
of arbitrary nonlinear differential equations with the order of
nonlinearity higher than one.

The manuscript is organized as follows: in Section 2, we
give general information about the BC and the biological
background on which our model is based. The mathematical
derivation of the improved model is described in Section 3.
In Section 4 we discuss the existence of three equilibria.
Section 5 is devoted to stochastic perturbations, centering,
and linearization of the considered system around equilibria
including description of an appropriate linear system for
each from three equilibria. The conditions of stability for all
three equilibria and some numerical examples are discussed
in Section 6. Some auxiliary information is presented in
Appendix. Conclusions from a number of clinical scenarios
leading to successful treatment or to progression of cancer
and some future projects are outlined in Section 7.

2. Biological Framework for
Optimization of the Model

BCG is thought to encourage tumor elimination by attach-
ment of the BCG to the urothelium and initiation of localized
inflammation, which attracts innate immune cells that in
turn draw cytotoxic T-lymphocytes (CTLs) and natural killer
(NK) cells which attack the tumor cells [6, 18]. Bacteria
can be engulfed by macrophages and dendritic cells (DCs),
two types of antigen-presenting cells (APCs). Bacteria may
also infect occasional residual cancer cells, which present
bacterial protein fragments, attracting APCs that will ingest
the infected host. Once a BCG-infected tumor cell has been
ingested by an APC, its tumor antigens are now presented
by the APCs, which further stimulate CTL proliferation,

together with the bacterial infection itself. These effects upon
CTL proliferation were not taken into account in the original
BCG model [9].

Recent studies have described the BCG-immune system
interactions: Biot et al. [18], Kikamura and Tsukamoto [19],
and Bunimovich-Mendrazitsky et al. [12], which describe two
distinct CTL populations capable of destroying tumor cells,
either via tumor associated Ag mechanism or via bacterial
associated Ag. Another important factor not accounted for in
[9] is the rate of maturation and activation of CTL cells [20,
21]. A limiting factor of CTLdevelopment is the time required
to identify bacterial and tumor antigens and to mobilize an
effective immune response [22]. While the modeling of each
relevant stage involved in this process is not possible within
the current ODE system, a simplified model representing
tumor-immune system interplay will provide insight to this
fundamental yet complex interaction.

3. Description of the Model

Our model describes the parameters governing the efficacy
of BCG treatment for bladder cancer. Based in part upon
previous study [9], we have further optimized the model to
account for the delay inherent to the immune response to
BCG injection, taking into account the latest experimental
findings regarding BCG immunotherapy of bladder cancer.

We model the stage in pathogenesis wherein no metas-
tases have yet occurred, such that the entire dynamics of the
system take place within the bladder lumen.Therefore, a one-
site mathematical model is sufficient.

The BCG treatment model is composed of four nonlinear
ODEs to characterize the interactions between the four
different biological components, with the local quantity of
each noted as follows:

(i) BCG bacteria within the bladder as 𝐵.
(ii) Effector T-lymphocytes, principally CTLs that react

to BCG and tumor antigens as 𝐸.
(iii) Tumor cells infected with BCG as 𝑇𝑖.
(iv) Tumor cells not infected with BCG as 𝑇𝑢.

To summarize briefly, we assume BCG to be introduced into
the bladder at a constant rate 𝑏. The free BCG binds to tumor
cells, infecting them at rate 𝑝2, with 𝜇1 denoting the natural
death rate of BCG. Tumor cells are tracked by a continuous
variable, due to their large number, and the homogeneous
nature of the tumor population. Effector cells (𝐸) target and
destroy infected and noninfected tumor cells (𝑇𝑖 and 𝑇𝑢) at
a rate 𝑝3 and take up BCG at a rate 𝑝1. Activation of the
immune response is dependent upon:

(1) the encounter between immune cells and BCG, con-
trolled by parameter 𝑝4

(2) the encounter between immune cells and tumor cells,
controlled by parameter 𝛼.

The rate of inactivation of 𝐸 cells via encounter with 𝑇𝑖 is
given by 𝑝5. Natural logistic tumor growth is characterized
by a maximal growth rate coefficient 𝑟 and is limited by
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the maximum number of tumor cells 𝐾. Finally, we denote
by 𝜇2 the natural death rate of effector cells. The equations
describing the interactions between these four variables are
given in the following system:

�̇� (𝑡) = 𝑏 − 𝐵 (𝑡) (𝜇1 + 𝑝1𝐸 (𝑡) + 𝑝2𝑇𝑢 (𝑡)) ,
�̇� (𝑡) = −𝜇2𝐸 (𝑡) + (𝑝4𝐵 (𝑡) − 𝑝5𝑇𝑖 (𝑡) + 𝛼𝑇𝑢 (𝑡))
⋅ 𝐸 (𝑡 − 𝜏 (𝑡)) ,

�̇�𝑖 (𝑡) = 𝑝2𝐵 (𝑡) 𝑇𝑢 (𝑡) − 𝑝3𝑇𝑖 (𝑡) 𝐸 (𝑡 − 𝜏 (𝑡)) ,
�̇�𝑢 (𝑡) = 𝑇𝑢 (𝑡)
⋅ (−𝑝2𝐵 (𝑡) + 𝑟 (1 − 𝑇𝑢 (𝑡)𝐾 ) − 𝑝3𝐸 (𝑡 − 𝜏 (𝑡))) .

(1)

In system (1) in the second equation (effector cells �̇�) BCG
induces the recruitment of the effectors with rate 𝑝4𝐵(𝑡)𝐸(𝑡 −𝜏(𝑡)), while the tumor induces the recruitment of the effectors
at a linear rate 𝛼𝑇𝑢(𝑡)𝐸(𝑡 − 𝜏(𝑡)), with delay function 𝜏(𝑡) =𝜏0𝑒−𝜆𝑡, 𝜆 > 0. Correspondingly, eradication of infected 𝑇𝑖 (in
the third equation) anduninfected𝑇𝑢 (in the fourth equation)
tumor cells by effector cells will produce with the same delay𝜏(𝑡) function.𝜏(𝑡) is a time-varying function, representing the immune
response delay in response to treatment, and expressing the
number of effector cells in the cancer area. The delay is
measured with reference to beginning of BCG treatment (𝑡 =0), with a maximum delay of approximately 10 days. The
influence of BCG tends towards zero over time, such that
the delay function is similar to fading phenomenon: 𝜏(𝑡) =𝜏0𝑒−𝜆𝑡.
4. Three Equilibria

The equilibria of system (1) are defined by the conditions�̇�(𝑡) = 0, �̇�(𝑡) = 0, �̇�𝑖(𝑡) = 0, and �̇�𝑢(𝑡) = 0 that is equivalent
to the system of four algebraic equations

𝑏 = 𝐵∗ (𝜇1 + 𝑝1𝐸∗ + 𝑝2𝑇∗𝑢 ) ,
(𝑝4𝐵∗ − 𝑝5𝑇∗𝑖 + 𝛼𝑇∗𝑢 ) 𝐸∗ = 𝜇2𝐸∗,
𝑝2𝐵∗𝑇∗𝑢 = 𝑝3𝑇∗𝑖 𝐸∗,
(−𝑝2𝐵∗ + 𝑟(1 − 𝑇∗𝑢𝐾 ))𝑇∗𝑢 = 𝑝3𝐸∗𝑇∗𝑢 ,

(2)

with three solutions:

(1) 𝐵∗1 = 𝑏𝜇1 ,
𝐸∗1 = 𝑇∗1𝑢 = 0,
𝑇∗1𝑖 = 𝐶 ≥ 0 − arbitrary nonnegative constant.

(3)

(2) 𝐵∗2 = 𝜇2𝑝4 ,
𝐸∗2 = 𝑝4𝑏 − 𝜇1𝜇2𝑝1𝜇2 > 0,
𝑇∗2𝑖 = 𝑇∗2𝑢 = 0.

(4)

(3) 𝐵∗3 = 𝜇2 + (𝑝5𝑅𝑢 − 𝛼)𝑇
∗
3𝑢𝑝4 ,

𝐸∗3 = 𝑝2𝐵
∗
3𝑝3𝑅𝑢 ,

𝑇∗3𝑖 = 𝑅𝑢𝑇∗3𝑢,
(5)

where

𝑅𝑢 = (𝑝1/𝑝3𝑝4) 𝐹𝑢𝐺𝑢 + 𝑏𝐹𝑢𝐻𝑢 − 𝑏 ,
𝐹𝑢 = 𝑟(1 − 𝑇∗3𝑢𝐾 ) , 𝐺𝑢 = 𝛼𝑇∗3𝑢 − 𝜇2, 𝐻𝑢 = 𝜇1𝑝2 + (1 +

𝑝1𝑝5𝑝3𝑝4)𝑇∗3𝑢,
(6)

and 𝑇∗3𝑢 is defined by the algebraic equation

𝑝2𝐵∗3 (1 + 1𝑅𝑢) = 𝐹𝑢, (7)

with 𝐵∗3 , 𝑅𝑢, and 𝐹𝑢 defined in (5) and (6) (see Appendix).

Remark 1. Putting 𝑥 = 𝑇∗3𝑢/𝐾, 𝛽 = 𝜇1/𝑝2, and 𝛾 = (1 +𝑝1𝑝5/𝑝3𝑝4)𝐾, via (6), and a positivity of 𝑅𝑢 for the third
equilibrium one can obtain the estimation for 𝑏: 𝑏 < 𝐹𝑢𝐻𝑢 =𝑟(1 − 𝑥)(𝛽 + 𝛾𝑥) ≤ 𝑟(𝛽 + 𝛾)2/4𝛾.
5. Stochastic Perturbations,
Centering, and Linearization

Let us assume that system (1) is exposed to stochastic pertur-
bations that are of the white noise type and are directly pro-
portional to the deviation of the system state (𝐵(𝑡), 𝐸(𝑡), 𝑇𝑖(𝑡),𝑇𝑢(𝑡)) from the point of equilibrium (𝐵∗, 𝐸∗, 𝑇∗𝑖 , 𝑇∗𝑢 ) and
influence (�̇�(𝑡), �̇�(𝑡), �̇�𝑖(𝑡), �̇�𝑢(𝑡)) immediately. In this way,
system (1) takes the form

�̇� (𝑡)
= 𝑏 − 𝐵 (𝑡) (𝜇1 + 𝑝1𝐸 (𝑡) + 𝑝2𝑇𝑢 (𝑡))
+ 𝜎1 (𝐵 (𝑡) − 𝐵∗) �̇�1 (𝑡) ,

�̇� (𝑡)
= −𝜇2𝐸 (𝑡) + (𝑝4𝐵 (𝑡) − 𝑝5𝑇𝑖 (𝑡) + 𝛼𝑇𝑢) 𝐸 (𝑡 − 𝜏 (𝑡))
+ 𝜎2 (𝐸 (𝑡) − 𝐸∗) �̇�2 (𝑡) ,

�̇�𝑖 (𝑡)
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= 𝑝2𝐵 (𝑡) 𝑇𝑢 (𝑡) − 𝑝3𝑇𝑖 (𝑡) 𝐸 (𝑡 − 𝜏 (𝑡))
+ 𝜎3 (𝑇𝑖 (𝑡) − 𝑇∗𝑖 ) �̇�3 (𝑡) ,

�̇�𝑢 (𝑡)
= 𝑇𝑢 (𝑡) (−𝑝2𝐵 (𝑡) + 𝑟 (1 − 𝑇𝑢 (𝑡)𝐾 ) − 𝑝3𝐸 (𝑡 − 𝜏 (𝑡)))
+ 𝜎4 (𝑇𝑢 (𝑡) − 𝑇∗𝑢 ) �̇�4 (𝑡) ,

(8)

where 𝜎𝑖 are constants and 𝑤𝑖(𝑡), 𝑖 = 1, 2, 3, 4, are mutually
independent standard Wiener processes. System (8) is a
system of stochastic differential equations [17, 23]. Stochastic
perturbations of a such type were first proposed in [24] and
successfully used later in other researches (see [16, 17] and
references therein). An important feature of this type of per-
turbations is that the equilibrium of the deterministic system
is also a solution of a system with stochastic perturbations.

Let (𝐵∗, 𝐸∗, 𝑇∗𝑖 , 𝑇∗𝑢 ) be one from the equilibriums of
system (8). Using (2) substitutes new variables 𝑦1(𝑡) = 𝐵(𝑡) −𝐵∗,𝑦2(𝑡) = 𝐸(𝑡)−𝐸∗,𝑦3(𝑡) = 𝑇𝑖(𝑡)−𝑇∗𝑖 , and𝑦4(𝑡) = 𝑇𝑢(𝑡)−𝑇∗𝑢 ,
into system (8) for each equilibrium.

For the first equilibrium we obtain the nonlinear system

̇𝑦1 (𝑡)
= −𝜇1𝑦1 (𝑡) − 𝐵∗ (𝑝1𝑦2 (𝑡) + 𝑝2𝑦4 (𝑡))
− 𝑦1 (𝑡) (𝑝1𝑦2 (𝑡) + 𝑝2𝑦4 (𝑡)) + 𝜎1𝑦1 (𝑡) �̇�1 (𝑡) ,

̇𝑦2 (𝑡)
= −𝜇2𝑦2 (𝑡) + (𝑝4𝐵∗ − 𝑝5𝑇∗𝑖 ) 𝑦2 (𝑡 − 𝜏 (𝑡))
+ (𝑝4𝑦1 (𝑡) − 𝑝5𝑦3 (𝑡) + 𝛼𝑦4 (𝑡)) 𝑦2 (𝑡 − 𝜏 (𝑡))
+ 𝜎2𝑦2 (𝑡) �̇�2 (𝑡) ,

̇𝑦3 (𝑡)
= 𝑝2𝐵∗𝑦4 (𝑡) − 𝑝3𝑇∗𝑖 𝑦2 (𝑡 − 𝜏 (𝑡)) + 𝑝2𝑦1 (𝑡) 𝑦4 (𝑡)
− 𝑝3𝑦2 (𝑡 − 𝜏 (𝑡)) 𝑦3 (𝑡) + 𝜎3𝑦3 (𝑡) �̇�3 (𝑡) ,

̇𝑦4 (𝑡)
= (𝑟 − 𝑝2𝐵∗) 𝑦4 (𝑡)
+ (−𝑝2𝑦1 (𝑡) − 𝑟𝑦4 (𝑡)𝐾 − 𝑝3𝑦2 (𝑡 − 𝜏 (𝑡))) 𝑦4 (𝑡)
+ 𝜎4𝑦4 (𝑡) �̇�4 (𝑡) .

(9)

Similarly for the second equilibrium

̇𝑦1 (𝑡)
= −𝑏 (𝐵∗)−1 𝑦1 (𝑡) − 𝐵∗ (𝑝1𝑦2 (𝑡) + 𝑝2𝑦4 (𝑡))
− 𝑦1 (𝑡) (𝑝1𝑦2 (𝑡) + 𝑝2𝑦4 (𝑡)) + 𝜎1𝑦1 (𝑡) �̇�1 (𝑡) ,

̇𝑦2 (𝑡)

= 𝐸∗ (𝑝4𝑦1 (𝑡) − 𝑝5𝑦3 (𝑡) + 𝛼𝑦4 (𝑡)) − 𝜇2𝑦2 (𝑡)
+ 𝜇2𝑦2 (𝑡 − 𝜏 (𝑡))
+ (𝑝4𝑦1 (𝑡) − 𝑝5𝑦3 (𝑡) + 𝛼𝑦4 (𝑡)) 𝑦2 (𝑡 − 𝜏 (𝑡))
+ 𝜎2𝑦2 (𝑡) �̇�2 (𝑡) ,

̇𝑦3 (𝑡)
= −𝑝3𝐸∗𝑦3 (𝑡) + 𝑝2𝐵∗𝑦4 (𝑡)
− 𝑝3𝑦2 (𝑡 − 𝜏 (𝑡)) 𝑦3 (𝑡) + 𝑝2𝑦1 (𝑡) 𝑦4 (𝑡)
+ 𝜎3𝑦3 (𝑡) �̇�3 (𝑡) ,

̇𝑦4 (𝑡)
= (𝑟 − 𝑝2𝐵∗ − 𝑝3𝐸∗) 𝑦4 (𝑡)
+ (−𝑝2𝑦1 (𝑡) − 𝑟𝑦4 (𝑡)𝐾 − 𝑝3𝑦2 (𝑡 − 𝜏 (𝑡))) 𝑦4 (𝑡)
+ 𝜎4𝑦4 (𝑡) �̇�4 (𝑡) ,

(10)

and for the third one
̇𝑦1 (𝑡)
= −𝑏 (𝐵∗)−1 𝑦1 (𝑡) − 𝐵∗ (𝑝1𝑦2 (𝑡) + 𝑝2𝑦4 (𝑡))
− 𝑦1 (𝑡) (𝑝1𝑦2 (𝑡) + 𝑝2𝑦4 (𝑡)) + 𝜎1𝑦1 (𝑡) �̇�1 (𝑡) ,

̇𝑦2 (𝑡)
= 𝐸∗ (𝑝4𝑦1 (𝑡) − 𝑝5𝑦3 (𝑡) + 𝛼𝑦4 (𝑡)) − 𝜇2𝑦2 (𝑡)
+ 𝜇2𝑦2 (𝑡 − 𝜏 (𝑡))
+ (𝑝4𝑦1 (𝑡) − 𝑝5𝑦3 (𝑡) + 𝛼𝑦4 (𝑡)) 𝑦2 (𝑡 − 𝜏 (𝑡))
+ 𝜎2𝑦2 (𝑡) �̇�2 (𝑡) ,

̇𝑦3 (𝑡)
= 𝑝2𝑇∗𝑢 𝑦1 (𝑡) − 𝑝3𝐸∗𝑦3 (𝑡) + 𝑝2𝐵∗𝑦4 (𝑡)
− 𝑝3𝑇∗𝑖 𝑦2 (𝑡 − 𝜏 (𝑡)) + 𝑝2𝑦1 (𝑡) 𝑦4 (𝑡)
− 𝑝3𝑦2 (𝑡 − 𝜏 (𝑡)) 𝑦3 (𝑡) + 𝜎3𝑦3 (𝑡) �̇�3 (𝑡) ,

̇𝑦4 (𝑡)
= 𝑇∗𝑢 (−𝑝2𝑦1 (𝑡) − 𝑟𝐾−1𝑦4 (𝑡) − 𝑝3𝑦2 (𝑡 − 𝜏 (𝑡)))
+ (−𝑝2𝑦1 (𝑡) − 𝑟𝐾−1𝑦4 (𝑡) − 𝑝3𝑦2 (𝑡 − 𝜏 (𝑡))) 𝑦4 (𝑡)
+ 𝜎4𝑦4 (𝑡) �̇�4 (𝑡) .

(11)

It is clear that stability of the zero solution of system (9) ((10),
(11)) is equivalent to stability of the first (the second, the third)
equilibrium of system (8).

Remark 2. To obtain sufficient conditions of stability in prob-
ability for nonlinear system with the order of nonlinearity
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higher than one it is enough [17] to get sufficient conditions
of asymptotic mean square stability for the linear part of the
considered nonlinear system.

Following Remark 2, represent the linear parts of systems
(9) - (11) in the form

�̇� (𝑡) = 𝐴𝑧 (𝑡) + 𝐷𝑧 (𝑡 − 𝜏 (𝑡)) + 𝐶 (𝑧 (𝑡)) �̇� (𝑡) , (12)

where 𝑧 = (𝑧1, 𝑧2, 𝑧3, 𝑧4), 𝑤 = (𝑤1, 𝑤2, 𝑤3, 𝑤4), 𝐶(𝑧) =
diag{𝜎1𝑧1, 𝜎2𝑧2, 𝜎3𝑧3, 𝜎4𝑧4}, and the matrices 𝐴, 𝐷 are,
respectively, for the first equilibrium

𝐴 = [[[[[
[

−𝜇1 −𝑝1𝐵∗ 0 −𝑝2𝐵∗0 −𝜇2 0 0
0 0 0 𝑝2𝐵∗0 0 0 𝑟 − 𝑝2𝐵∗

]]]]]
]
,

𝐷 = [[[[[
[

0 0 0 0
0 𝑝4𝐵∗ − 𝑝5𝑇∗𝑖 0 0
0 −𝑝3𝑇∗𝑖 0 0
0 0 0 0

]]]]]
]
,

(13)

for the second equilibrium

𝐴

=
[[[[[[
[

−𝑏 (𝐵∗)−1 −𝑝1𝐵∗ 0 −𝑝2𝐵∗𝑝4𝐸∗ −𝜇2 −𝑝5𝐸∗ 𝛼𝐸∗
0 0 −𝑝3𝐸∗ 𝑝2𝐵∗0 0 0 𝑟 − 𝑝2𝐵∗ − 𝑝3𝐸∗

]]]]]]
]
,

𝐷 = [[[[[
[

0 0 0 0
0 𝜇2 0 0
0 0 0 0
0 0 0 0

]]]]]
]
,

(14)

and for the third equilibrium

𝐴 =
[[[[[[
[

−𝑏 (𝐵∗)−1 −𝑝1𝐵∗ 0 −𝑝2𝐵∗𝑝4𝐸∗ −𝜇2 −𝑝5𝐸∗ 𝛼𝐸∗
𝑝2𝑇∗𝑢 0 −𝑝3𝐸∗ 𝑝2𝐵∗
−𝑝2𝑇∗𝑢 0 0 −𝑟𝑇∗𝑢𝐾−1

]]]]]]
]
,

𝐷 = [[[[[
[

0 0 0 0
0 𝜇2 0 0
0 −𝑝3𝑇∗𝑖 0 0
0 −𝑝3𝑇∗𝑢 0 0

]]]]]
]
.

(15)

6. Stability Investigation

For equations with delay there are two types of stability con-
ditions: delay independent conditions and delay dependent

conditions. Following the assumption that in the considered
system (1) the delay is decreasing in infinity to zero, below
we consider stability conditions that are delay independent.
Nevertheless, the researchmethod used here can be used also
to obtain delay dependent stability conditions [17].

To investigate stability of the linear stochastic delay dif-
ferential equations (12) consider the conditions for a matrix𝐴 = ‖𝑎𝑖𝑗‖ to be the Hurwitz matrix.

Definition 3. The trace of the 𝑘−th order of a 𝑛 × 𝑛-matrix 𝐴
is defined as follows:

𝑆𝑘 = ∑
1≤𝑖1<⋅⋅⋅<𝑖𝑘≤𝑛


𝑎𝑖1𝑖1 ⋅ ⋅ ⋅ 𝑎𝑖1𝑖𝑘⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
𝑎𝑖𝑘𝑖1 ⋅ ⋅ ⋅ 𝑎𝑖𝑘𝑖𝑘


, 𝑘 = 1, . . . , 𝑛. (16)

Here, in particular, 𝑆1 = Tr(𝐴), 𝑆𝑛 = det(𝐴), and𝑆𝑛−1 = ∑𝑛𝑖=1 𝐴 𝑖𝑖, where 𝐴 𝑖𝑖 is the algebraic complement of the
diagonal element 𝑎𝑖𝑖 of the matrix 𝐴.
Lemma 4 (see [17]). A 3 × 3-matrix 𝐴 is the Hurwitz matrix
if and only if

𝑆1 < 0,
𝑆1𝑆2 < 𝑆3 < 0. (17)

A 4 × 4-matrix 𝐴 is the Hurwitz matrix if and only if

𝑆1 < 0,
𝑆1𝑆2 < 𝑆3 < 0,
0 < 𝑆21𝑆4 < (𝑆1𝑆2 − 𝑆3) 𝑆3.

(18)

Lemma 5 (see [17]). Put Φ0(𝑃) = 𝐴𝑃 + 𝑃𝐴 +
diag{𝑝11𝜎21 , 𝑝22𝜎22 , 𝑝33𝜎23 , 𝑝44𝜎24}. If ̇𝜏(𝑡) ≤ 0 and for
some positive definite matrices 𝑃 and 𝑅 at least one of
the inequalities,

Φ0 (𝑃) + 𝑅 + 𝑃𝐷𝑅−1𝐷𝑃 < 0,
Φ0 (𝑃) + 𝑅 + 𝐷𝑃𝑅−1𝑃𝐷 < 0,
Φ0 (𝑃) + 𝐷𝑅𝐷 + 𝑃𝑅−1𝑃 < 0,

(19)

holds, then the zero solution of (12) is asymptotically mean
square stable.

Remark 6. Via Schur complement (see Appendix) instead
of the nonlinear Riccati type inequalities (19) one can use,
respectively, the conditions with the following linear matrix
inequalities (LMIs):

[Φ0 (𝑃) + 𝑅 𝑃𝐷
𝐷𝑃 −𝑅] < 0,

[Φ0 (𝑃) + 𝑅 𝐷𝑃
𝑃𝐷 −𝑅 ] < 0,

[Φ0 (𝑃) + 𝐷𝑅𝐷 𝑃
𝑃 −𝑅] < 0.

(20)
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Remark 7. For conditions (19) or (20) the matrix 𝐴 has be
the Hurwitz matrix; i.e., the conditions of Lemma 4 must be
hold.

6.1. Stability of the First Equilibrium. Conditions (18) for the
matrix 𝐴 given in (13) do not hold since 𝑆4 = 0. But putting𝑇1𝑖 = 0 and rejecting the equation for �̇�1𝑖 we obtain system
(12) for the equilibrium (𝐵∗1 , 𝐸∗1 , 𝑇∗1𝑢) = (𝑏𝜇−11 , 0, 0) with the3 × 3matrices

𝐴 = [[
[
−𝜇1 −𝑝1𝐵∗1 −𝑝2𝐵∗10 −𝜇2 0
0 0 𝑟 − 𝑝2𝐵∗1

]]
]
,

𝐷 = [[
[
0 0 0
0 𝑝4𝐵∗1 00 0 0

]]
]
.

(21)

Here 𝑆1 = −(𝜇1+𝜇2+𝑝2𝐵∗1 −𝑟), 𝑆2 = 𝜇1𝜇2+(𝜇1+𝜇2)(𝑝2𝐵∗1 −𝑟),
and 𝑆3 = −𝜇1𝜇2(𝑝2𝐵∗1 −𝑟). It is easy to see that if𝑝2𝐵∗1 > 𝑟, i.e.,𝑏𝑝2 > 𝑟𝜇1, then conditions (17) hold; i.e., the matrix 𝐴 given
in (21) is the Hurwitz matrix.

Using [17] we obtain that the inequalities

𝜇1 > 𝛿1,
𝜇2 > 𝑝4𝐵∗1 + 𝛿2,

𝑝2𝐵∗1 > 𝑟 + 𝛿4,
𝐵∗1 = 𝑏𝜇1 ,
𝛿𝑖 = 12𝜎2𝑖 , 𝑖 = 1, 2, 4

(22)

are sufficient conditions for asymptotic mean square stability
of the zero solution of system (12), (21). From conditions (22)
via Remark 2 the following statement follows.

Lemma 8. If

𝜇1 > 𝛿1,
𝜇1 (𝑟 + 𝛿4)𝑝2 < 𝑏 < 𝜇1 (𝜇2 − 𝛿2)𝑝4 , (23)

then the first equilibrium (𝐵∗1 , 𝐸∗1 , 𝑇∗1𝑢) = (𝑏𝜇−11 , 0, 0) of system
(12) is stable in probability.

Example 9. Let 𝜇1 = 1, 𝜇2 = 0.41, 𝑝2 = 0.28, 𝑝4 =0.12, 𝑟 = 0.078. Then via (23) possible interval for 𝑏 ∈(0.279, 3, 417). If 𝑏 = 1 and 𝜎21 < 2, 𝜎22 < 0.58, 𝜎24 < 0.404,
then the equilibrium (1, 0, 0, 0) is stable in probability.

6.2. Stability of the Second Equilibrium. For positivity of
the second equilibrium it is necessary to suppose that

𝑝4𝑏 > 𝜇1𝜇2. Calculating for system (12), (14) 𝑆𝑖, 𝑖 =1, 2, 3, 4, via Definition 3, we obtain that conditions (18)
hold:

𝑆1 = − (𝑏 (𝐵∗)−1 + 𝜇2 + 𝑝3𝐸∗ + 𝑝2𝐵∗ + 𝑝3𝐸∗ − 𝑟)
= −2.2889 < 0,

𝑆2 = (𝑏 (𝐵∗)−1 + 𝑝3𝐸∗) 𝜇2 + 𝑝1𝑝4𝐵∗𝐸∗ + 𝑏 (𝐵∗)−1
⋅ 𝑝3𝐸∗ + (𝑏 (𝐵∗)−1 + 𝜇2 + 𝑝3𝐸∗) (𝑝2𝐵∗ + 𝑝3𝐸∗
− 𝑟) = 1.6494 > 0,

𝑆3 = − [(𝜇2𝑝3𝐸∗ + 𝑏 (𝐵∗)−1 𝑝3𝐸∗ + 𝜇2𝑏 (𝐵∗)−1
+ 𝑝1𝑝4𝐵∗𝐸∗) (𝑝2𝐵∗ + 𝑝3𝐸∗ − 𝑟) + 𝜇2𝑝3𝑏 (𝐵∗)−1
+ 𝑝1𝑝3𝑝4𝐵∗ (𝐸∗)2] = −0.8115 < 0,

𝑆4 = (𝑝2𝐵∗ + 𝑝3𝐸∗ − 𝑟) (𝜇2b (𝐵∗)−1 + 𝑝1𝑝4𝐵∗𝐸∗)
⋅ 𝑝3𝐸∗ = 3.0938 ∗ 10−5 > 0,

𝑆1𝑆2 − 𝑆3 = −2.9639 < 0,
𝑆21𝑆4 = 16.2086 ∗ 10−5 < 2.4052 = (𝑆1𝑆2 − 𝑆3) 𝑆3.

(24)

Note however that two last equations of this system can be
considered separately. So, if

𝑝3𝐸∗ > 𝛿3, 𝑝2𝐵∗ + 𝑝3𝐸∗ > 𝑟 + 𝛿4,
𝐵∗ = 𝜇2𝑝4 , 𝐸∗ = 𝑝4𝑏 − 𝜇1𝜇2𝑝1𝜇2 > 0, (25)

or

𝑏 > 𝜇2𝑝4 (𝜇1 +
𝑝1𝑝3 𝛿) ,
where 𝛿 = max(𝛿3, 𝛿4 + 𝑟 − 𝜇2𝑝4𝑝2) ,

(26)

then the zero solution of two last equations of system (12), (14)
is asymptotically mean square stable [17].

From this it follows that for stability investigation of the
second equilibrium it is enough to investigate asymptotic
mean square stability of system (12) with

𝐴 = [−𝑏 (𝐵∗)−1 −𝑝1𝐵∗𝑝4𝐸∗ −𝜇2 ] ,

𝐷 = [0 0
0 𝜇2] ,

𝐶 (𝑧) = [𝜎1𝑧1 (𝑡) 0
0 𝜎2𝑧2 (𝑡)] .

(27)
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For this aim one can solve the nonlinear inequalities (19) or
to check feasibility of the LMIs (20) via MATLAB.

Example 10. Let 𝜇1 = 1, 𝜇2 = 0.41, 𝑝1 = 1.25, 𝑝2 = 0.28,𝑝3 = 1.1, 𝑝4 = 0.12, 𝑝5 = 0.003, 𝑟 = 0.078, and 𝛼 = 3.7.
The second equilibrium exists if 𝑏 > 𝜇1𝜇2𝑝−14 = 3.4167.
Checking the LMIs (20) for system (12), (27) we obtain that
in deterministic case (𝜎1 = 𝜎2 = 0) the zero solution of
the system is asymptotically stable for 𝑏 ≥ 3.417. In the
stochastic case for 𝜎1 = 0.45, 𝜎2 = 0.31 the zero solution
of system (12), (27) is asymptotically mean square stable for𝑏 ≥ 3.896. It means, for example, that for 𝑏 = 3.896 the
equilibrium (𝐵∗2 , 𝐸∗2 , 𝑇∗2𝑖, 𝑇∗2𝑢) = (3.4167, 0.1122, 0, 0) is stable
in probability.

Checking the LMIs (20) for the initial system (12), (14)
we obtain the close result: in the deterministic case the zero
solution of system (12), (14) is asymptotically stable for 𝑏 ≥3.417. In the stochastic case for 𝜎1 = 0.45, 𝜎2 = 0.31,𝜎3 = 0.5, and 𝜎4 = 1.4 the zero solution of system (12),
(14) is asymptotically mean square stable for 𝑏 ≥ 3.902.
Conditions (18) and (26) in this case naturally hold. For
example, for 𝑏 = 3.902 the equilibrium (𝐵∗2 , 𝐸∗2 , 𝑇∗2𝑖, 𝑇∗2𝑢) =(3.4167, 0.1136, 0, 0) is stable in probability.

Remark 11. Note that via (23), (26), for stability of the first
equilibrium must be 𝑟𝜇1/𝑝2 < 𝑏 < 𝜇1𝜇2/𝑝4 and for stability
of the second equilibrium must be 𝑏 > 𝜇1𝜇2/𝑝4.
6.3. Stability of the Third Equilibrium

Example 12. Put 𝜇1 = 1, 𝜇2 = 0.41, 𝑝1 = 1.25, 𝑝2 = 0.28,𝑝3 = 1.1, 𝑝4 = 0.12, 𝑝5 = 0.003, 𝛼 = 3.7, 𝐾 = 80,𝑟 = 0.078, and 𝑏 = 0.99. By given values of the parameters
via (6), (7) we obtain 𝑇∗3𝑢 = 11.19, 𝐹𝑢 = 0.0671, 𝐺𝑢 = 40.993,𝐻𝑢 = 15.0793, and 𝑅𝑢 = 1247.6 and via (5) the equilibrium is(𝐵∗, 𝐸∗, 𝑇∗3𝑖, 𝑇∗3𝑢) = (7.4126, 0.0015, 13961, 11.19). Checking
LMIs (20)we can conclude instability of this equilibriumeven
in the deterministic case. Similar calculations for different𝑏 < 1.7466 (via Remark 1) show that the third equilibrium
is unstable.

7. Conclusion

In this work we present the improvedmodel of BCG immun-
otherapy in superficial bladder cancer.This study investigates
stability of new treatment model with constant instillations
of BCG under stochastic perturbations. The model demon-
strates several stable states which depend on biologically
related parameters and initial conditions.

The innovation of our study is the involvement of CTL
cells, specific for the tumor antigen due to BCG infection.
Adding BCG to the tumor-immune interaction may increase
the immune response, which most benefit from the addition
of the antigen. These effector cells capture tumor cells after
time delay which has been used for maturation of these
effector cells. The entire reaction can take place only with
the presence of BCG. We added new terms in two equations
(the second and the forth) in system (1). The new terms

stand for the killing of uninfected tumor cells by effector
cells.

It is shown that the considered system has three equi-
libria describing the different states of the patient. Sta-
bility of these states under stochastic perturbations which
are directly proportional to the deviation of the patient’s
current state from the equilibrium state is investigated.
New sufficient conditions for stability in probability of
two equilibria and instability of the third equilibrium were
obtained using the theoretical method of Lyapunov function-
als and the numerical method of linear matrix inequalities
(LMIs).

In the first equilibriumwe obtain weak immune response
because 𝐸∗1 = 0. In addition BCG-infected tumor cells were
remained (𝑇∗1𝑖 > 0); that indicates cancer will not obligatorily
be eradicated, although this equilibrium is stable. In the
second equilibrium we receive 𝑇∗2𝑖 = 𝑇∗2𝑢 = 0; that means the
cancer could be eradicated after BCG immunotherapy with
dose 𝑏 > (𝜇2/𝑝4)(𝜇1 + (𝑝1/𝑝3)𝛿). This equilibrium has very
strong immune response 𝐸∗2 > 0 and it is stable.

The third equilibrium is unstable.
The dynamic behavior of the system investigated from

the point of view of local stability and a detailed analysis
on stability of equilibrium was examined. As proposed in
the paper research methods allow continuing and specifying
investigation of the considered model and getting its new
useful properties.

However, we have to note that this study has following
limitations:

(1) This model takes into account 3-biological processes
(tumor, immune system, and BCG interactions) only,
which are captured by 4 differential equations.

(2) We examine continued BCG treatment with a con-
stant rate 𝑏, although in a real life pulsed therapy and
variable rate can be used.

(3) The duration of BCG treatment is not time limited in
our model.

By capturing the main parameters of the BCG, maximum
tumor size, tumor growth rate, and immune response param-
eters, we create a siliconemodel and develop an algorithm for
eliminating cancer. We would like to raise awareness in the
community of urological-oncological doctors about the pos-
sibilities of mathematical modeling and receive quantitative
data to improve this model. The ability to plan and predict
by calculating a modulated dose of treatment can benefit
patients who are unable to take routine treatment because
of its serious side effects, as well as to patients who were
previously considered not to respond.

Appendix

The Third Equilibrium. Using 𝑇∗3𝑖 = 𝑅𝑢𝑇∗3𝑢, from the second
and the third equations (2), we obtain (5). Substituting (5)
into the last equation (2), we have

𝑟 (1 − 𝑇∗3𝑢𝐾 ) = 𝑝2𝐵∗ (1 + 1𝑅𝑢) . (A.1)
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Using (5), (6), and the representation 𝑝4𝐵∗ = 𝑝5𝑅𝑢𝑇∗3𝑢 − 𝐺𝑢,
from the first equation (2), we obtain

𝑏 = 𝐵∗ (𝜇1 + 𝑝2𝑇∗3𝑢 + 𝑝1𝑝2𝐵∗𝑝3𝑅𝑢)
= 𝐵∗ (𝜇1 + 𝑝2𝑇∗3𝑢 + 𝑝1𝑝2𝑝3𝑝4𝑅𝑢 (𝑝5𝑅𝑢𝑇∗3𝑢 − 𝐺𝑢))
= 𝑝2𝐵∗ (𝐻𝑢 − 𝑝1𝐺𝑢𝑝3𝑝4𝑅𝑢) .

(A.2)

From (A.1), (A.2), the representation (6) for𝑅𝑢 and (7) for𝑇∗3𝑢
follow.

Schur Complement. The symmetric matrix [ 𝐴 𝐵
𝐵 𝐶

] is nega-
tively definite if and only if 𝐶 and 𝐴− 𝐵𝐶−1𝐵 are both nega-
tively definite.
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