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Based on amino acid metabolism-related genes (AAMRGs), this study aimed at

screening out key prognosis-related genes and finding the underlying

correlation between the amino acid metabolism and tumor immune

microenvironment of colorectal cancer. A total of 448 amino acid

metabolism-related genes were obtained from MsigDB. The risk signature

was built based on differential expression genes, univariate Cox, and LASSO

analyses with 403 patients’ data downloaded from the TCGA database. Survival

analysis and independence tests were performed to confirm the validity of the

risk signature. Single-sample gene set enrichment analysis (ssGSEA), tumor

mutation burden (TMB), the score of tumor immune dysfunction and exclusion

(TIDE), the immunophenoscore obtained from The Cancer Immunome Atlas

database, and the IC50 of drugs were used to find the relationship among the

risk signature, immune status, immunotherapy response, and drug sensitivity of

colorectal cancer. We identified five amino acid metabolism-related genes for

the construction of the risk signature, including ENOPH1, ACAT1, ALDH4A1,

FAS, and ASPG. The low-risk group was significantly associated with a better

prognosis (p < 0.0001). In the entire set, the area under the curve (AUC) for 1, 3,

and 5 years was 0.717, 0.734, and 0.764, respectively. We also discovered that

the low-risk subgroup was related to more activity of immune cells, had higher

expression of some immune checkpoints, and was more likely to benefit from

immunotherapy. ssGSEA revealed that except the processes of glutamine

histidine, lysine, tyrosine, and L-phenylalanine metabolism, the other amino

acid metabolism pathways were more active in the samples with the low risk

scores, whereas the activities of synthesis and transportation of most amino

acids were similar. Hedgehog signaling, WNT/β-catenin signaling, mitotic,

notch signaling, and TGF-β signaling were the top five pathways positively

associated with the risk score. To sum up, AAMRGs were associated with the

immunemicroenvironment of CRC patients and could be applied as biomarkers

to predict the prognosis and immunotherapy response of patients.
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Introduction

According to the International Agency for Research on

Cancer, colorectal cancer (CRC) is currently one of the most

commonly diagnosed tumors and the leading causes of tumor

death worldwide (Sung et al., 2021). In recent years, it has been

confirmed that the immunotherapy which used immune

checkpoint inhibitors (ICIs) in metastatic CRC with deficient

mismatch repair (dMMR) status, significantly improved the 5-

year survival rate and overall survival (OS) of patients (Buchler,

2022). However, the biomarkers that predict the efficacy of ICIs

therapy, including programmed death protein legend 1(PD-L1),

mismatch repair deficiency, and tumor mutation burden (TMB),

are still unsatisfactory in identifying the whole beneficiaries (Jin

et al., 2022). To overcome this dilemma, researchers are still

searching for new predictive biomarkers. On the other side, while

continuing to study the genes associated with the tumorigenesis

and metastasis of CRC, researchers have also begun to try

developing drugs that target metabolic dependencies of

colorectal cancer.

It is an indisputable fact that cancer cells display different

metabolic patterns compared with normal cells (Hanahan and

Weinberg, 2011). In addition to glucose, tumor cells also differ in

the uptake and secretion of several amino acids (Jain et al., 2012;

Dunphy et al., 2018). Hosios et al. (2016) reported that it is amino

acids rather than glucose that are the dominant source of cell

mass in proliferating cancer cells. In addition, amino acids also

provide plenty of nitrogen to generate hexosamines, nucleotides,

and other nitrogenous compounds in rapidly proliferating cells

(Choi and Coloff, 2019). The amino acid metabolism also

influences tumor-specific immunity. Oh et al. (2020) found

that inhibiting the glutamine metabolism not only inhibits

tumor development but also suppresses the production and

recruitment of myeloid-derived suppressor cells (MDSCs). In

recent years, the combination of amino acids and

nanotechnology has attracted attention in drug delivery

strategy development, providing a new way for targeted

delivery of anti-tumor drugs (Er et al., 2021). Therefore, with

the continuous development of targeted cell metabolism therapy,

amino acid metabolism also has become one of the focuses of

attention. Strategies of targeting amino acid metabolism therapy

include inhibiting amino acid transportation, blocking amino

acid biosynthesis, and depleting amino acids (Butler et al., 2021).

Accumulating evidence has revealed that amino acid

metabolism is involved in the development and proliferation

of CRC, and targeting amino acid metabolism can be a promising

anti-CRC therapy. For instance, arginine and glutamine are

essential amino acids for colorectal cancer cells (Lieu et al.,

2020). SLC6A14 is an arginine transporter, and it has been

demonstrated that the upregulation of SLC6A14 plays a

pathogenic role in CRC (Gupta et al., 2005). Najumudeen

et al. (2021) found that SLC7A5, a glutamine antiporter, is a

promising target for therapy-resistant KRAS-mutant CRC, as

mutant KRAS changes the basal metabolism of the tumor,

increasing glutamine consumption to enhance proliferation.

Zhao et al. (2020) reported that the combination of

glutaminase inhibitor CB-839 with capecitabine preferentially

inhibits PIK3CA-mutant CRC.

These findings elucidated that amino acid metabolism plays a

vital role in colorectal cancer and tumor-related immunity.

However, current studies on amino acid metabolism are

mostly limited to a single gene or single amino acid. The

relationship between multi amino acid metabolism–related

genes and CRC remains largely unknown. Thus, we applied

bioinformatics techniques to investigate the role of amino acid

metabolism–related genes (AAMRG) in the prognosis and

tumor-related immunity of colorectal cancer.

Methods

Colorectal cancer data and amino acid
metabolism gene collection

The transcriptomic data (FPKM) of COAD with complete

clinical data were obtained from The Cancer Genome Atlas

(TCGA). This study only selected cases with primary colon

cancer and clinical follow-up data for analysis. We removed

genes with a mean expression less than 0.5, and FPKM data were

transformed by log2 (FPKM + 1) for subsequent analysis. We

screened out human amino acid metabolism pathways and

corresponding 448 genes in the Molecular Signature Database

(MsigDB) (Supplementary Tables S1, S2). The data analysis

flowchart is shown in Figure 1.

Identification of differential expression
genes and construction of the risk
signature

The limma package was used to identify the differential

expression genes (DEGs), and the screening criteria were set

as Log2FoldChange >1 and p-value < 0.05. The entire set was

randomly separated into training and testing sets at a 1:1 ratio,

using the “caret” package. Based on the result of DEGs, we

implemented a univariate Cox analysis to select the genes

significantly involved in prognosis risk. Thereafter, these genes

were subjected to the least absolute shrinkage and selection

operator (LASSO) analysis to exclude the over-fitting genes by

the “glmnet” package.

Validation of the AAMRG risk signature

We used the formula risk score �
∑n

i�1(Coef(RNA i) × exp(RNA i)) to construct the AAMRG
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risk signature. Exp (RNA) is the expression value of the included

AAMRGs, and coef (RNA) means the corresponding risk

coefficient of each included gene. We selected the median

value as the cutoff value to assign all samples into high-and

low-risk subgroups.

Then, principal component analysis (PCA) was applied to

evaluate the ability of the risk signature in distinguishing the

high-risk samples from low-risk samples in the entire set.

“Limma” and “scatterplot3d” packages were used in this

process.

To investigate the prognostic prediction ability of genes, we

performed survival analysis, the time-dependent receiver

operating characteristic (timeROC), and calculated the area

under the curve (AUC) based on the “survival,” “survminer,”

and “timeROC” packages.

Risk score and immune activity analysis

The immune score of each CRC sample was determined

using the ESTIMATE method. Meanwhile, we used the single-

sample Gene Set Enrichment Analysis (ssGSEA) method to

evaluate the activity of immune infiltrating cells and

compared the expression level of 31 immune checkpoints

between the two groups. “Estimate,” “GSEABase,” and

“GSVA” packages were used in this process.

Tumor mutation burden (TMB) files containing somatic

mutation information were obtained from TCGA. The

difference in TMB level between the two risk subgroups was

evaluated and displayed by using “maftools,” “ggpubr,” and

“ggplot2” packages. Kaplan–Meier (KM) analysis was used to

analyze survival differences among subgroups with different

TMB levels and risk statuses. “Survival” and “survminer”

packages were utilized in this process.

Risk score and immunotherapy response
analysis

The tumor immune dysfunction and exclusion (TIDE)

algorithm created by Liu et al. can predict the immunotherapy

response of each patient (Jiang et al., 2018). Their research

showed the outcome of TIDE was even more accurate than

PD-L1 level and mutation load. The TIDE scores of samples were

FIGURE 1
Flowchart for analyzing the amino acid metabolism–related genes of COAD.
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downloaded from the TIDE website (http://tide.dfci.

harvard.edu).

We also downloaded the immunophenoscore data of samples

from The Cancer Immunome Atlas (TCIA) database (https://

tcia.at/home). TCIA provided this scoring scheme for

quantifying immunophenotype, which could predict the

responses of samples to anti-cytotoxic T lymphocyte antigen-4

(CTLA-4) and anti-programmed cell death protein 1 (anti-PD-1)

therapies (Charoentong et al., 2017). The “ggplot2” and “ggpubr”

packages were performed in the abovementioned processes.

The drug sensitivity data of 60 cell lines were acquired from

the CellMiner website (https://discover.nci.nih.gov/cellminer/).

We selected anti-CRC drugs commonly used in clinics for

subsequent drug sensitivity analysis. The process of predicting

the half-maximal inhibitory concentration (IC50) of these drugs

was conducted using the “oncoPredict” packages (Maeser et al.,

2021).

Independence test of predictive ability and
construction of the prognostic nomogram

We identified all the independent prognostic factors by

univariate and multivariate Cox regression analysis with the

“survival” package. Thereafter, we established a nomogram,

simultaneously calculated the Concordance index (C-index) of

this predictive model, and drew calibration curves to assess the

OS probability at 3 and 5 years by applying the “rms” package.

Functional enrichment analyses

We performed ssGSEA to evaluate the activity of amino acid

metabolism–related pathway activity within the two risk

subgroups, and a p-value < 0.05 was considered statistically

significant. We also calculated the ssGSEA score of the

hallmark pathway and found the pathways most correlated

with risk score (p-value < 0.05). We displayed the

top5 activated and suppressed pathways in the high-risk

subgroup using the GSEA algorithm by clusterProfiler and

enrichplot packages. The pathways of amino acid gene sets

and hallmark were acquired from the MsigDB (http://www.

gsea-msigdb.org/gsea/msigdb/collections.jsp) (Supplementary

Table S3).

Immunohistochemical verification of the
identified AAMRG signature

The expression of AAMRGs in CRC tissues and normal

tissues would be verified by the immunohistochemistry (IHC)

and hematoxylin-eosin (HE) staining results from the Human

Protein Atlas website (HPA, https://www.proteinatlas.org/).

Statistical analysis

The statistical analyses were all implemented using R

software (version 4.1.2). The quantitative variables and

qualitative variables were shown in mean ± standard deviation

and number (ratio%) format, separately. t-test or Wilcoxon test

was used to compare the normal or non-normal distributed

quantitative variables between the two subgroups. Chi-square

analysis and Fisher’s test were used to compare the qualitative

variables between the two subgroups.

Results

Construction of the risk signature on
AAMRGs

A total of 448 genes associated with amino acid metabolism

were obtained from MsigDB, and 50 DEGs were identified

(Figures 2A,B). Then, we randomly divided 366 COAD

samples into the training set and test set, and the clinical

characteristics of the two sets were shown in Table 1. In the

training set, univariate Cox analysis screened out five genes

related to the prognosis of CRC (p < 0.05) (Figure 2C). We

further conducted a LASSO analysis to construct the risk

signature (Table 2). The risk score was determined as follows,

risk score = −0.5068×ENOPH1 + −0.1147×ACAT1

+ −0.5140×ALDH4A1 + −0.6532×FAS + −2.2738×ASPG. All

five genes were protective factors. Depending on the median

value, we assigned samples to high-risk and low-risk subgroups

(Figures 2D and E). The results of PCA proved that five

AAMRGs in the risk signature had elevated efficiency and

could separate the low- and high-risk groups well

(Figures 2F–H).

Survival analysis and validation of the risk
signature

Our risk signature split the samples into high-risk and low-

risk subgroups (Figures 3A, B, G, H, M, and N), and the

heatmaps reflected the 5 AAMRGs were downregulated in the

high-risk groups (Figures 3C, I, and O). KM analysis showed that

the high-risk subgroup had a significantly worse prognosis than

the low-risk subgroup (p < 0.0001) (Figure 3D). This outcome

could be observed in the testing set and the overall set as well

(Figures 3J and P). The accuracy of the risk signature was

investigated by calculating the AUCs for 1, 3, and 5 years. In

the training set, the AUCs for 1, 3, and 5 years were 0.719, 0.753,

and 0.792, respectively (Figure 3E). In the testing set, the AUCs

for 1, 3, and 5 years were 0.715, 0.701, and 0.719, respectively

(Figures 3K). In the entire set, the AUCs for 1, 3, and 5 years were

0.717, 0.734, and 0.764, respectively (Figure 3Q). The ROC
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curves for clinical characteristics of each set are displayed in

Figures 3F, L, and R. These outcomes illustrated that our risk

signature was stable and did well in predicting the overall survival

of CRC.

Tumor mutation burden and immune-
related analyses

As shown in Figures 4A–D, the TMB was a little higher in

the high-risk subgroup, and the genes in the top ten mutation

rates also differed between the two groups. Nevertheless, the

TMB had no significant difference in the two subgroups on the

whole (Figure 4E). To explore whether the risk signature or

TMB is better in predicting survival, we separate the samples

into high- and low-mutation subgroups based on the TMB

value. There was no statistical difference between the two

groups (Figure 4F). Whereas the low-mutation-low-risk

group had the highest survival rate, and the high-mutation-

high risk had the lowest survival rate (Figure 4G). This

suggested that, compared with TMB, our model’s

prediction ability was stronger.

FIGURE 2
Identification of prognosis-related AAMRGs by differential expression gene (DEG) analysis, univariate Cox analysis, and LASSO analysis. (A)
Volcano plot of AAMRGs (p < 0.05). (B) Heatmap of DEGs in colorectal cancer samples. (C) The forest plot of prognosis-related DEGs. (D,E).
Construction of risk signature based on LASSO Cox analysis. (F) PCA of the entire gene set. (G) PCA of 50 DEGs set. (H) PCA of the five AAMRGs in the
risk signature.
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The outcome of ESTIMATE revealed that the high-risk

subgroup had a lower immune score (Figure 5A). Next, as

shown in the comparison plot of each immune cell activity,

the activity of the CD4+ T cell, activated CD8+ T cell, T follicular

helper (Tfh) cell, type 17 helper cell (Th17), type 2T helper cell

(Th2), activated/immature/plasmacytoid dendritic cell,

activated/immature B cell, macrophage, MDSC, monocyte,

neutrophil, eosinophil cell, and mast cell decreased in the

high-risk group (Figure 5B). The expression of plenty of

immune checkpoints in the high-risk group was also reduced,

including CD200R1, CD244, CD27, CD28, CD48, CD80, CD86,

CTLA4, HAVCR2, LAG3, HHLA2, TNFRSF18, and TNFRSF9

(Figure 5C). Particularly, the expression of CTLA-4 and

LAG3 was lower in the high-risk group. In addition, though

PDCD-1 (PD-1) and CD274 (PD-L1) did not differ significantly

between the two groups, there was still a downward trend in the

high-risk group. The outcomes of the above immune-related

analysis suggested that the risk signature was correlated to the

immune landscape of CRC.

Immunotherapy response analysis

We also found that the TIDE score in the low-risk group was

strongly lower, which means low-risk patients may respond

better to immunotherapy (Figure 5D). Furthermore, the plot

of immunophenoscore from the TCIA database showed that low-

risk patients with double-positive CTLA4 and PD-1 and single-

positive CTLA4 or PD-1 had higher immunophenoscores, which

means low-risk patients might benefit more from anti-PD and

anti-CTLA4 therapies (Figures 5E–H). These results proved that

TABLE 1 Characteristics of patients in the training and testing sets.

Total (n = 366) Training set (n = 184) Validation set (n = 182) p-value

Age

<65 147 (40.2%) 72 (39.1%) 75 (41.2%) >0.05
≥65 219 (59.8%) 112 (60.9%) 107 (58.8%)

Gender

Female 166 (45.4%) 81 (44.0%) 85 (46.7%) >0.05
Male 200 (54.6%) 103 (56.0%) 97 (53.3%)

T stage

T1 11 (3.0%) 8 (4.3%) 3 (1.6%) >0.05
T2 66 (18.0%) 35 (19.0%) 31 (17.0%)

T3 251 (68.6%) 120 (65.2%) 131 (72.0%)

T4 38 (10.4%) 21 (11.4%) 17 (9.3%)

N stage

N0 217 (59.3%) 114 (62.0%) 103 (56.6%) >0.05
N1 85 (23.2%) 38 (20.7%) 47 (25.8%)

N2 64 (17.5%) 32 (17.4%) 32 (17.6%)

M stage

M0 307 (83.9%) 150 (81.5%) 157 (86.3%) >0.05
M1 53 (14.5%) 30 (16.3%) 23 (12.6%)

Unknow 6 (1.6%) 4 (2.2%) 2 (1.1%)

Pathologic stage

Stage Ⅰ 63 (17.2%) 37 (20.1%) 26 (14.3%) >0.05
Stage Ⅱ 140 (38.3%) 66 (35.9%) 74 (40.7%)

stage Ⅲ 99 (27.0%) 43 (23.4%) 56 (30.8%)

stage Ⅵ 53 (14.5%) 30 (16.3%) 23 (12.6%)

Unknow 11 (3.0%) 8 (4.3%) 3 (1.6%)

TABLE 2 Prognostic genes generated by LASSO Cox analysis.

Gene Full name Coef

ENOPH1 Enolase-phosphatase 1 −0.506778617

ACAT1 Acetyl-CoA acetyltransferase 1 −0.114712865

ALDH4A1 Aldehyde dehydrogenase 4A1 −0.513999531

FAS Fas −0.653248882

ASPG Asparaginase −2.273842625
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FIGURE 3
The plots of survival analyses, the distribution of patients’ survival times and survival status, and the heatmap of the expression of the five
AAMRGs in the training set, the testing set, and the entire set, respectively. (A,G,M) The plots of risk score in the training set, the testing set, and the
entire set, respectively. (B,H,N) The distributions of patients’ survival times and survival status in the training set, the testing set, and the entire set,
respectively. (C,I,O). Heatmaps of the expression matrix of the five AAMRGs in the training set, the testing set, and the entire set, respectively.
(D,J,P) KM curves in the training set, the testing set, and the entire set, respectively. (E,K,Q) Time-dependent ROC curves in the training set, the
testing set, and the entire set, respectively. (F,L,R) Clinical feature ROC curves in the training set, the testing set, and the entire set, respectively.
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the risk signature has the potential to be applicated to predict the

immunotherapy response of CRC patients.

Drug sensitivity prediction

The results showed that except for dabrafenib, the sensitivity

to commonly used antitumor drugs for CRC in the two groups

was similar. The patients with high-risk scores had higher

sensitivity to dabrafenib (Figure 6).

Independent prognostic analysis and
construction of the prognostic nomogram

We employed chi-analysis to assess the association of the

risk signature with clinical characteristics of CRC. The result

indicated that the patients with high-risk scores may present

more lymph node metastasis and more advanced stage

(Figure 7A). Combined with clinical factors, the outcomes

of univariate Cox analysis exhibited that risk score, T, N, M,

and stage were independent predictive factors (Figure 7B). In

FIGURE 4
Correlation between the risk signature and tumor mutation burden (TMB) level. (A,B).Waterfall plot of the top ten genes’ TMB status in the two
groups. (C,D). Summary of the maf files of the two groups. (E) Boxplot of the comparison of TMB levels in the two groups. (F) Survival analysis of the
patients with different TMB levels. (G) Survival analysis of the patients with different TMB and risk levels.
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addition, multivariate Cox analysis suggested age and risk

score were independent predictive factors (Figure 7C). We

also built a nomogram and drew the calibration curve plot of

3- and 5-year OS probability (Figure 7D). The C-indexes of

the training set and testing set nomogram model were

0.809 and 0.808, respectively. As shown in the figure, the 3-

and 5-year survival time predictive values for the two

subgroups were both similar to the corresponding real

survival time. These results indicated the excellent

prediction ability of this nomogram (Figures 7E and F).

Enrichment analysis of amino acid
metabolism pathways and hallmark
pathways

The comparison of amino acid pathway activity in the two

risk subgroups was visualized in heatmaps based on ssGSEA

analysis. Except for the processes of glutamine histidine, lysine,

tyrosine, and L-phenylalanine metabolism, the other amino acid

metabolism pathways were more active in the patients with low-

risk scores (Figure 8A). Except for the processes of glutamine

FIGURE 5
Comparison of immune-related analyses and immunotherapy response in the two subgroups. (A) Boxplot of the ESTIMATE score in the two
subgroups. (B) Boxplot of the activity of immune infiltration cells in the two groups. (C) Boxplot of the expression level of immune checkpoint in the
two subgroups. (D) TIDE score. (E–H) Immunophenoscore difference of COAD with different status of CTLA or PD-1. (p < 0.05 *, p < 0.01 **, p <
0.001 ***, and p < 0.0001 ****).
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transport and L-histidine transmembrane transport, the

synthesis and transportation of most amino acids were similar

in the two risk subgroups (Figure 8B). The hallmark pathways

most associated with risk scores were visualized in the heatmap

(Figure 8C). Hedgehog signaling, WNT/β-catenin signaling,

mitotic, notch signaling, and TGF-β signaling were the top

five pathways positively associated with the risk score.

Peroxisome, pancreas beta cells, IL6/JAK/STAT3 signaling,

estrogen response late, and mTORC1 signaling were the top

five pathways negatively associated with risk score. In addition,

the GSEA plots showed the top five enrichment scores of

pathways that were activated or suppressed in the high-risk

group (Figures 8D and E).

The verification of the five AAMRGs in the
Human Protein Atlas

The results of immunohistochemistry (IHC) in the Human

Protein Atlas (HPA) database showed that compared with

normal tissues, ENOPH1, ACAT1, ALDH4A1, FAS, and

ASPG are downregulated in cancer tissue than in normal

tissue. These outcomes were consistent with our previous

results (Figure 9).

Discussion

CRC is a highly heterogeneous gastrointestinal tumor with

high incidence and mortality worldwide (Sung et al., 2021). Due

to the dissatisfaction with the results of targeted therapy and

immunotherapy, it is necessary to develop alternative therapies.

Since Otto Warburg discovered that tumor tissues utilized much

more glucose than normal tissues in the 1920s, the altered

metabolism of several amino acids in tumor tissues has also

been gradually revealed (Hosios et al., 2016; Vettore et al., 2020).

Furthermore, drugs targeting several amino acid metabolisms

have been shown to inhibit the growth and invasion of colorectal

cancer cells, for instance, the glutaminase inhibitor, CB-839,

could enhance the antitumor activity of capecitabine and

cetuximab (Cohen et al., 2020; Zhao et al., 2020).

We screened out five key genes to establish the risk signature

based on the result of univariate cox and LASSO analyses,

including ENOPH1, ACAT1, ALDH4A1, FAS, and ASPG.

The survival analysis showed that the patients with high-risk

scores had a worse prognosis, and the AUC of the risk signature

was high. The risk score was an independent predictive factor for

CRC no matter in univariate COX or multivariate COX analysis

combined with clinical factors. In the nomogram integrating risk

score with clinical factors, our risk score had the highest weighted

score. The nomogram also had a high C-index and accuracy.

Compared with earlier research (Ren’s 10-gene signature), our

signature’s 5-years AUC was higher than Ren’s and was more

concise with only five genes (Ren et al., 2022). These outcomes

indicated our model was robust and performed well in predicting

the survival of colorectal cancer patients.

The five genes in the model and their corresponding proteins

all play important roles in amino acid metabolism. ACAT1,

whose full name is acyl-coenzyme A cholesterol acyltransferase 1,

is an enzyme involved in pathways of the tricarboxylic acid cycle,

isoleucine degradation, ketogenic pathway, and ketolysis (Chen

et al., 2019). The decrease of ACAT1 could inhibit the interaction

among these metabolisms (Goudarzi, 2019; Min et al., 2020).

Previous studies suggested that deficiency in ACAT1 activity

FIGURE 6
Comparison of drug sensitivity between the high- and low-risk groups.
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mainly affected ketolysis (Korman, 2006; Sass, 2012; Goudarzi,

2019). The accumulation of beta-hydroxybutyrate, which is a

more prevalent ketone body in CRC, could promote

proliferation, invasion, and self-renewal potential of colorectal

cancer cells (Shakery et al., 2018). Liu et al. (2022) discovered that

the gene expression level of ACAT1 was obviously lower in CRC

than in normal colorectal tissues, and decreased ACAT1 was

strongly correlated to a worse prognosis of CRC, which is

consistent with our result. The catalysis of aldehyde

dehydrogenase 4A1 (ALDH4A1) is the final step of both

proline and hydroxyproline catabolism (Bogner et al., 2021).

Therefore, the deficiency of ALDH4A1 could lead to the

accumulation of proline, which sustains the proliferation and

survival of colorectal cancer cells (Namavar et al., 2021; Alaqbi

et al., 2022). FAS, the death receptor for FASL of cytotoxic T

lymphocytes, plays a significant role in suppressing the

progression and metastasis of colorectal cancer (Gu et al.,

2020; Merting et al., 2022). It was reported that the expression

of FAS is dramatically downregulated in metastatic human

colorectal cancer (Gu et al., 2020). ASPG, asparaginase,

reduces the concentration of L-asparagine, L-glutamine, and

glycine, three amino acids that are important components in

the synthesis of purine and pyrimidine rings. The decrease of

ASPG leads to the increase of asparagine, which supports tumor

growth. A vivo research demonstrated that asparagine depletion

could obviously inhibit the tumor growth of KRAS-mutant CRC

cells (Hanada et al., 2021). Enolase-phosphatase 1 (ENOPH1),

whose protein is an enzyme that participates in L-methionine

FIGURE 7
Independent prognostic analysis and construction of the prognostic nomogram. (A) Correlation between the risk signature and the clinical
factors. (B,C) Forest plots for univariate COX and multivariate COX analyses based on risk score and the clinical factors. (D) Nomogram of COAD
patients. (E) Calibration curves for the prediction of 3- and 5-year overall survival of COAD patients in the training set. (F) Calibration curves for the
prediction of 3- and 5-year overall survival of COAD patients in the training set.
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biosynthesis, has been discovered to enhance the progression and

invasion of glioma and hepatocellular carcinoma but has not

been reported in colorectal cancer (Zhuang et al., 2019; Wang

et al., 2021). The function of ACAT1, ALDH4A1, and FAS in

colorectal cancer has been verified by previous studies,

participating in the progression of CRC. However, there are

no direct reports of ENOPH1 and ASPG on CRC, this study was

the first to report that ENOPH1 and ASPG were associated with

the prognosis of CRC. Our discovery might provide a new

biomarker of CRC to be explored for follow-up research.

The results of drug sensitivity prediction showed that the

patients with high-risk scores had higher sensitivity to

dabrafenib, and the sensitivity of the two groups to commonly

used antitumor drugs was similar. It was reported that dabrafenib

FIGURE 8
Function enrichment analyses. (A) Heatmap of ssGSEA of the amino acid metabolism pathways. (B) Boxplot of ssGSEA of the amino acid
synthetic and transport pathways. (C) Heatmap of the top five positive or negative related with risk score. (D) GSEA plot of the top five activated
pathways with the highest enrichment scores. (E) GSEA plot of the top five suppressed pathways with the lowest enrichment scores. (p < 0.05 *, p <
0.01 **, p < 0.001 ***, and p < 0.0001 ****).
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FIGURE 9
Immunohistochemistry and HE staining of five prognosis-related AAMRGs in the Human Protein Atlas database.
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and trametinib showed efficacy in patients with BRAF

V600-mutant mCRC (Corcoran et al., 2015). The relationship

between amino acid metabolism and the efficacy of dabrafenib

requires further study.

Furthermore, we also conducted immune-related analysis on

this model. The overall immune score of the patients with the

low-risk scores was higher, indicating that immune infiltration

was more abundant in the tumor microenvironment in the low-

risk subgroup. The ssGSEA value of immune cells and the

expression levels of immune checkpoints in the two subgroups

showed that the activity of many immune cells and the

expression levels of the majority of immune checkpoints in

the low-risk samples were higher than those in the high-risk

samples. The increase of immune checkpoints in the

microenvironment leads to the immune cells differentiating

into a state of inhibitory high expression, inhibiting anti-

tumor immunity. Based on such immune cell infiltration and

their activation status, the low-risk samples could be assigned to

inflamed tumors (Nishikawa and Koyama, 2021). According to

previous research, this kind of tumor immune

microenvironment would have a stronger response to

immunotherapy (Bai et al., 2021).

To verify this hypothesis, we obtained the TIDE score and

TCIA immunophenoscore to predict the samples’ sensitivity to

immunotherapy. The results showed the patients with the low-

risk scores had lower TIDE scores; in other words, they were

more positive toward immune therapy. Low-risk patients with

double-positive CTLA4 and PD-1 and single-positive CTLA4 or

PD-1 had higher immunophenoscores, which indicated that the

low-risk group may respond stronger to anti-PD-1/PD-L1 or

anti-CTLA-4 therapies. To sum up, this 5-AAMRGmodel might

be useful in screening patients before immune checkpoint

inhibitors (ICI) therapy. At present, PD-L1 tumor proportion

score, TMB, mismatch repair deficiency, and microsatellite

instability are being used to select patients who could benefit

from ICI treatment (Yi et al., 2018). In our study, the predictive

ability of this model is independent of mismatch repair deficiency

and TMB, which means that our 5-gene signature may

supplement the identification of potential beneficiaries under

the current conditions.

The relationship between the risk signature and the

immune landscape of CRC may be one of the main reasons

for its good predictive ability. To be specific, the activity of a lot

of tumor-infiltrating lymphocytes and myeloid cells in the low-

risk samples was higher than that in the high-risk samples. The

high infiltration and activation of CD8+ T cells are positively

associated with the prognosis of CRC, suppressing metastasis

development of colorectal cancer (Camus et al., 2009; Bruni

et al., 2020). D4+T cell subsets had a complicated influence on

tumor progression, including Th2, Th17, Tfh and so on (Galon

and Bruni, 2020; Ben Khelil et al., 2022). Th17 cells could

enhance anti-tumor immunity by producing IL-17 to induce

the polarization of M1 macrophage and recruiting anti-tumor

immune cells, for example, NK and CD8+ T cells (Al Omar

et al., 2013; Guéry and Hugues, 2015; Jang et al., 2017). B cells,

as the main effector cells of the adaptive immune response, are

reported that increased B cell count is related to a better clinical

prognosis of CRC (Edin et al., 2019). And Tfh cells were crucial

for the maturation and activation of B cells (Bai et al., 2021).

The interaction between Tfh cell and B cell contributes to the

formation of anti-tumor immune structures (Galon et al.,

2013). The role of the Th2 cell in CRC is controversial; it

contributed to both antitumor and protumor responses by

activating NK cells and inducing M2 macrophage

polarization, respectively (De Monte et al., 2011; Lorvik

et al., 2016). The functional deficiency of DC was associated

with tumor-escape mechanism, metastasis initiation, and

treatment resistance in CRC (Legitimo et al., 2014; Subtil

et al., 2021). Accumulating evidence has shown that myeloid

cells, including tumor-associated neutrophils, tumor-associated

macrophages, eosinophils, mast cells, and MDSCs play an

important role in coordinating cancer-associated

immunosuppression and immune tolerance (Engblom et al.,

2016; Mizuno et al., 2019; Kos et al., 2022). In addition, the

amino acid metabolic reprogramming also could happen in the

immune cells. Keshet et al. (2018) reported that the alteration of

glutamine could promote the tumor-infiltrating T cells and

impact tumor progression through other cells in the

microenvironment. On the whole, the higher the activity of

the normal amino acid metabolism pathway, the higher the

likelihood of benefiting from immunotherapy, and the specific

effects of the amino acid metabolism on the tumor immune

environment were complex. Further research is needed to

validate this result.

Through the comparison of clinical factors between the

two risk subgroups, we discovered that a higher risk score

means more lymph node metastasis and a more advanced

stage. On the other hand, the heatmap of ssGSEA analysis

showed that except for the processes of glutamine, histidine,

lysine, tyrosine, and L-phenylalanine metabolism, the other

amino acid metabolism pathways were less active in the high-

risk subgroup. However, the synthesis and transportation of

most amino acids did not change much. We suspected that as

the tumor became more malignant and invasive, its amino

acid metabolism pattern changed, and amino acids were

synthesized and transported for abnormal metabolism

pathways rather than normal amino acid metabolism

pathways. The underlying metabolism of this phenomenon

needs more research in the future.

Combing the results of ssGSEA and GSEA of hallmark

pathways, Hedgehog signaling, WNT/β-catenin signaling,

mitotic, myogenesis, Notch signaling, and TGF-β signaling

were activated in the high-risk group. Epithelial–mesenchymal

transition (EMT) is a key biological process for epithelial-derived

tumor cells to acquire the ability of migration and invasion

(Guarino et al., 2007). WNT/β-catenin signaling and TGF-β
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signaling pathway were vital pathways inducing EMT (Gu et al.,

2019; Zhou et al., 2022). Abnormal activation of the Hedgehog

signaling pathway can lead to the occurrence and progression of

colorectal cancer (Guo et al., 2022). The enhancement of mitotic

spindle and myogenesis pathways indicated that cell division,

microfilament cytoskeleton, and stress fibers formation process

were active (Caporali et al., 2021). The downregulation of

pancreas beta cells, oxidative phosphorylation, peroxisome,

and mTORC1 signaling showed the disturbance of nutrient

metabolism of samples in the high-risk subgroup. These

outcomes suggested that tumor cell proliferation and

metastasis activity were more intense in the high-risk

subgroup, and these pathways might be the key anti-tumor

pathways for targeting amino acid metabolic therapy.

Our findings could provide novel perspectives for the

formulation of individual precision medical programs. For

instance, the signature can be applied as a supplement in

identifying the potential beneficiaries of immunotherapy.

Meanwhile, corresponding targeted drugs could be developed

based on our new-discovered tumor-related biomarkers and

changes in amino acid metabolic pathways, and the treatment

could be carried out according to different features of amino acid

metabolism in different CRC patients.

Undeniably, our study had some limitations. First, as the data

in this research were downloaded from public databases, the

AAMRG signature and its relationship with immune therapy

response still need to be validated and revised by more

retrospective and prospective studies. Second, part of the results

of the amino acid metabolism in CRC samples has not been

experimentally verified. In the future, we can use more

bioinformatics tools such as the feature-level fusion (FLF)

method (Jin and Sinicrope, 2022), explore the possibility of

combining targeting amino acid metabolism therapy with

copper-metal organic frameworks (Akhavan-Sigari et al., 2022),

and conductmore laboratory and clinical studies to further explore

the underlying impact of amino acid metabolism in tumor

prognosis and immune therapy response of CRC.

Conclusion

In summary, we established a risk signature comprising five

AAMRGs (ENOPH1, ACAT1, ALDH4A1, FAS, and ASPG), and a

higher score of this model was associated with worse survival in

CRC. In addition, its prediction efficiency was well-validated. The

immune-related analysis showed that AAMRGs were associated

with the immune status of the tumor microenvironment; patients

with low-risk scores were more positive toward immune therapy,

which can be used as a predictor of efficacy. Our gene function

enrichment analysis offered a new direction for the exploration of

molecular mechanisms and targeting amino acid metabolism

therapy for CRC.
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