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Antiviral and non-toxic effects of silver nanoparticles onto in vitro cells infected with
coronavirus were evaluated in this study using High-Resolution Magic-Angle Spinning
Nuclear Magnetic Resonance (HR-MAS NMR) spectroscopy. Silver nanoparticles were
designed and synthesized using an orange flavonoid—hesperetin (HST)—for reduction of
silver(I) and stabilization of as obtained nanoparticles. The bio-inspired process is a simple,
clean, and sustainable way to synthesize biogenic silver nanoparticles (AgNP@HST) with
diameters of ~20 nm and low zeta potential (−40mV), with great colloidal stability
monitored for 2 years. The nanoparticles were used for the fabrication of two types of
antiviral materials: colloids (AgNP@HST spray) and 3D flexible nanostructured composites.
The composites, decorated with AgNP@HST (0.05 mmol L−1), were made using cellulose
nanofibers (CNF) obtained from orange peel and graphene oxide (GO), being denominated
CNF@GO@AgNP@HST. Both materials showed high virucidal activity against
coronaviruses in cell infection in vitro models and successfully inhibited the viral activity
in cells. HR-MAS 1H-NMR technique was used for determining nanomaterials’ effects on
living cells and their influences on metabolic pathways, as well as to study viral effects on
cells. It was proven that none of the manufactured materials showed toxicity towards the
intact cells used. Furthermore, viral infection was reverted when cells, infected with the
coronavirus, were treated using the as-fabricated nanomaterials. These significant results
open possibilities for antiviral application of 3D flexible nanostructured composite such as
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packaging papers and filters for facial masks, while the colloidal AgNP@HST spray can be
used for disinfecting surfaces, as well as a nasal, mouth, and eye spray.

Keywords: silver nanoparticles, hesperetin, graphene oxide, cellulose nanofibers (CNF), composites, virus, HR-MAS
1H-NMR spectroscopy

INTRODUCTION

Due to their antimicrobial, i.e., anti-bacterial, -fungal, and -viral
properties, silver(I) compounds, and silver(0) nanoparticles
(AgNPs) have been extensively studied, mainly in the fields of
biomedicine (Du et al., 2018; de Barros et al., 2018; Noor et al.,
2019; de Faria et al., 2014; de Moraes et al., 2015; Wang et al.,
2015; Sahu et al., 2016; Rathore et al., 2020). When used in low
amounts, silver is non-toxic to humans (Abou Aitah et al., 2020).
There are many possible applications for AgNPs as bioactive
agents for a wide variety of viruses such as Human
immunodeficiency virus type 1 (HIV-1), Influenza, Hepatitis B
virus (HBV), Tacaribe virus (TCRV), Herpes simplex virus type 1
(HSV-1), Monkeypox virus, and Respiratory syncytial virus
(Jones, 2020; Du et al., 2018; de Moraes et al., 2015; Abou
Aitah et al., 2020). Mechanisms used by silver nanoparticles
against virus replication and spread extent from inactivation of
the virus before its interaction with the host cells, thus stopping its
entry into the cell, to competing with virus binding to the cell.
Some AgNPs may interfere in the viral attachment by blocking
the virus binding and penetrating the host cell (Matharu et al.,
2020; Innocenzi and Stagi, 2020; Du et al., 2018). Other
mechanisms include interaction with the proteins, glycosides,
or lipids on the virus surfaces and, subsequently, with the DNA or
RNA in their interior (de Barros et al., 2018; Noor et al., 2019; Ye
et al., 2015; de Faria et al., 2014; de Moraes et al., 2015; Wang
et al., 2015; Sahu et al., 2016; Rathore et al., 2020; Abou Aitah
et al., 2020). The AgNP bioactivity depends on their sizes, shapes,
zeta potentials, and stabilizing agents covering the surface of the
particles. For example, nanoparticles with diameters from 1 to
10 nm can attach to the HIV-1 in a rather regular spatial
arrangement with the viral envelope and bind to the cysteine
(-SH) residues of HIV-1 glycoprotein (Abou Aitah et al., 2020).
Regarding the stabilizing agents, it is possible to functionalize
nanoparticles with tailored capping that mimics the host cell virus
receptors, thus substituting host-cell binding sites with the
designed nanomaterial. If the core material, in this case—silver
(0) nanoparticles, is nontoxic to the host cells, can be considered
an ideal option as an antiviral (de Barros et al., 2018; Noor et al.,
2019; de Faria et al., 2014; de Moraes et al., 2015; Wang et al.,
2015; Abou Aitah et al., 2020; Socol et al., 2002; Zhu et al., 2000).
This strategy has already been explored for viruses that use
heparin sulfate-mediated cell entry. Most, but not all, antiviral
AgNPs are in the 10–80 nm size range, where smaller ones exhibit
more pronounced toxic effects on cells and human cell models.
Since larger AgNPs can also exhibit cells toxicity, the best choice
for an ideal antiviral activity would be nanoparticles within the
15–25 nm diameter range, with non-toxic and biocompatible
agents capping their surfaces (Du et al., 2018; de Faria et al.,
2014; de Moraes et al., 2015; Sahu et al., 2016; Rathore et al., 2020;

Abou Aitah et al., 2020; Yazdanshenas and Shateri-Khalilabad,
2013).

Coronaviruses are spherical, highly organized, and tailored
nanoparticles (around 100 nm) composted from lipids, proteins,
and RNA, which infect animals and humans. The coronaviruses
that caused Severe Acute Respiratory Syndrome (SARS), Middle
East Respiratory Syndrome (MERS), and, more recently,
COVID-19, are considered extremely harmful (Jones, 2020;
Rose and Weiss, 2009; Matharu et al., 2020; Innocenzi and
Stagi, 2020; Du et al., 2018). To obtain positive and disease-
solving immune responses, the virus load must be maintained as
low as possible (Jones, 2020). SARS-CoV-2, which provokes
COVID-19, is unusually stable toward pH change and
unstable when exposed to detergents. It is also omnipresent in
the air and there are no efficient antiviral drugs for COVID-19
treatment (Jones, 2020; Rose and Weiss, 2009). Therefore, it is
very important to design, develop and apply innovative virucidal
nanomaterials that act in the early stages of infection, potentially
stopping viral replication and the proliferation of the virus
(Matharu et al., 2020; Innocenzi and Stagi, 2020; Du et al.,
2018; de Barros et al., 2018; Noor et al., 2019; Ye et al., 2015;
de Faria et al., 2014; de Moraes et al., 2015).

Inspired by the interesting and remarkable antiviral properties
of the AgNP colloids, we designed a novel route for producing
bio-based AgNPs exploring, for the first time, flavone isolated
from orange peels as a reductive and stabilizing agent. The
proposed bio-based process is clean, fast (almost instant), and
yields very stable colloids.

The murine coronavirus (Mouse Hepatitis Virus—MHV-3)
infection of the fibroblast L929 cell line was used as a model for
this study (Cadagan andMerry, 2013). MHV-3 is a virus from the
Coronaviridae family that counts on 31 Kb single-strand positive
RNA genome replication in the cytoplasm of the infected cells. It
is very similar to the SARS-CoV-2 and is recommended for
studying infections with coronaviruses (Garcia et al., 2021; Rose
and Weiss, 2009). Using this model, the AgNP@HST showed
excellent bioactivity properties and virucidal effect, inhibiting
coronavirus cell infection to a 99.9% extent.

Aiming to design and develop not only colloids as an effective
virucidal nanomaterial, but 3D flexible composite nanomaterials
were also fabricated and decorated with the AgNP@HST. For this,
cellulose nanofibers (CNFs) were employed as one composite
component, due to their excellent mechanical, absorptive, and
physical properties, with graphene oxide being the other
component (de Barros et al., 2018; de Faria et al., 2014;
Rathore et al., 2020). Graphene oxide (GO) is known for its
antiviral properties explored previously on DNA and RNA
viruses (Matharu et al., 2020; Du et al., 2018; Ye et al., 2015;
de Faria et al., 2014; deMoraes et al., 2015;Wang et al., 2015), and
herein against coronavirus. The cellulose nanofibers with
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diameters of 22 nm, isolated from orange peels in an acid-base
water extraction process, were used. Graphene oxide (GO) is a
hydrophilic and virucidal nanomaterial, where the virus is
expected to be stopped before reaching the host cell due to
collision, adsorption, and electrostatic interactions with the
negatively charged GO (Matharu et al., 2020; Du et al., 2018;
Ye et al., 2015; de Faria et al., 2014; de Moraes et al., 2015; Wang
et al., 2015). Thus, flexible 3D nanocomposites were fabricated in
an easy four-step process, consisting of 1) preparation of
nanomaterials’ suspension (CNF and GO), 2) mixing,
homogenization, and filtering, 3) drying, and 4) decoration
with the AgNP@HST. The fabricated material (CNF@GO@
AgNP@HST) showed excellent mechanical properties, non-
toxicity toward cells, and potent virucidal effects by almost
complete neutralization of the virus titer (99.99%).

High-resolution magic angle spinning nuclear magnetic
resonance (HR-MAS NMR) spectroscopy is applied as an
analytical technique for the study of intact semi-solid
biological samples such as cells and tissue (Stanisic et al.,
2022; Vermathenet al., 2015; Henoumon et al., 2015). This
technique acquires high-resolution NMR spectra, useful to
identify small molecules and their pathways through
metabolomics through metabolomics (Kim et al., 2011).
Samples can be analyzed without prior processing or
destruction, being the main advantage of this method over
others. Intracellular metabolic variations and compositional
changes of the cell culture on and in the cell are studied in
different applications of nanoparticles. HeLa cells and their
metabolic variation in interaction with silica nanoparticles is
an example of NMR-based metabolic analyses (Feng et al.,
2013). In this study, the high-resolution magic angle spinning
1H nuclear magnetic resonance spectroscopy (HR-MAS 1H
NMR) was used for the evaluation of cells metabolites and
cells infected with the virus, both in contact with the studied
materials, namely AgNP@HST, GO, CNF, GO@AgNP-HST, and
CNF@GO@AgNP@HST.

MATERIAL AND METHODS

Hesperetin (2S)-5,7-dihydroxy-2-(3-hydroxy-4-
methoxyphenyl)-2,3-dihydrochromen-4-one (>95%)
(Supplementary Figure S1A), silver(I) nitrate, sodium
hydroxide, and hydrogen chloride were purchased from Sigma
Aldrich (St. Louis, United States). The cellulose nanofibers were
obtained from the orange peels by sequential extraction in a
three-step process: 1) removal of pectin and hemicelluloses, 2)
bleaching the cellulose with hydrogen peroxide, and 3)
nanonization of cellulose using an ultrasound [Mariño et al.,
2021). Graphene oxide was prepared by the Hummers’ method
(Yu et al., 2016).

Silver Nanoparticles Synthesis and
Characterization
Biogenic silver nanoparticles were synthesized using a 4-step
process: 1) hesperetin was dissolved in alkaline solution (sodium

hydroxide, NaOH, 0.005 mol L−1) to a final 1 mmol L−1

concentration, 2) a solution of silver (I) nitrate (1 mmol L−1)
was added dropwise to a hesperetin solution in a 1:1 (v v−1) ratio,
and then the 3) colloid pH of 7.4 was reached using a diluted
solution of hydrochloric acid (HCl 0.05 mol L−1). The average
hydrodynamic diameter of nanoparticles was determined by
Dynamic Light Scattering (DLS) and the surface charge was
measured in a Zetasizer Nano series equipment (Malvern
Instruments). The potential was measured by electrophoretic
mobility using dispersions of nanoparticles in a KCl (USB)
solution at 1.0 mmol L−1 concentration and a Zetasizer Nano
ZS analyzer (Malvern Instruments Corp., Malvern,
United Kingdom). The AgNP@HST morphology was
evaluated by Transmission Electron Microscopy (TEM). After
1:100 (v v−1) dilution of 0.5 mmol ml−1 of colloid silver
nanoparticles in water, samples were deposited on carbon-
coated film supported in 400 mesh copper grids (Ted Pella)
and observed using a Libra 120 (Zeiss) microscope equipped with
a spectrometer in-column “omega” and imaging system Olympus
(OSIS), with Cantega G2 camera and iTEM software.

3D Flexible Nanostructured Composites
Manufacture
The flexible 3D nanostructured composites weremanufactured from
cellulose nanofibers (CNFs), graphene oxide nanostructured powder
(GO), and decorated with silver nanoparticles (AgNP@HST). The
composites were obtained, by vacuum filtration, in the form of
freestanding layers/sheets. The manufacture comprised: 1) the
preparation of cellulose nanofibers. Cellulose nanofibers were
added to the aqueous solution of sodium hydroxide (NaOH,
Sigma-Aldrich), 7% by mass, and sonicated, in an ice bath (4°C),
using a 7mm probe (diameter of the tip) at 70% amplitude and
90W (Hielscher, Model UP400ST) with a pulse of 2 s (Mariño et al.,
2021). This mixture remained in the freezer for 1 h at 1.5°C; 2)
Graphene oxide (GO) was suspended in deionized water by
ultrasound for 10min at room temperature (25°C); 3) AgNP@
HST were added dropwise into the as-obtained GO suspension
and sonicated for another 5min or sprayed onto newly obtained
GO@CNF after their mixture and filtration; 4) The suspensions of
CNF and pristine GO or GO@AgNP@HSTwere mixed and filtered,
leading to the manufacture of freestanding composites; and 5) GO@
CNF papers decorated with AgNP@HST were obtained by vacuum
filtration and 24 h drying at room temperature (25°C). The
nanocomposite materials were characterized using Scanning
Electron Microscopy (SEM, Dual Beam Nova 200 Nanolab, FEI)
with Energy Dispersive X-ray Spectroscopy (EDS) for elemental
analysis (Oxford Instruments). Themechanical tests were performed
in a Universal Testing Machine (MTS, Alliance RT/5, 1000 N)
following the ASTM D 882-02 and ASTM D 790 standards for
tensile and flexure characterization, respectively. For tensile stress, a
10 mm min−1 speed was used, while a 5 mm min−1 test speed was
applied for flexure.

Cytotoxicity and Antiviral Activity
For cytotoxicity and viral inhibition analyses, fibroblast L929 cell
lines (ATCC® CCL-1TM) were incubated in Dulbecco minimal
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essential culture medium (DMEM) supplemented with 10% fetal
bovine serum (FBS) with 5% CO2 at 37° C. Subsequently, the L929
cells were seeded into 96-well plates (2 × 105 cells wells−1 of
density) were incubated, at 37° C with 5% CO2, with the obtained
nanomaterials for observing their cytotoxicity effects. The cell
viability was directly examined in an inverted microscope
(quadruplicate). The antiviral activity (EN 14476: 201923,
ASTM E1053-11) was assessed using the 50% endpoint
method by serial dilution. This procedure consisted in making
contact, at room temperature, between the strain murine hepatitis
virus (MHV-3 Coronaviridae lineage (108 mL−1, 500 µL) (Garcia
et al., 2021), a surrogate for SARS-CoV-2, and the nanomaterials.
Subsequently, the treated virus solution was serially diluted and
transferred to confluent monolayer L929 cells. Once the
incubation process (48 h in a 5% CO2 at 37°C) ended, the
cytopathic effect of viral infection was verified and correlated
with the cell and virus controls. Every assay was performed in
quadruplicate. The virus titer was calculated using the Reed and
Muench method (1938) (Reed and Muench, 1938). The results
were expressed as a percentage of viral inactivation compared to
untreated viral control (virus titer) in means ± standard deviation
(SD). Each experiment tested a single sample formulation and
replicated it four times. All data are reported as mean ± standard
deviation (SD, Origin 8.1 SR3, v8.1.34.90, United States).

Cell Preparation for NMR Experiments
Fibroblast L929 cell lines (ATCC® CCL-1TM) were grown as
described in the previous section (2.3) in flasks to obtain at least
8 × 106 cells mL−1 for each of the investigated conditions: 1) cells,
2) cells treated with the AgNP@HST (1:10 and 1:100, v v−1), 3)
cells infected with the virus, and 4) infected cells treated with: 1)
AgNP@HST (1:10 and 1:100, v v−1), 2) GO (1:10 and 1:100, v v−1),
3) GO@AgNP@HST (1:10 and 1:100, v v−1), and 4) CNF@GO@
AgNP@HST (1:10 and 1:100, v v−1). The L929 cells adhered to the
surface area of the bottom of the flasks were carefully prepared for
loading into 4 mm, 12 µL rotors. The culture medium was
removed, and the cells were washed with 8 ml of phosphate
buffer saline (PBS, 2 mol L−1 NaCl, 2 mol L−1 KCl, 0.2 mol L−1

Na2HPO4, 1 mol L−1 KH2PO4). Next, a solution of trypsin in PBS
(1:3, v v−1) was added and incubated for 1–2 min. After
trypsinization, a culture medium was put into the flask to
inactivate trypsin and prevent cell damage. The cell suspension
was centrifuged at 1,500 rpm for 5 min (Eppendorf 5702) and the
culture medium was carefully aspirated so that the pellet did not
fracture. The pellet was then suspended in deuterated water and
centrifuged (1,000 rpm for 5 min) and the samples for NMR
analyses (metabolomic analysis) were obtained (Kaebiscg et al.,
2017). A total of eight samples were prepared and characterized,
using the same amount of cells for all pellets.

HR-MAS 1H-NMR Analyses
HR-MAS 1H-NMR spectroscopy measurements were obtained at
9.4T (400.21 MHz for 1H), on a DRX 400 Bruker NMR
spectrometer, using a spinning rate of 3 kHz, and a 4-mm
triple resonance gradient HR-MAS probe. Sodium
trimethylsilyl-[2,2,3,3-2H4]-1-propionate (TMSP) was used as
an internal standard. The spectra were acquired with a

presaturation pulse of 1.5 s, the acquisition time of 4.63 s (32k
points), recycle delay of 4 s, and accumulation of 256 transients.
In addition, before data acquisition, a Carr-Purcell-Meiboom-Gill
(CPMG) spin-echo train was used by applying 120 cycles
separated by 1.2 ms of echo time. The free induction decay
(FID) signal was multiplied by a 1.0-Hz (0.0025 ppm) line-
broadening factor, as well as a zero-filled two-fold for Fourier
transform. 2D NMR 1H-1H TOCSY spectra were recorded with a
Bruker/Topspin 3.0 DIPSI2 pulse sequence, the acquisition time
of 232 ms, mixing time of 70 ms, spectral width of 11 ppm, and a
relaxation delay of 3.0 s, with 64 scans. All spectra were processed
and analyzed using the Topspin 3.0 software (Bruker BioSpin).
Online databases (Human Metabolome Database, HMDB) were
used for assignments.

RESULTS

Eco-friendly and bio-based silver nanoparticles were synthesized
and tested against cell models for viral infection. Hesperetin, a
natural polyphenol, was used for the synthesis and stabilization of
the AgNP@HST. The formation of biogenic silver nanoparticles
was quick, observed by an instant color change, from transparent
to light orange, and monitored using UV-Vis measurements.
Thus, the Plasmon band at 404.5 nm was observed. Ag(I) was
reduced to the Ag(0) through oxidation of substituted aromatic
rings of hesperetin, while non-consumed HST interacted with the
formed AgNP and stabilized them to AgNP@HST (Figure 1).
The nanoparticles showed mean diameters of 22 nm (Figure 1
and Supplementary Figure S1), a low Zeta potential of −40 mV,
and a polydispersity index (PDI) below 0.3. The synthesized
AgNP@HST colloid showed stability for at least 24 months.

The flexible nanostructured composites were formed from
cellulose nanofibers (CNF, Supplementary Figure S2) and
graphene oxide nanostructured powder (GO), decorated using
in or ex situ processing, with silver nanoparticles (Supplementary
Figure S3). The freestanding composite layers showed very good
mechanical (Table 1) and virucidal (Table 2) properties. The use
of CNF provided a better malleability and higher bending
resistance for the GO freestanding films, with a uniform
decoration by AgNP@HST (Figures 1B,C).

Regarding the mechanical resistance to tensile, it was observed
an improvement of the Young modulus for composites based on
CNF (Table 1). This can be due to the formation of a more
resistant network provided by the cellulose nanofibers (Sun et al.,
2010). Moreover, the mixtures of the two main mechanical
components brought a higher resistance to flexure, preventing
breaks with low tensions (10 mm maximum flexure used).
Bending is exactly the mechanical deformation encountered
when applying the composites as mask filters, indicating that,
for this application, the mechanical properties of our composites
are granted.

The fibroblast L929 cells infected with Murine Hepatitis Virus
type 3 (Supplementary Figure S4) were used as a coronaviruses
model system for studying the effects of the viral infection
(Supplementary Figure S5). The designed nanomaterials were
tested for toxicity (Table 2) and antiviral activity (Table 3).
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The samples were mixed with viruses and inoculated in the
permissive cell line. Upon entering the cell successfully, the virus
produces a cytopathic effect characterized by the production of
syncytia and destruction of the cohesion of the cell monolayer.
After 1 h of incubation, all tested materials provided a reduction

of viral activity, in a standardized unit, of 99.99%, as shown in
Table 3.

The following conditions were investigated for the HR-MAS
1H-NMR experiments: 1) culture of L929 cells as a comparison
standard (Figure 2); 2) culture of L929 cells infected with the
virus MHV-3 (Figure 3); 3) culture of L929 cells with the MHV-3
virus and AgNP@HST (1:100, v v−1) and 4) culture of L929 cells
with the MHV-3 virus and GO@AgNP@HST (1:10, v v−1). The
HR-MAS 1H-NMR spectra are shown in Figures 2–4, while the
spectra of the last two conditions are shown in Figure 4. The
addition of nanomaterials was the same for healthy or infected
cell sample treatments, using concentrations that inhibit the
spread of the MHV-3 virus but do not disrupt the L929 cells
as can be seen in Figure 2, where the identified metabolites in the

FIGURE 1 | (A) TEM image of AgNP@HST showing the distribution of particles with 22 nm in diameter (scale bar = 100 nm). (B) SEM image of a CNF@GO@
AgNP@HST composite decorated with AgNP@HST as 20 nm bright spots (scale bar = 500 nm) (C)GO sheet decorated with AgNP@HST particles (Spectrum 5) and its
EDS graph.

TABLE 1 | Mechanical performance of the tested nanomaterials/composites.

Samples Tensile modulus (GPa) Flexural modulus (GPa)

CNF@AgNP@HST 0.41 12.6
GO@AgNP@HST 0.11 11.78
CNF@GO@AgNP@HST 0.52 14.0

TABLE 2 | Toxicity data of the tested nanomaterials/composites.

Cell line L929

Samples Dilution v v−1 % Cytotoxicity Cytotoxicity

AgNP@HST 1:1 1.50 Not toxic
AgNP@HST 1:10 0.25 Not toxic
GO 1:10 2.50 Very low toxicity
GO@AgNP@HST 1:10 2.50 Very low toxicity
CNF@GO@AgNP@HST 1:10 0.25 Not toxic

AgNP@HST, bio-based silver nanoparticles; GO, graphene oxide; GO@AgNP@HST,
nanocomposites obtained using graphene oxide decorated with the AgNP@HST; CNF@
GO@AgNP@HST, 3D nanocomposites using CNF, GO, and AgNP@HST.

TABLE 3 | Antiviral activity of the tested nanomaterials/composites.

Cell line L929 infected with the virus MHV-3

Samples Reduction of viral infection in % Effects

AgNP@HST 99.99 ± 0.004 Virucide
GO 99.99 ± 0.004 Virucide
GO@AgNP@HST 99.99 ± 0.002 Virucide
CNF@GO@AgNP@HST 99.99 ± 0.005 Virucide

AgNP@HST, bio-based silver nanoparticles; GO, graphene oxide; GO@AgNP@HST,
nanocomposites obtained using graphene oxide decorated with the AgNP@HST; CNF@
GO@AgNP@HST, 3D nanocomposites obtained using CNF, GO, and AgNP@HST.
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healthy cells (1–36) were also present in the cells that were treated
with AgNP@HST just to exemplify nanomaterial effects on cells.

The viral effects were devastating regarding cell metabolism, as
shown in Figure 3 and Supplementary Table S2. There were
observed many spectral differences in cells metabolites, mostly in
the following spectral regions: (I) 0.8–2.4 ppm assigned to lipids,
being more pronounced in the cells infected with the virus; (II)
3.0–4.5 ppm, pointing to glucose and amino acids decrease in the
infected cells, and (III) 5.5–9.0 ppm presenting almost no picks
for the infected cells. The lipid, fatty acids aliphatic chains (-CH3

and -CH2-), cholesterol (-CH3 group), cholesterol esters (-CH3

group), then, unsaturated fatty acids (-CH = CH-) loads showed
increases in the MHV-3 infected cells, while all other metabolites
showed decreases (Supplementary Table S2). The infected cells
suffered changes in anabolic pathways that led to fatty acids,
cholesterol, and lipids’ syntheses (phospholipids, PL), which were
strongly activated, because of the viral replication and the need to
construct (synthesize) and organize (build) new viral
nanostructures, principally made from PL, RNA, and proteins.
Intense nucleotide biosynthesis and alterations in the pentose
phosphate pathway were also observed in the samples of MHV-3
infected cells with consequent RNA synthesis for the newly
synthesized viral particles (MHV-3 genetic load). Almost all

cell metabolites from the TCA cycle were depleted in the
infected cells. Other metabolic pathways were activated in the
infected cells, such as glutaminolysis, and glycolysis which
depleted amino acids and glucose cells’ levels, which were
explored for the viral proteins’ synthesis and energy
requirements for intensive biosynthetic processes, respectively.
These alterations in metabolism were expected, as infected cells
use metabolic responses to survive, and adapt their metabolism
by exploring alternative supplies for survival, such as for the TCA
cycle, for example, by supplying glutamine to the TCA cycle.
Also, a decrease in glutathione concentration was measured in the
MHV-3 infected cells samples, which points to oxidative stress,
probably caused by the intensive anabolic activity.

The observed harmful viral effects were reverted when cells
were treated with the designed nanomaterials. Cell metabolomic
profiles (Figure 4) showed that there are no evident differences
between the cell metabolites, after infection when treated with
AgNP@HST (Figure 4, b-1). The infected cells with the addition
of other nanomaterials, namely GO (Figure 4, b-2), and GO@
AgNP@HST (Figure 4, b-3), showed the same sets of cells
metabolites in comparison to the cells grown in a healthy
environment during the culture growth, indicative of the
preserved metabolism despite the viral loads. It was seen that

FIGURE 2 | HR-MAS spectra showing: (A) 1H-NMR CPMG of fibroblast cells L929, with the exclusion of HDO, 4.80 ppm, (B) 1H-NMR CPMG of fibroblast cells
L929 treated with the AgNP@HST. Spectra were acquired with Bruker AVANCE III 400 MHz at 25° C. For the metabolites’ assignments, see Supplementary Tables
S1, S2.
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glucose, amino acids (alanine, glutamate, glutamine, leucine,
valine, isoleucine, threonine, lysine, tyrosine, and
phenylalanine, Supplementary Table S1), lipids, nucleotides,
pentose phosphate pathway metabolites, then, choline,
phospholipids, cholesterol, cholesterol esters, and lipids
showed concentration levels equal or similar to ones measured
for the healthy cells. Therefore, the cells re-established their
metabolism when the infected cells were treated with the
nanomaterials. These findings indicate that the designed
nanomaterials had no toxic effects on the cells and that the
viral MHV-3 infection effects were reverted, pointing to the
nanomaterials’ strong antiviral activity.

DISCUSSION

This work aimed at the design and development of
biocompatible virucidal materials, such as bio-based silver
nanoparticles, and 3D flexible nanostructure composite
materials, to be successfully used against coronaviruses.
Silver nanoparticles have been prepared using hesperetin, a
citrus fruit bioflavonoid. The design of hesperetin coatings on
the silver(0) surface targeted the formation of highly
biocompatible nanoparticles with enhanced virucidal
effects. The one-step synthesis, completed in a few seconds,
lead to stable colloids, with relatively uniform and highly

dispersed AgNP@HST. It is important to highlight that it is
the first time silver nanoparticles are obtained using
hesperetin as the reducing and stabilizing agent. The
AgNP@HST can be used as prepared for direct applications
on surfaces and sprays for topical use (eyes, skin), nasal or
mouth rinses, or as antiviral agents decorated onto 3D flexible
nanostructured materials.

Cellulose nanofibers prepared from orange peels were used
as hydrophilic and resistant matrices which, together with the
graphene oxide, enabled to fabrication of flexible 3D
nanostructures, further decorated with the AgNP@HST.
This is also the first flexible nanomaterial made from
orange peel cellulose nanofibers that are highly water-
absorptive, up to six-fold superior when compared to
cotton. As drops, droplets, and aerosol derived from the
infected person’s saliva play a crucial role in the
transmission of severe acute respiratory syndrome (SARS-
CoV-2), the designed flexible 3D nanomaterials can provide
an easy passage for purifying air, absorbing water, and
neutralizing or binding to the viral particles
(Supplementary Figue S6). It is important to mention that
the viral particles are around 90–110 nm large and might
interact with the AgNP@HST or GO or CNF. As the AgNP@
HST particles are placed on the surface of the material and
within its thin layer, they are the first to interact with the virus,
followed by graphene oxide and CNF.

FIGURE 3 | 1H-NMR CMPG HR-MAS spectra of the fibroblast cells infected with the virus (MHV-3—upper panel, b-0 Fibroblast L929 infected with the virus), and
the healthy fibroblast cells (b-0 Fibroblast L929), acquired using Bruker AVANCE III 400 MHz at 25° C, from 0.5 to 9.0 ppm (with the exclusion of HDO, 4.8 ppm).
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The MHV-3, prototype group II coronavirus, has been used as
a model for the study of coronavirus replication and pathogenesis
as exhibits great similarities with the SARS-CoV-2 virus. The viral
infection changed fibroblast cells’ metabolites, principally in two
spectral regions, lipids (more pronounced in the infected cells)
and amino acids. Infected cells did not show 5.98 and 7.97 ppm
peaks, which correspond to the nucleotides UDP and UTP. Also,
peaks at 5.53 and 5.57 ppm that correspond to the multiples of
N-acetylglucosamine and N-acetylgalactosamine were not found
(Supplementary Tables S1, S2). These metabolites correspond to
amino-, nucleotide sugar metabolism, and pyrimidine
metabolism. O-N-Acetyl-D-glucosamine regulates cellular
responses such as protective response to stress, modulates cell
growth and division, and regulates gene transcription. Besides, O-
N-acetyl-D-glucosamine-modified proteins are involved in
sensing the nutrient status of the surrounding cellular
environment and adjusting the activity of cellular proteins
accordingly. A single N-acetylglucosamine moiety, linked to
serine or threonine residues on nuclear and cytoplasmic
proteins (-O-GlcNAc), is a ubiquitous post-translational
protein modification. Nine sugar nucleotides can be classified
depending on the type of nucleoside forming them: UDP-Plc,
UDP-Gal, UDP-GlcNAc, UDP-GlcUA, UDP-Xyl, GDP-Man,
GDP-Fuc, and CMP-NeuNAc. Observing the nucleotide sugar

metabolism pathways, it should be noted that the nucleotide
sugars play important roles as donors of important residues of
sugar, vital to glycosylation, and polysaccharides’ synthesis. The
ability of HR-MAS 1H-NMR to explore the metabolic status
within healthy and virus-infected cells helped to understand the
physiological and pathological transformations provoked by the
virus (Supplementary Tables S2, S3). Consequently, detailed
insights into the metabolic mechanisms reverted with the use of
the designed nanomaterials, were provided. Furthermore, it was
observed that none of the tested nanomaterials were toxic to cells,
at least under the investigated conditions and quantities.

The mechanisms of action of AgNP@HSP can be linked to Ag
(0) and Ag (I) joint actions, by probable AgNP@HST oxidation to
Ag (I), and then by Ag (I) ions interactions with available
biomolecules. As shown in Supplementary Figure S6, AgNP@
HST surrounded SARS-CoV-2 viral particles (TEM images), and
the viral proteins and PL are the first targets when considering the
antiviral effect of AgNP@HST.

CONCLUSION

The bio-based and green silver nanoparticles (AgNP@HST)
were successfully synthesized using hesperetin as a reductive

FIGURE 4 | HR-MAS 1H-NMR spectra in 0.0–4.5 ppm region. Charts depict, from top to bottom: (b-1) infected fibroblast L929 cells with the virus MHV-3 in the
presence of AgNP@HST (dilution 1:10, v v−1), (b-2) infected fibroblast L929 cells with the virus MHV-3 in the presence of GO (dilution 1:10, v v−1), and (b-3) infected
fibroblast L929 cells with the virus MHV-3 in the presence of GO@AgNP@HST (dilution 1:10, v v−1).
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and stabilizing agent. The nanoparticles exhibited a mean
diameter size of 22 nm, low zeta potential (−40 mV), and
stability for at least 24 months. The nanoparticles showed
spherical morphology, the predominance of Ag(0), and
excellent virucidal effects against coronavirus. The AgNP@
HST were used to decorate two 3D flexible and nanostructure
materials graphene oxide, and composite obtained from
cellulose nanofibers (CNF) and GO. Both nanomaterials
showed high surface area, and good mechanical properties,
while immobilization of AgNP@HST occurred on the surface
of GO. The nanomaterials were cell-friendly, as cells
maintained their morphology, growth rates, and intact
metabolism according to the HR-MAS 1H-NMR analyses.
Our results strongly suggest that all designed materials,
especially AgNP@HST and CNF@GO@AgNP@HST, can
stop the spread of the virus since, for all in vivo tests
performed using virus-infected cells, these tailored materials
blocked the virus and did not harm the cells. Finally, it is very
important to state that none of the designed and fabricated
nanomaterials were toxic to the fibroblast cells, thus being safe
for use in medical applications. The presented results are
important, as they can assist in the management of
coronaviruses, which can provoke pandemics and millions
of deaths in a short time. The use of the fabricated 3D
materials is promising for air sterilization, principally in the
medical environment, and sanitization purposes.

Strengths and Limitations
There are some limitations of the current study such as still
limited knowledge on a molecular basis regarding mechanisms
involved in antiviral effects of the studied nanomaterials,
although the cell infection with the virus was evaluated with
success, and also materials’ effects on cells and cells infected with
the virus were thoroughly investigated.

Future Perspectives
Work is now in progress for the characterization of the CNF@
GO@AgNP@HST composites regarding their porosity and
permeability to better evaluate their filtering performance.
Materials’ reuse, re-activation, recycling, and also, thermal, and
structural properties of 3D materials are underway.
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