
Radiotherapy and Oncology 146 (2020) 66–75
Contents lists available at ScienceDirect

Radiotherapy and Oncology

journal homepage: www.thegreenjournal .com
Review Article
Quantitative imaging for radiotherapy purposes
https://doi.org/10.1016/j.radonc.2020.01.026
0167-8140/� 2020 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Abbreviations: ADC, apparent diffusion coefficient; DCE, dynamic contrast-
enhanced; DW-MRI, diffusion-weighted MRI; FDG, fluorodeoxyglucose; GTV, gross
tumour volume; ROI, region of interest; SNR, signal-to-noise ratio; STARD,
standards for reporting of diagnostic accuracy; SUV, standard uptake value; QA,
quality assurance; QIB, quantitative imaging biomarker; QIBA, quantitative imaging
biomarker alliance.
⇑ Corresponding author at: 15 Cotswold Road, London SM2 5NG, United

Kingdom.
E-mail address: oliver.gurney.champion@icr.ac.uk (O.J. Gurney-Champion).
Oliver J. Gurney-Champion a,⇑, Faisal Mahmood b,c, Marcel van Schie d, Robert Julian e,
Ben George f, Marielle E.P. Philippens g, Uulke A. van der Heide d, Daniela Thorwarth h, Kathrine R. Redalen i

a Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom; bDepartment of Oncology, Odense University
Hospital; cDepartment of Clinical Research, University of Southern Denmark, Odense, Denmark; dDepartment of Radiation Oncology, the Netherlands Cancer Institute, Amsterdam,
The Netherlands; eDepartment of Radiotherapy Physics, Royal Surrey NHS Foundation Trust, Guildford; fRadiation Therapy Medical Physics Group, CRUK/MRC Oxford Institute for
Radiation Oncology, University of Oxford, United Kingdom; gDepartment of Radiotherapy, University Medical Center Utrecht, The Netherlands; h Section for Biomedical Physics,
Department of Radiation Oncology, Eberhard Karls University of Tübingen, Germany; iDepartment of Physics, Norwegian University of Science and Technology, Trondheim, Norway

a r t i c l e i n f o
Article history:
Received 19 November 2019
Received in revised form 22 January 2020
Accepted 29 January 2020
Available online 27 February 2020

Keywords:
Biomarkers
Tumor
Multiparametric magnetic resonance
imaging
Positron-emission tomography
Radiotherapy
Multimodal imaging
Review
a b s t r a c t

Quantitative imaging biomarkers show great potential for use in radiotherapy. Quantitative images based
on microscopic tissue properties and tissue function can be used to improve contouring of the radiother-
apy targets. Furthermore, quantitative imaging biomarkers might be used to predict treatment response
for several treatment regimens and hence be used as a tool for treatment stratification, either to deter-
mine which treatment modality is most promising or to determine patient-specific radiation dose.
Finally, patient-specific radiation doses can be further tailored to a tissue/voxel specific radiation dose
when quantitative imaging is used for dose painting. In this review, published standards, guidelines
and recommendations on quantitative imaging assessment using CT, PET and MRI are discussed.
Furthermore, critical issues regarding the use of quantitative imaging for radiation oncology purposes
and resultant pending research topics are identified.
� 2020 The Authors. Published by Elsevier B.V. Radiotherapy and Oncology 146 (2020) 66–75 This is an

open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Introduction

From treatment planning to response monitoring, imaging is
central to ensure optimal outcome from radiotherapy treatment
[1]. However, in radiotherapy, most imaging routines assess rela-
tive image signals merely to determine the location and size of
tumours. Utilizing the full potential of modern imaging also
includes assessing tissue function and biological state using quan-
titative imaging biomarkers (QIBs) [2]. The QIB alliance (QIBA)
defines quantitative imaging as ‘‘the extraction of quantifiable fea-
tures from medical images for the assessment of normal or the
severity, degree of change, or status of a disease, injury, or chronic
condition relative to normal” and QIB as ‘‘an objective characteris-
tic derived from an in vivo image measured on a ratio or interval
scale as an indicator of normal biological processes, pathogenic
processes, or a response to a therapeutic intervention” [2].

Quantitative imaging can play a major role in radiotherapy,
where tissue sensitivity to treatment is related to microscopic pro-
cesses, such as metabolism (i.e. as measured by PET, MRI), hypoxia
(PET, MRI), perfusion (CT, MRI) and diffusivity (MRI). There are
three main areas where quantitative imaging may be used in radio-
therapy. Firstly, for more accurate delineation of target volumes in
treatment planning, as quantitative images often have a good
tumour-to-background contrast [3,4]. Secondly, QIBs may be used
for response monitoring and treatment stratification, by deciding
the optimal treatment modality and the optimal dose [5–8].
Thirdly, quantitative imaging could be used for dose painting, with
the radiation dose spatially redistributed throughout the target
volume depending on the quantitative parameter maps [9,10].
Despite these three promising applications, currently quantitative
imaging is mainly used as a research tool, primarily for response
monitoring with only very limited studies on implementing dose
painting and no studies relating to dose stratification. Hence, the
full clinical potential of quantitative imaging remains unexploited.

Despite quantitative imaging for radiotherapy applications
being investigated since the early 1990s [11], significant hurdles
still need to be overcome to reach widespread clinical adoption.
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From a technical point of view, different vendors, machines and
imaging protocols provide quantitatively inconsistent images. Fur-
thermore, quantitative imaging for radiotherapy is not a direct
transposition of quantitative imaging for radiology. For example,
the patient positioning in scans for radiotherapy needs to be as
similar as possible to the treatment setup (examples shown in
Fig. 1) so that the images can be used for treatment planning
[12]. For PET, the immobilisation equipment and positioning aids
can cause additional attenuation of the signal, whereas in MRI
image quality can be affected substantially [13].

In summary, quantitative imaging holds great potential for
radiotherapy purposes but is not currently used routinely. At the
2nd Physics Workshop of the ESTRO in 2018, we therefore set
out to identify the hurdles that need addressing for quantitative
imaging to make the transition from research to clinical use in
radiotherapy. The authors and acknowledged members of this arti-
cle were the organisers and participants of the ‘‘quantitative imag-
ing” track at this workshop.

This paper reports on the key points discussed at this meeting
and identifies the next steps for quantitative imaging to be used
in daily routine in a radiotherapy setting. We have limited this
review to the traditional quantitative imaging parameters (some-
times referred to as functional imaging), meaning that high-
dimensional features/radiomics are not discussed.
Fig. 1. Diagnostic (left) and radiotherapy (right) setup for different modalities (MRI
top two rows and PET bottom row) for different indications (from top to bottom:
abdomen, head and neck, abdomen).
Quantitative imaging approaches

There are three approaches to acquiring quantitative images.
The most straightforward approach is where the signal obtained
on the scanner directly relates to a tissue-specific quantity (e.g.
Hounsfield units in conventional CT) and hence the obtained image
immediately represents a spatial distribution map of this parame-
ter, called a quantitative parameter map. The second type (e.g. con-
ventional PET) is where a single acquired image needs
normalization using external parameters (i.e. dosage, body weight,
blood haematocrit values) to generate the quantitative parameter
map. The third type (e.g. dynamic contrast-enhanced MRI/CT)
requires the acquisition of multiple images. Per voxel, a model
(e.g. a tracer kinetic model) is then fitted to obtain one or multiple
quantitative parameters (e.g. blood volume fraction and blood
flow). Most quantitative imaging approaches are pushing the imag-
ing systems to their extremes and often result in considerably lar-
ger voxels (e.g. PET typically achieves 5 � 5 � 5 mm3, quantitative
MRI typically 2.5 � 2.5 � 5 mm3) and worse signal-to-noise-ratio
(SNR) when compared to what is conventionally used in the clinic,
such as CT imaging (typically 0.5 � 0.5 � 1 mm3).

There are many quantitative imaging approaches available. We
discuss the most common approaches in radiotherapy: diffusion-
weighted MRI (to signify it is an MRI technique it is abbreviated
as DW-MRI; also commonly abbreviated as DWI in literature),
dynamic contrast-enhanced (DCE) MRI, MRI relaxometry, CT and
PET (examples shown in Fig. 2). A more extensive review on the lit-
erature of these techniques (and spectroscopy) within a radiother-
apy framework is given by Press et al. [14]. Note that despite some
quantitative imaging techniques (such as MR or resonant ultra-
sound spectroscopy; chemical exchange saturation transfer MRI;
hyperpolarized MRI; arterial spin-labelling MRI; dynamic suscepti-
bility contrast MRI; MR or ultrasound elastography; and DCE ultra
sound) are not explicitly discussed in this chapter, the general find-
ings on quantitative imaging discussed in this paper still hold for
such approaches.
MRI

Diffusion-weighted MRI

DW-MRI is a popular research tool in radiotherapy planning and
response assessment [15,16]. In DW-MRI, the MRI signal is typi-
cally sensitized to diffusion (e.g. random motion) of water mole-
cules within the tissue. The sensitized signal decays as a function
of the amount of diffusion-weighting applied, known as b-value.
The amount of diffusion occurring in the tissue, predominantly in
the extracellular space [17,18], is quantified as the apparent diffu-
sion coefficient (ADC; Fig. 2) [19]. Quantitative DW-MRI requires
images at two or more b-values to obtain the ADC. The interpreta-
tion of ADC is complex, but in general, tumour tissue with high cell
density will have a low ADC (restricted diffusion) whereas necrotic
tissue will have higher ADC (more free diffusion) than their healthy
surroundings. An increase in ADC during treatment is often associ-
ated with tumour necrosis and, hence, good treatment response.
More complex diffusion models, which further probe tissue
microstructure [20] and perfusion [21], have shown potential in
radiotherapy [22–24]. However, such models require more images
at different b-values, resulting in longer acquisition times. The
analysis is also more complex and often in-house developed anal-
ysis is required. Koh and Collins give an introduction to DW-MRI in
oncology [16] and Tsien et al. and Liebfarth et al. give reviews of
DW-MRI for radiotherapy in particular [15,25]. DW-MRI is prone
to artefacts, which are further discussed in detail by le Bihan
et al. [26]. When implementing DW-MRI, we encourage readers
to follow guidelines, such as those published by the QIBA [27].



Fig. 2. Examples of different quantitative images taken from a single patient with
head and neck tumour (pink contour) and a metastatic lymph node (red contour).
Top row shows diffusion-weighted MRI (apparent diffusion coefficient (ADC
[10�3 mm2/s]) and relaxometry (T2* and T1 time constants [ms]), second and third
row show dynamic contrast-enhanced MRI (fractional volumes of extracellular
extravascular space Ve and plasma Vp, influx mass transfer rates of gadolinium from
plasma to the extracellular extravascular space Ktrans [min�1] and reflux rate from
the extracellular extravascular space to the plasma Kep [min�1]), CT [HU] and PET
(18F-fluorodeoxyglucose (FDG) [g/ml]). Three sets of contours of the primary target
(pink) and lymph node (red) were drawn, one on the deformed DW-MRI, one on the
registered PET/CT and one for the remaining MRI. Images were taken as part of the
INSIGHT trial [74,78]. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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MRI relaxometry

MRI relaxometry refers to quantifying spin relaxation time con-
stants T1, T2 and T2* (Fig. 2c). These time constants describe the
relaxation of a net magnetization from a perturbed state back to
equilibrium, as described by the Bloch equations [28]. Their values
depend on intrinsic biophysical tissue properties, the total mag-
netic field strength, and, for T2*, the local perturbations therein.
Combined with proton density, these relaxation time constants
are the basis of most common MRI contrasts. Hence, tumour con-
trast in conventional non-quantitative MR images, used for
instance for contouring, is reflected in these quantitative parame-
ters. Furthermore, T2* has been associated with tumour hypoxia
[29–31], although the technique is challenging due to the high sen-
sitivity to artefacts. Relaxometry is not always straightforward on
clinical MRI systems, and often in-house developed sequences
and analysis are required.
Dynamic contrast-enhanced MRI

Another popular method for tumour diagnosis and characterisa-
tion is DCE MRI (Fig. 2b). For DCE MRI, patients receive an intra-
venous injection of contrast agent (often gadolinium-based)
during continuous image acquisition. Gadolinium contrast agents
decrease the local T1 relaxation time and hence by continuously
acquiring T1-weighted images their distribution within the patient
can be studied. By modelling the observed dynamics of the con-
trast agent distributing in tissue, tissue perfusion and capillary per-
meability can be quantified. Blood vessels in tumours exhibit a
disordered structure, with high dilation and permeability, which
can be studied with DCE MRI [32]. Indirectly, parameters related
to tumour hypoxia can be investigated. There is a trade-off
between temporal and spatial resolution of the acquired images
and choices are based upon the desired analysis. The analysis of
DCE MRI ranges from a qualitative assessment of the contrast dis-
tribution to full pharmacokinetic modelling [33–35]. The former
allows for longer scan times per image (~20–90 s), enabling high
spatial resolution. For the latter, a high temporal resolution (1–
3 s/image) is required, limiting the spatial resolution. Furthermore,
a pre-contrast measurement of the T1 relaxation rate is necessary
for absolute concentration quantification of the contrast agent.
Khalifa et al. published an overview of different DCE MRI models
and their requirements [36], and its use in radiotherapy is
described by Zahra et al. [37]. Additionally, Matsuo et al. describe
perfusion and hypoxia measurements for radiotherapy [38]. When
implementing DCE MRI, we encourage readers to follow the radiol-
ogy guidelines, such as those published by QIBA [39].
MRI-specific challenges

There are MRI-specific challenges to take into consideration. For
radiotherapy planning in general, imaging protocols must be opti-
mized due to a different coil setup and a larger field of view (FOV).
For most radiotherapy purposes, the patient setup needs to be as
similar to the radiotherapy treatment setup as possible. Hence,
setup aids are often used, such as a flat tabletop and positioning
devices similar to those in the treatment room (Fig. 1 top two
rows). The setup can be uncomfortable (e.g. hard flat tabletop
instead of soft curved tabletop; a fixation mask; hands above
head), limiting the scanning time compared to diagnostic scanning.
To ensure patient contours are not deformed, MR receiver coils are
often placed on coil holders, slightly away from the patient (Fig. 1
top two rows) and possibly requiring the use of less sensitive coils
with fewer coil elements (Fig. 1, top row) [12]. Reducing the
amount of coil elements restricts the amount of image acceleration
possible by parallel imaging and, hence, increases scan duration.
The use of less sensitive coils and having the coils placed further
away from the subject results in lower SNR.

Geometric deformation is another challenge [40]. When
deformed images are used to generate treatment plans they may
have an effect on treatment efficacy. The three main sources for
geometric deformations include scanner-specific gradient non-
linearity, main field non-uniformity, and patient-specific magnetic
field perturbations. The gradient non-linearity is constant and,
depending on location, can largely be accounted for on most com-
mercial scanners.

Specific to quantitativeMRI is the patient-specificmagnetic field
distortions due to echo-planar imaging (EPI) MRI typically used in
DW-MRI. These deformations can be substantial (in the order of
mm–cm), particularly close to air-tissue boundaries and implants
[41,42]. The relationship between image resolution, SNR and acqui-
sition time should also be recognised [43]. The appropriate trade-
off between these parameters depends on the application.
CT

As the imaging workhorse in radiotherapy planning and evalu-
ation, CT (Fig. 2d) is well placed to maximise the clinical impact of
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quantitative imaging with minimum disruption in the radiother-
apy pathway [44]. CT has been used quantitatively for decades,
with the derivation of electron density data being fundamental
to dose calculation. However, there is increasing awareness of
the largely untapped potential in paying more heed to the precise
distribution of electron density information within an image.
While local granularity of Hounsfield units has a negligible impact
on macroscopic dose calculations, it can provide clues to the
underlying tumour biology, potentially indicating tissue radiosen-
sitivity for instance, or helping to demarcate between recurrence
and radiation-induced lung injury following radiotherapy [45–
47]. Furthermore, DCE images can be obtained on a CT scanner,
typically using iodine as contrast agent [48,49]. A drawback with
DCE CT compared to DCE MRI is the high radiation dose associated
with the repeated imaging during DCE CT acquisition. For radio-
therapy patients who already are receiving substantial treatment
dose, the additional dose may be acceptable.
PET

In recent years, PET has shown to be of high value for radiother-
apy in terms of staging [50] and accurate target volume delineation
[51,52]. In PET, the patient is injected with a radioactive substance
emitting positrons. Following a positron–electron annihilation pro-
cess, the scanner detects the emitted 511 keV photon pairs and,
accordingly, quantifies the distribution of the emitter throughout
the patient after several signal correction and normalization steps.
PET scanners are often integrated with a CT, or (more recently, but
still rarely) MRI scanner, to obtain a geometrically matched high-
quality reference image of the patient’s anatomy, and to generate
high-resolution data for attenuation correction of the originally
registered coincidence data. PET tracers for imaging different bio-
logical processes can be injected. Most commonly, 18F-
fluorodeoxyglucose (FDG), a marker for glucose uptake, which is
increased in most tumour types, is injected. Quantitative PET infor-
mation is derived as the standardized uptake value (SUV) (Fig. 2e),
which is a normalization of the tracer distribution to patient body
weight and the initially injected total tracer activity. SUV of FDG-
PET has been shown to correlate to treatment outcome [53]. Quan-
titative imaging using kinetic analysis of dynamic PET data
acquired with dedicated hypoxia tracers (e.g. [18F]-
fluoromisonidazole or the 2-nitroimidazole nucleoside analogue
[18F]-HX4) have been associated to radiotherapy outcome in head
and neck cancer [54,55]. Hence, quantitative PET is a promising
imaging modality for future quantitative image-guided radiother-
apy. Sattler et al. have published a review on PET in radiotherapy
[56]. We would advise anyone starting with PET to study the differ-
ent guidelines, such as those from the European Association of
Nuclear Medicine [57–59].
Applications in radiotherapy

Contouring

Accurate contouring of target volumes can benefit from quanti-
tative imaging approaches that give high contrast-to-noise ratio
between the tumour and the adjacent tissue structures, such as
PET [4,60], DCE MRI [61] and DW-MRI [61]. The raw data images
(pre-modelling) can have a higher contrast-to-noise ratio than
the derived parameter maps. However, the quantitative parameter
maps can lead to more precise and quantitative contouring rules,
which potentially are easier to automate. Dirix et al. and Paulson
et al. provide overviews on the use of MRI for contouring, including
quantitative imaging [40,62].

There are challenges when using quantitative imaging for con-
touring. Tumours are often heterogeneous and, as a consequence,
they are perceived differently with different quantitative imaging
modalities, as well as compared to conventional images (e.g. con-
tours on PET, DW-MRI and DCE in Fig. 2 are different). For example,
Dalah et al. [63] show that gross tumour volumes (GTVs) contours
on PET were, on average, more than four times larger than when
defined on DCEMRI, and GTVs defined on DW-MRI were more than
three times larger than when defined on DCE MRI. The established
GTV to clinical target volume margins [64], which incorporate the
microscopic spread of tumour cells as identified on population-
based pathology data and associated patterns of recurrence data,
have been optimized for CT and, hence, may be wrong or redun-
dant for quantitative imaging.

Contouring on quantitative images is complex, especially when
incorporating information from multiple modalities. Close collabo-
ration with radiology departments is necessary when introducing
such imaging modalities, and voxel-wise correlation of quantita-
tive imaging with pathology and treatment response could be
helpful.
Stratification and response monitoring

QIBs can potentially be used for treatment stratification (indi-
vidual dose determination or treatment modality selection) either
using a single baseline value, or by monitoring (early) tumour
response using repeated measures and adapting treatment accord-
ingly. For instance, a tumour that is poorly perfused might benefit
from surgery, as poor perfusion and hypoxia are associated with a
decreased effectiveness of radiotherapy [65]. These QIBs are typi-
cally derived at a whole-tumour level (median/mean tumour QIB
value), although other approaches, such as radiomics and voxel-
wise approaches, are also being explored [66–69].

For QIBs to be useful for treatment stratification they need to be
predictive. QIBs are predictive when they predict the effect of a
specific treatment (e.g. different QIB values give different relation
between dose and treatment response) [70]. However, most
research is focussed on whether potential QIBs are prognostic. QIBs
are prognostic when they can predict the likelihood of a clinical
event (e.g. overall survival) independent of treatment. Potential
QIBs can be prognostic at baseline [71–73] and in repeated mea-
sures [74–78]. Whether the known prognostic QIBs are predictive
needs further investigations.
Dose painting

In dose painting, a heterogeneous dose distribution is delivered
throughout the tumour according to the QIB maps, increasing dose
in regions that are perceived as being more radioresistant and vice
versa [79]. This can be combined with monitoring and adapting
treatment according to the tumour’s local response.

For dose painting, an accurate and reproducible per-voxel esti-
mation of predictive QIBs is required for a voxel-wise dose–effect
relationship. At present, such predictive QIB maps are poorly stud-
ied for two reasons. Firstly, it is hard to establish which voxels from
the original tumour did not respond to radiation, and hence, to
determine the local quantitative parameters that relate to a poor
outcome. Secondly, implementing redistribution of radiation dose
to study the predictive nature of a QIB may cause an unjustified
dose de-escalation to certain parts of the target volume, making
it challenging to study dose–response relations. Therefore, trial
design is of key importance to introduce dose painting in the clinic.
For example, one could overcome this by comparing homogeneous
dose escalation within a dose escalation region to QIB-based dose
redistribution of the escalated dose within the same region,
thereby not delivering doses below conventional treatment doses
[80].
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Research strategies and study design

Although many potential QIBs have been proposed, a low num-
ber of them guide clinical decisions [81,82]. There are lots of
underpowered exploratory studies showing potential QIBs for
radiotherapy. However, an important factor hampering large-
scale implementation of quantitative imaging in radiotherapy is
the lack of appropriate validation and translation into multi-
centre investigations with sufficient statistical power.

O’Connor et al. [83] describe a general QIB implementation
roadmap which consists of three stages separated by two transla-
tional gaps. For quantitative imaging in radiotherapy, the first
stage consists of developing the quantitative imaging approach
and showing its capability as a potential QIB in vitro, in animals
and in humans. The first translational gap is then filled when the
promising potential QIB goes from the preclinical and early clinical
stage into the second stage, becoming a reliable medical research
tool used to test hypotheses in larger studies. Then, to cross the
second translational gap and become a clinical decision-making
tool (third stage), the QIB must successfully show appropriate
technical performance, ability to relate to an underlying biological
feature and a meaningful clinical outcome, and should show a cost-
effectiveness benefit over current practice.

Unfortunately, most radiotherapy-specific potential QIBs are in
the first stage, with exploratory single-centre studies. Common for
such studies is the many quantitative parameters evaluated in a
limited number of patients, making them underpowered to
demonstrate sufficient performance. Furthermore, such studies
often overestimate the true performance of the potential QIB, as
optimal settings are determined from the same dataset they are
tested on. This includes tweaking of post-processing approaches,
region of interest (ROI) definition, and ad-hoc determination of
cut-off values using receiver operator characteristic analysis. Such
cut-off values are based on the same data they are tested on and
hence their performance is overestimated. Studies which use cut-
off values determined up-front are desired to assess their true
performance.

To prevent false positive results, QIB studies should undergo
upfront statistical power estimation the same way as clinical effi-
cacy studies. Given that the studies are well-powered there is also
a value in publishing negative results. It will contribute to improv-
ing future quantitative imaging studies and a platform for the
exchange of such findings should be made accessible for the
community.

Unfortunately, larger multi-institutional studies are expensive
and require more effort than exploratory studies, and hence are
performed less frequently. Therefore, it is important to carefully
select which QIB to study. To bring promising QIBs forward from
the exploratory phase to multi-centre evaluation, the community
must join forces and establish unified procedures. Obvious is the
value of a larger cohort where multiple institutions collaborate.
However, cheaper alternatives that utilize data from many smaller
studies can also help build evidence of a quantitative imaging
parameter being a QIB. For example, cut-off values from previous
exploratory studies published in literature could be validated in
new datasets from other sites to determine their ‘‘true” sensitivity
and specificity. Such validations might be less optimistic but reflect
a more realistic estimate to help increasing evidence regarding
whether a parameter is clinically useful and should be further
explored.

Central in the QIB roadmap is the need for imaging-
histopathology correlations. Such correlations build up the under-
standing of why the quantitative imaging parameter is a QIB and
build evidence to select the QIB for larger trial studies. In radio-
therapy, there is a lack of such correlative studies that dissect the
underlying biology and its relation to quantitative imaging [84].
Different from many general QIB studies is the potential need for
spatial correlations in radiotherapy studies. An example is when
a subvolume is identified by quantitative imaging for dose painting
or dose escalation; if the histopathology analysis finds that the
subvolume is dominated by aggressive, hypoxic tumour cells, this
would increase the likelihood of continuing with further studies
of the identified potential QIB. Such studies [85–87] are ideally
performed on patients that are referred directly to surgery, without
radiotherapy. These studies require close collaborations with the
radiotherapy, imaging, surgery and pathology departments to
obtain images taken in the radiotherapy setup and correlate them
to pathology.

To accelerate the clinical introduction of QIBs, a forum for iden-
tifying partners for multi-centre investigations is central and
should be established and distributed to the radiotherapy commu-
nity to improve the quality and outcome of future studies. This
forum should also enable the sharing acquired data, trial designs
and study results.
Data processing

Most quantitative imaging approaches depend upon acquiring
one or more images and applying a model to the data, which
returns the quantitative information. For several quantitative
imaging approaches, most notably Hounsfield units on CT, the
steps from raw data to quantitative information are well estab-
lished and occur within the framework of the commercial systems.
For others, such as DCE MRI, the methods are not standardised
[36], and in-house post-processing is required to obtain the quan-
titative parameter values. Yet others, including DW-MRI and relax-
ometry MRI, have some vendor solutions but are often performed
using in-house tools due to the lack of transparency and customi-
sation of the vendor’s tools. These post-processing steps are often
not standardised and care must be taken to ensure reliable and
generalizable results.

Where possible, it is encouraged to prioritize well-established
post-processing methods over developing in-house toolkits. Using
well-established post-processing methods decreases the workload,
decreases the chance of errors, and increases the generalizability of
your results. When in-house post-processing software is used,
publishers should be more proactive in encouraging the sharing
of those scripts.

Typically, data processing for quantitative imaging can be bro-
ken down into three stages. Firstly, pre-processing converts the
raw data into a format in which model-fitting can be done. This
stage can include registration of multiple image datasets to a com-
mon reference frame, resampling of data onto a more appropriate
grid spacing and denoising of data. Secondly, the pre-processed
data are modelled and quantitative parameters are estimated.
Thirdly, post-processing and data reviewing is carried out, which
can include further noise-reduction, smoothing and ROI definition.
Pre-processing

One common pre-processing step, particularly in abdominal
imaging, is image registration [88]. There are two main reasons
for image registration in quantitative imaging. Firstly, monomodal
registration to align two or more images from the same quantita-
tive imaging series that are taken at different time points (e.g.
images from a DCEMRI series [89]). Secondly, registration between
different quantitative images to a reference image is desirable
when combining different modalities or obtaining multiple param-
eter maps within a modality [90]; note that this step can alterna-
tively be done as post-processing, if based on the parameter
maps, instead. Unfortunately, quantitative images are typically
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low spatial resolution and do not have a clear contrast for the
entire anatomy, making both manual and automatic image regis-
tration methods challenging. One approach that should be avoided
when applying multimodal registration is to simply overlay ‘the
spot on the spot’, e.g. assume that a hot-spot on PET overlaps with
a region of low ADC, as modalities are complementary [63,91]. A
more appropriate method is to undertake registration based on ref-
erence anatomy visible in both imaging modalities. Clinical judge-
ment is subsequently required to determine whether an ROI
nearby is properly aligned. Depending on the situation, either rigid
or deformable registration can be desired. Deformable image regis-
tration may be able to account for changes in patient setup or
deformed anatomy due to day-to-day changes (e.g. stomach filling)
and deformable motion (e.g. breathing), however, the registration
process is more complex and harder to verify [92]. Furthermore,
the propagation of dose accumulation in the presence of deforma-
tions is not agreed upon [93].
Parameter estimation

In quantitative imaging, quantitative image parameters need to
be extracted from the acquired data, often done by fitting some
model. Parameter estimation can be undertaken either in a
voxel-wise or an ROI-wise manner [94]. A voxel-wise approach
retains the spatial information but relies on a high SNR per voxel.
Alternatively, when quantitative imaging is used for treatment
stratification or response assessment, it may be preferable to use
ROI-wise parameter fitting. By aggregated data from multiple vox-
els, the SNR is increased, potentially resulting in a more accurate
model fit. A downside of this approach is that information on the
heterogeneity of the tumour is lost. Furthermore, if tissue is
heterogeneous within the averaging ROI, the models might no
longer be adequate to describe the data. In such cases, voxel-
wise fits may be preferred, which can be analysed for example as
histograms from the ROIs. Contouring and dose painting require
voxel-wise fitting as decisions are made on a per-voxel basis.

Noisy MRI data is governed by a Rician distribution, which
causes a noise-dependent overestimation in MR signal [95]. This
results in an additional SNR-dependent bias term in the QIBs when
fitting to noisy data (worse accuracy). This can be particularly chal-
lenging in radiotherapy due to the suboptimal (compared to radi-
ology) coil setup required (Fig. 1).

Several quantitative imaging models are nested models. One
issue of such a model is that data might be uninformative. For
example, in a model with multiple parameters, ‘‘blood velocity”
may have no meaning in voxels with no ‘‘blood volume”. An unan-
swered question is how to deal with such an absence of parameter
fitting results in a radiotherapy framework.

Quantitative images come with uncertainties: there are error
bars on the fit parameters; and the relation between the quantita-
tive image to treatment response has uncertainties [96]. There is
no unified method of dealing with such uncertainties in radiother-
apy planning. However, handling uncertainties has always been at
the heart of radiotherapy (e.g. geometric uncertainties) and we
might be able to account for such uncertainties in, for instance,
dose painting approaches.
Data reviewing

Quantitative imaging requires the processing of large amounts
of data. To make use of data from multiple modalities, these data
need to be stored and communicated appropriately [56], which is
often achieved by DICOM files [97]. The use of a standardised data
interchange format enables various options for the use of quantita-
tive imaging, such as carrying out the definition of radiotherapy
target volumes on a nuclear medicine workstation and transferring
the data via DICOM to the treatment planning system. However,
not all treatment planning systems properly represent quantitative
imaging data; for example low sub-zero voxel values (ADC has val-
ues in the order of 10�3 in DW-MRI) are represented as zeros in
some systems. Furthermore, some systems have trouble with data
that was not acquired axially.

To increase the reproducibility of studies and to enable multi-
centre, multi-vendor validation studies, it is desirable to use
well-established, freely available data processing tools. An exam-
ple of such a freely available tool is 3D Slicer [98].
Standardisation and quality assurance

To progress clinical deployment of quantitative imaging for
radiotherapy, we need to ensure that results are transferable
between clinical sites. This requires standardisation and quality
assurance (QA).

Quantitative imaging should be an effective approach to stan-
dardization as it measures quantifiable features on a ratio or inter-
val scale that should not depend on acquisition settings. In theory,
it is not necessary to have identical acquisitions as long as the mea-
sures (e.g. quantitative parameter maps) are accurate (no bias) and
precise (minimal variance). Therefore, for quantitative imaging,
standardisation of the QA should be sufficient to guarantee trans-
ferable results. However, quantitative imaging models are often
simplifications of the real processes going on, and acquisition
parameters (e.g. the duration of diffusion weighting gradient) can
have unexpected effects on the data that are not explained by
the simplified model. As a result, it is important to be aware of
which parameters might influence the modelling.

One important tool in QA is phantommeasurements. Both com-
mercial and in-house phantoms are developed for quantitative
imaging for radiological purposes (e.g. [99]) and these should be
adopted by the radiotherapy community. Although phantoms are
becoming more complex and tissue-like [100,101], in practice,
phantoms do not cover all possible aspects of variation. For
instance, DW-MRI [102] in vivo is affected by choice of b-value
[21], gradient shape and duration [103,104], echo time, and inver-
sion time [105], which are not all reflected in any DW-MRI phan-
toms. Hence, caution needs to be taken and standardisation of
imaging protocols is desired.

Many initiatives are working on standardization and QA of
quantitative imaging [57,58,106,107]. For many aspects of quanti-
tative imaging and standardisation, the radiotherapy community
can build upon the guidelines from these initiatives.

However, contouring and dose painting are considerably differ-
ent from regular radiology and we need to develop some additional
QA for these purposes. For example, QA routines assessing voxel-
wise accuracy and precision should be developed. Furthermore,
there might be stricter requirements on geometric accuracy than
for radiology. In particular, when an MR-only workflow is being
considered it is advisable to include QA on B0-heterogeneity and
gradient non-linearity in these cases.
Reporting

Incomplete reporting has been identified as a major reason for
waste in biomedical research [108]. This is also strongly the case
in quantitative imaging, where methods are often far from stan-
dard. Regularly, quantitative imaging studies lack essential infor-
mation to be repeated; incomplete methodological description,
and lack of reporting standards or awareness of these being the
most important reasons. One guideline that has been developed
to prevent incomplete reporting is the standards for reporting of
diagnostic accuracy (STARD) [108]. STARD lists thirty specific items
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that should be included in every report of diagnostic accuracy
study. There are some quantitative imaging specific guidelines
from the radiology community on what needs reporting, for exam-
ple for DW-MRI [106]. Here we propose additional items specific to
quantitative imaging in radiotherapy.

The SNR is an important quantity to report, especially in MRI.
SNR and contrast-to-noise ratio of the quantitative parameters
determines how well subregions can be determined for contouring
or dose painting. For MRI, the SNR of the raw data is important as it
can cause bias. Determination of SNR can be non-trivial in MRI and
the process is described in detail by Goerner et al. [109].

Scanner variation is another source of reduced reproducibility.
To ensure the translatability of results between sites, it is desired
that the sequence performance (bias and variance) on a standard
phantom are reported in publications. For example, Kooreman
et al. used several commercial phantoms to characterize the per-
formance of several MR-Linac scanners for quantitative imaging
[110]. The phantoms used for this purpose should either be com-
mercial or well documented, such that other sites can easily test
whether their scanners have similar performance in this well-
defined environment before building upon the published results.

A test–retest study design is encouraged and should be reported
along with the result on potential QIBs. A test–retest reliability
(also known as repeatability) study assesses whether a potential
QIB yields the same result when acquired multiple times (condi-
tions should not have changed) [111]. This analysis allows distin-
guishing between a real change and a change due to day-to-day
random variations or random errors.

Other generally desirable reporting items may count patient
immobilization, coil setup, timing of scans, treatment details and
patient clinical baseline data. They can all have an impact on the
quality of imaging, and cause differences in derived quantities.
Inclusion of these details may seem irrelevant for the particular
study, but it can be critical information in a meta-analysis or for
reproducibility purposes.

Data and algorithm sharing should ideally be a natural part of
the scientific method. Some scientific journals require authors to
share raw data, source code etc. necessary to reproduce or develop
published research. Some funding bodies also require open-access
data sharing. Data sharing can be done as supplemental materials
to the article, or, ideally, in an indexed repository [112]. We
encourage authors to share their data (whilst respecting privacy
laws) and algorithms, even when not required by funders or
editors.

Finally, some information may be inaccessible and therefore
cannot be reported. Imaging attributes are stored in the file header
portion as File Meta Information and are accessible through work-
stations or DICOM readers. Other information, however, is hidden
in the header preamble by the manufacturer for proprietary rea-
sons. Manufacturers are urged to more transparency (fewer black
boxes). Not having access to the raw data may also limit the under-
standing of the actual acquired data.
Future focus

Quantitative imaging has great potential in radiotherapy, and
we have outlined the current state and emphasized the associated
challenges in this field. Despite its potential, quantitative imaging
is still far from being used routinely in clinical radiotherapy. Here
we will discuss how to focus research in quantitative imaging to
facilitate a clinical introduction in radiotherapy.

Most potential QIBs are studied in an exploratory setting with
small sample sizes at single institutions. Introducing quantitative
imaging into the clinical workflow requires proving its clinical ben-
efit in large multicentre studies. The radiotherapy community will
need to identify which potential QIBs should be investigated in
such large studies and setup larger, standardised multicentre
studies.

The large variety of implementations of a given quantitative
imaging method between sites, studies and vendors is hindering
proper investigations. However, fixing imaging and processing
parameters can hinder the development of quantitative imaging
techniques. The radiotherapy and radiology communities need to
come up with ways to allow development while being able to com-
bine quantitative imaging data from different sites.

We encourage the development of radiotherapy-specific imag-
ing solutions, such as dedicated MRI coils, to enable imaging in
the radiotherapy setup with image quality similar to diagnostic
imaging. Additionally, radiotherapy treatment planning software
should become more compatible with quantitative imaging.

In conclusion, quantitative imaging shows great potential for
increasing the efficacy of radiotherapy. Quantitative imaging could
improve contouring with better tumour visibility. Quantitative
imaging might be used to assess the state of tumours at baseline
and repeatedly throughout treatment, allowing individual adjust-
ments of the radiation dose. This could increase the efficacy of
modern radiotherapy, for which dose is currently population-
based, by improving tumour response while minimizing side
effects. Finally, local quantitative information could be utilized to
take into account the tumour heterogeneity and determine optimal
radiation doses for dose painting. We believe it is worthwhile over-
coming the challenges discussed and further investigating the
added value of quantitative imaging in radiotherapy.
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