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Abstract

This article proposes and studies a new three-parameter generalized model of the inverse

Gompertz distribution, in the so-called Kumaraswamy inverse Gompertz distribution. The

main advantage of the new model is that it has "an upside down bathtub-shaped curve haz-

ard rate function" depending upon the shape parameters. Several of its statistical and math-

ematical properties including quantiles, median, mode, moments, probability weighted

moment, entropy function, skewness and kurtosis are derived. Moreover, the reliability and

hazard rate functions, mean time to failure, mean residual and inactive lifetimes are also

concluded. The maximum likelihood approach is done here to estimate the new model

parameters. A simulation study is conducted to examine the performance of the estimators

of this model. Finally, the usefulness of the proposed distribution is illustrated with different

engineering applications to complete, type-II right censored, and upper record data and it is

found that this model is more flexible when it is compared to well-known models in the statis-

tical literature.

1. Introduction

The two-parameter Gompertz (G) distribution was offered by [1] and it can be displayed as an

extension of the exponential distribution. It has an influential role in survival analysis for

forming adequate actuarial and human mortality tables. Also, it is a beneficial model for sur-

vival distributions characterized by increasing hazard rate and also to describe the distribution

of adult life spans by demographers and actuaries; see [2]. Several authors have contributed to

the studies that accentuate the statistical characterization and methodology of the G distribu-

tion; like [3–10].

The inverse distributions were introduced in the modeling literature in demography, bio-

logical and actuarial surveys; look in [10–15]. The inverse Gompertz (IG) distribution was pro-

posed by [16] and it was introduced as a lifetime model. Suppose that X is a random variable
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that has an IG distribution whose shape and scale parameters are λ> 0 and β> 0, respectively.

Then, the cumulative distribution function (CDF) of X takes the formula

G xð Þ ¼ e�
l
b

e
b
x � 1

� �

; x > 0; l; b > 0: ð1Þ

Also, the probability density function (PDF) of X takes the formula

g xð Þ ¼
l

x2
e
b
x e�

l
b

e
b
x � 1

� �

; x > 0; l; b > 0: ð2Þ

[17] presented a new lifetime model having only one parameter and it is called A distribu-

tion which is characterized by an upside-down bathtub shaped hazard function. The random

variable Z has an A distribution with scale parameter β> 0, if the CDF of Z takes the form

F zð Þ ¼ e�
1
b

e
b
z � 1

� �

; z > 0; b > 0: ð3Þ

The PDF of Z takes the form

f zð Þ ¼
1

z2
e
b
z e�

1
b

e
b
z � 1

� �

; z > 0; b > 0: ð4Þ

Setting λ = 1 in Eqs (1) and (2), we deduce the CDF and PDF of A distribution with the

parameter β. That is, the A distribution is a particular case of IG distribution. In many work-

able circumstances, the classical distributions don’t give a sufficient fit to actual data. There-

fore, various generators are proposed to produce a new models; see [18–28]. The

Kumaraswamy-G (K-G) family is one of the essential generators that have an increased inter-

est after the persuasive debate on the pitfalls of the beta-G family suggested by [29]. Cordeiro

and de Castro (2011) clarified the CDF of the two-parameter K-G that takes the formula

FðxÞ ¼ 1 � f1 � GðxÞyg
g

: ð5Þ

The corresponding PDF to Eq (5) will be

f ðxÞ ¼ gygðxÞGðxÞy� 1
f1 � GðxÞyg

g� 1

; ð6Þ

where, g(x) and G(x) are the PDF and CDF of a baseline random variable X. Also, θ> 0 and

γ> 0 are two extra shape parameters.

The principal suggest in our paper is a generalization of the IG distribution called the

Kumaraswamy inverse Gompertz distribution, abbreviated KuIG, depending on the Eqs (5)

and (6). The failure rate function of the new model takes the form of "an upside down bath-

tub-shaped". Another important characteristic of the KuIG is that it suitable for testing the

goodness of fit of some special sub-models, such as the IG and A distributions. The article is

distributed as follows: Section 2 introduces the CDF and the corresponding PDF of the KuIG.

Section 3 presents several fundamental statistical properties. Some essential functions used in

reliability analysis are introduced in Section 4. The maximum likelihood approach is men-

tioned in Section 5 to appreciate the parameters of the KuIG. In Sections 6 and 7, we will

obtain the maximum likelihood estimators for type-II right censored and upper record data,

respectively. The performance of the KuIG estimators is appreciated in Section 8 using a simu-

lation study. We will analyze five actual data sets are three complete, one type-II right cen-

sored, and one upper record data in Section 9 and the results are compared with different

known distributions. Finally, in Section 10, a conclusion for the obtained results is presented.
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2. Kumaraswamy inverse Gompertz distribution

2.1. Specifications of KuIG

The non-negative random variable X is said to have the KuIG with the vector of parameters

Ω = (α, β, γ), say X* KuIG(Ω), if its CDF is given by the formula

F xð Þ ¼ 1 � 1 � e�
a
b

e
b
x � 1

� �� �g

; x > 0; a; b; g > 0; ð7Þ

where, α = λθ. We can easily see that, if we substitute the CDF of A distribution, instead of the

CDF of IG in Eq (5), we will obtain the same result. So, the proposed model can be named

KuIG or KuA. The PDF of the KuIG will be

f xð Þ ¼
ag

x2
e
b
xe�

a
b

e
b
x � 1

� �

1 � e�
a
b

e
b
x � 1

� �� �g� 1

; x > 0; a; b; g > 0: ð8Þ

The two parameters α and γ are the shape parameters and β is the scale parameter. Setting

γ = 1 in the Eqs (7) and (8), we will get the CDF and PDF of the IG with the two parameters α
and β, respectively. Moreover, if we put α = γ = 1 in the above two equations, we will obtain

the CDF and PDF of A distribution with the parameter β. This confirms the fact that the IG

and A distributions are particular cases of our proposed KuIG. Fig 1 shows the graphical

behavior of the PDF for KuIG with different values of α, β and γ.

Fig 1. The graphs of the PDF for KuIG.

https://doi.org/10.1371/journal.pone.0241970.g001
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3. Statistical characteristics of KuIG

3.1. The quantiles and median

An explicit formula for the quantile and the median of KuIG are derived in this subsection.

The quantile xq of the KuIG is given as follows

xq ¼
b

ln 1 � b

a
ln 1 � ð1 � qÞ

1
g

� �n o ; 0 < q < 1 ð9Þ

The median of KuIG is found by putting q ¼ 1

2
in Eq (9) as follows

Med Xð Þ ¼
b

ln 1 � b

a
ln 1 � 1

2

� �1
g

� �n o ð10Þ

3.2. The mode

The mode of KuIG is obtained by solving the equation below with respect to x.

ae
b
x 1 �

g � 1

e
a
b

e
b
x � 1

� �

� 1

 !

� 2x � b ¼ 0: ð11Þ

This equation has no explicit solution in x. So, some numerical methods are used to solve it.

3.3. The rth moment

If X* KuIG(Ω), then the rth moment of X is found using

mðrÞ ¼ EðxrÞ ¼
Z1

0

xrf ðxÞdx: ð12Þ

By substituting from Eq (8) in Eq (12), we get the rth moment as follows

mðrÞ ¼
Xg� 1

k¼0

X1

i¼0

Xi

j¼0

X1

m¼0

g � 1

k

 !
ð� 1Þ

iþjþkþ1
ðkþ 1Þ

i
ð1þ iÞmaiþ1b

r� i� 1jr� m� 1gGðm � r þ 1Þ

j!m!ði � jÞ!
:ð13Þ

3.4. Moment generating function

The moment generating function of KuIG, say MX(t), is found using

MX tð Þ ¼ E etxð Þ ¼
X1

r¼0

tr

r!

Z 1

0

xrf ðx;ΩÞdx ¼
X1

r¼0

tr

r!
mðrÞ: ð14Þ

Substituting from Eq (13) into Eq (14), we obtain

MX tð Þ ¼
X1

r¼0

Xg� 1

k¼0

X1

i¼0

Xi

j¼0

X1

m¼0

g � 1

k

 !
ð� 1Þ

iþjþkþ1
ðkþ 1Þ

i
ð1þ iÞmaiþ1b

r� i� 1jr� m� 1g trGðm � r þ 1Þ

r!j!m!ði � jÞ!
:ð15Þ
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3.5. The probability weighted moment

The probability weighted moment (PWM) was initially offered and introduced by [30]. The

PWM of X with CDF F(x), say ξs,r, is assigned by

xs; r ¼ EðxsFrðxÞÞ ¼
Z1

0

xsFrðxÞf ðxÞdx: ð16Þ

If X* KuIG(Ω), then the PWM ξs,r of X is given by the formula

xs; r ¼
Xr

l¼0

Xgðlþ1Þ� 1

k¼0

X1

i¼0

Xi

j¼0

X1

m¼0

r

l

 !
gðl þ 1Þ � 1

k

 !
ð� 1Þ

iþjþkþlþ1
ðkþ 1Þ

i
ð1þ iÞmaiþ1b

s� i� 1js� m� 1gGðm � sþ 1Þ

j!m!ði � jÞ!
:ð17Þ

3.6. The entropy function and ρ–entropy

Entropy performs a pivotal role in engineering, information theory, computer science and

probability theory. It can be used as a measure of dispersion for the uncertainty associated

with a random variable X; see [31]. The Rényi entropy of X with PDF (x), say Iρ(X), is

expressed by

Ir Xð Þ ¼
1

1 � r
log
Z1

0

f rðxÞdx; r 2�0; 1½� 1f g: ð18Þ

If X* KuIG(Ω), then Iρ(X) is given by the formula

Ir Xð Þ ¼
1

1 � r
log

Xrðg� 1Þ

k¼0

X1

i¼0

Xi

j¼0

X1

m¼0

rðg � 1Þ

k

 !
ð� 1Þ

iþjþkþ1
ðrþ kÞiðrþ iÞmarþib� 2r� iþ1j� 2r� mþ1grGð2rþm � 1Þ

j!m!ði � jÞ!

" #

:ð19Þ

The ρ–entropy of X, say Hρ(X), is found by

Hr Xð Þ ¼
1

1 � r
log 1 � ð1 � rÞIrðXÞ
� �

: ð20Þ

3.7. Skewness and kurtosis

The effect of the shape parameters α and γ on skewness (Sk) and kurtosis (Ku) is investigated

using the quantiles of KuIG given in Eq (9) [32] suggested skewness using quartiles called the

Bowley skewness which is defined as follows

Sk ¼
qð0:75Þ þ qð0:25Þ � 2qð0:5Þ

qð0:75Þ � qð0:25Þ
: ð21Þ

Also [33], proposed kurtosis based on octiles called the Moors kurtosis which is defined as

Ku ¼
qð0:375Þ þ qð0:875Þ � qð0:625Þ � qð0:125Þ

qð0:75Þ � qð0:25Þ
; ð22Þ

where, q(.) is the quantile function. Fig 2 gives the graphs of Sk and Ku for some values of α
when γ = 0.6. This figure reveals that both measures Sk and Ku decreases when β increases for

fixed α.
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4. Reliability analysis

4.1. The survival and failure rate functions

The survival (reliability) function of X* KuIG(Ω) is found by the formula

R xð Þ ¼ 1 � e�
a
b

e
b
x � 1

� �� �g

; x > 0; a; b; g > 0: ð23Þ

The failure (hazard) rate function (HRF) of X is found by the formula

h xð Þ ¼
ag

x2
e
b
x e

a
b

e
b
x � 1

� �

� 1

� �� 1

: ð24Þ

The graphic behavior of the HRF of KuIG with various choices of α, β and γ is offered in

Fig 3.

If X* KuIG(Ω), then the reversed failure rate function of X is

r xð Þ ¼
ag

x2
e
b
xe�

a
b

e
b
x � 1

� �

1 � e�
a
b

e
b
x � 1

� �� �g� 1

1 � 1 � e�
a
b

e
b
x � 1

� �� �g� �� 1

: ð25Þ

4.2. The mean time to failure

If X* KuIG(Ω), then the mean time to failure (MTTF) of X is found by

MTTF ¼
Z 1

0

xf ðx;ΩÞdx ¼ mð1Þ:

Fig 2. The graphs of the Sk (left panel) and the graphs of the Ku (right panel) for KuIG distribution.

https://doi.org/10.1371/journal.pone.0241970.g002
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Substituting from Eq (13), when r = 1, we find that

MTTF ¼
Xg� 1

k¼0

X1

i¼0

Xi

j¼0

X1

m¼0

g � 1

k

 !
ð� 1Þ

iþjþkþ1
ðkþ 1Þ

i
ð1þ iÞmaiþ1b

� ij� mg GðmÞ
j!m!ði � jÞ!

: ð26Þ

4.3. The mean residual lifetime

In life testing situations and reliability theory, the mean residual lifetime (MRL), say Mr(t), is

known as the anticipated remaining lifetime T − t, provided that the component has been sur-

vived until a time t. The Mr(t) is found using the formula

MrðtÞ ¼ EðT � tjT > tÞ:

If T* KuIG(Ω), then the MRL of T is

MrðtÞ ¼
1

RðtÞ

Z 1

t
R xð Þdx

¼
1

1 � FðtÞ
mð1Þ �

Xg

k¼0

X1

i¼0

Xi

j¼0

g

k

 !
ð� 1Þ

iþjþk
aikib� i

j!ði � jÞ!

Z t

0

e
ði � jÞb

x dx

2

4

3

5

¼
1

1 � FðtÞ
mð1Þ �

Xg

k¼0

X1

i¼0

Xi

j¼0

X1

m¼0

g

k

 !
ð� 1Þ

iþjþk
aikibm� iði � jÞmt1� m

j!m!ði � jÞ!ð1 � mÞ

" #

:

ð27Þ

Fig 3. The graphs of the HRF for KuIG.

https://doi.org/10.1371/journal.pone.0241970.g003

PLOS ONE Kumaraswamy inverse Gompertz distribution

PLOS ONE | https://doi.org/10.1371/journal.pone.0241970 December 3, 2020 7 / 23

https://doi.org/10.1371/journal.pone.0241970.g003
https://doi.org/10.1371/journal.pone.0241970


4.4. The mean inactive lifetime

The mean waiting (inactive) lifetime (MWT), say Mw(t), measures the time elapsed since the

component fails with lifetime T, provided that it has failed some time before t, t> 0. It is

defined as

MwðtÞ ¼ Eðt � TjT � tÞ:

If T* KuIG(Ω), then the MWT of T is

MwðtÞ ¼
1

FðtÞ

Z t

0

F xð Þdx

¼
1

FðtÞ
t �
Xg

k¼0

X1

i¼0

Xi

j¼0

X1

m¼0

g

k

 !
ð� 1Þ

iþjþk
aikibm� iði � jÞmt1� m

j!m!ði � jÞ!ð1 � mÞ

" #

:

ð28Þ

5. Maximum likelihood estimators for complete data

In this section, we will discuss and study how to use the maximum likelihood approach to

appreciate the unknown parameters (α, β, γ) of the KuIG. Suppose that x1, x2, . . ., xn be a ran-

domly selected sample with size n from the KuIG(Ω), thus the log-likelihood function L(Ω) for

it is given by

L Ωð Þ ¼ nln agð Þ þ b
Xn

i¼1

1

xi
� 2
Xn

i¼1

lnðxiÞ �
a

b

Xn

i¼1

e
b
xi � 1

� �
þ g � 1ð Þ

Xn

i¼1

ln 1 � e
� a
b

e
b
xi � 1

� � !

:ð29Þ

By deriving the first partial derivatives of L(Ω) with regard to α, β and γ and put it equal to

zero, the normal equations of L(Ω) will take the forms

n
ĝ
þ
Xn

i¼1

ln 1 � e
� â

b̂
e
b̂
xi � 1

� � !

¼ 0; ð30Þ

n
â
�

1

b̂

Xn

i¼1

e
b̂
xi � 1

� �
þ
ðĝ � 1Þ

b̂

Xn

i¼1

e
b̂
xi � 1

e
â

b̂
e
b̂
xi � 1

� �

� 1

¼ 0 ð31Þ

and

Xn

i¼1

1

xi
�
â

b̂

Xn

i¼1

1

xi
e
b̂
xi þ

â

b̂2

Xn

i¼1

e
b̂
xi � 1

� �
þ
âðĝ � 1Þ

b̂2

Xn

i¼1

b̂

xi
� 1

� �
e
b̂
xi þ 1

e
â

b̂
e
b̂
xi � 1

� �

� 1

¼ 0: ð32Þ

Eqs (30), (31) and (32) don’t have an explicit solutions to â; b̂ and ĝ. Therefore, we will

solve the previous system of equations numerically to obtain the maximum likelihood estima-

tors (MLEs) ðâ; b̂; ĝÞ.

6. Maximum likelihood estimators for type-II right censored data

If a life testing experiment stopped over when a limited number of items are observed to be

failed, then the remaining items are indicated to be a type-II right censored. The inference

associated with this type of data is less efficient than the inference associated with the complete
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data because some information about the parameters under study will be missed with the type-

II right censored data; see [34]. If x(1), x(2), . . .. . ., x(k), k� n denote the ordered values of a ran-

dom sample x1, x2, . . .. . ., xn (failure times) and observations terminate after the kth failure

occurs, then the likelihood function take the form ([35])

‘cen: ¼
n!

ðn � kÞ!
ðRðxkÞÞ

n� k
Yk

i¼1

f ðxiÞ: ð33Þ

If x1, x2, . . ., xn be a random sample taken from KuIG(Ω), then the L(Ω) of x(1), x(2), . . .. . .,

x(k), k� n is found by the formula

LðOÞ ¼ kln agð Þ þ ln
n!

ðn � kÞ!

� �

þ n � kð Þln 1 � e
� a
b

e
b
xk � 1

� � !g

þ b
Xk

i¼1

1

xi
� 2
Xk

i¼1

ln xið Þ

�
a

b

Xk

i¼1

e
b
xi � 1

� �
þ g � 1ð Þ

Xk

i¼1

ln 1 � e
� a
b

e
b
xi � 1

� � !

:

ð34Þ

The first partial derivatives of L(Ω) are obtained by differentiating Eq (34) for α, β and γ as

@L
@g
¼
k
g
þ
Xk

i¼1

ln 1 � e
� a
b

e
b
xi � 1

� � !

; ð35Þ

@L
@a
¼
k
a
þ
g n � kð Þ e

b
xk � 1

� �

b e
a
b

e
b
xk � 1

� �

� 1

 ! �
1

b

Xk

i¼1

e
b
xi � 1

� �
þ
ðg � 1Þ

b

Xk

i¼1

e
b
xi � 1

e
a
b

e
b
xi � 1

� �

� 1

ð36Þ

and

@L
@b
¼
ag n � kð Þ b

xk
� 1

� �
e
b
xk þ 1

� �

b
2 e

a
b

e
b
xk � 1

� �

� 1

 ! þ
Xk

i¼1

1

xi
�
a

b

Xk

i¼1

1

xi
e
b
xi þ

a

b
2

Xk

i¼1

e
b
xi � 1

� �
þ
aðg � 1Þ

b
2

Xk

i¼1

b

xi
� 1

� �
e
b
xi þ 1

e
a
b

e
b
xi � 1

� �

� 1

:ð37Þ

Equating Eqs (35), (36) and (37) to zero, we will get the normal equations of L which don’t

have an explicit solutions to â; b̂, and ĝ and must be solved numerically to find the maximum

likelihood estimators (MLEs) ðâ; b̂; ĝÞ.

7. Maximum likelihood estimators for upper record data

The study of record values has extensive applications to real world situations such as sporting

events, meteorological and seismological sciences and life testing studies. The upper record

value is that one which is larger than all watched values so far. Suppose that X = {XU(1), XU(2),

. . ., XU(n)} is an upper record values taken from a random sample x1, x2, . . ., xn that follow the

KuIG, then the likelihood function of X can be expressed by [36]

‘reco: ¼ f xUðnÞ;Ω
� �Yn� 1

i¼1

f ðxUðiÞ; ΩÞ
RðxUðiÞ; ΩÞ

; 0 � xUð1Þ < xUð2Þ < � � � < xUðnÞ <1: ð38Þ
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From Eqs (7) and (8), we can obtain the L(Ω) as follows

LðOÞ ¼ nln agð Þ � ln x2
UðnÞ

� �
þ

b
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�
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b
e
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@
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ln e
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e
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ð39Þ

Differentiating Eq (39), we will obtain the first partial derivatives of L(Ω) with regard to α,

β, and γ as

@L
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¼
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By equal Eqs (40), (41) and (42) to zero, we will get the normal equations of L which don’t

have an explicit solutions to â; b̂, and ĝ and must be solved numerically to find the MLEs

ðâ; b̂; ĝÞ.

8. Simulation results

A simulation study will be accomplished, in this section, to appreciate the performance of the

MLEs ðâ; b̂; ĝÞ by using the bias estimates and the mean squared errors (MSEs); see [37]. This

simulation is carried out by using "R" language. We examine the behavior of the MLEs for var-

ied values of n, α, β and γ. Furthermore, the graphical comparison of these three parameters

according to the bias estimates and MSEs for the KuIG distribution is displayed in Figs 4, 5

and 6 which demonstrates that both bias estimates and MSEs are decreased as n increases.

That is, estimating the parameters of the KuIG by using the MLE technique implements quite

well.

9. Data analysis

We will analyze here five real data sets, three of them are complete, one is type-II right cen-

sored and one is upper record data to clarify that the KuIG distribution is a good lifetime

model, compared with many known models like inverse flexible Weibull (IFW), exponentiated

inverse flexible Weibull (EIFW), inverse Weibull (IW), inverse exponential (IE), inverse Ray-

leigh (IR), A distribution (A), and inverse Gompertz (IG) distributions. The MLE method will

be used to compare the goodness-of-fit of the KuIG with these distributions. All mentioned
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distributions will be fitted in each data set according to some different criteria, namely, the

Kolmogorov Smirnov test statistic (KS) with its corresponding P-values. Also, the log-likeli-

hood values (L), Akaike information criterion (AIC), correct Akaike information criterion

(CAIC), Hannan-Quinn information criterion (HQIC), Bayesian information criterion

(BIC), Cramér-von Mises (W�) statistic and Anderson-Darling (A�) statistic will be found; see

[38–43].

9.1. Complete data set I

The first data mentioned by [44] and represents the strength of glass for aircraft window (see,

A1 in S1 Appendix). The MLEs, KS and P-values are given in Table 1 for all eight studied mod-

els. It is obvious that the KuIG has the smallest KS value and the largest P-value through whole

models elaborated. This emphasizes that the KuIG fits the first data better than IE, IR, IW, A,

IFW, EIFW and IG models. On the other hand, for the eight mentioned models, the KuIG has

the smallest values of–L, AIC, CAIC, HQIC, BIC, W� and A�. This confirms that the KuIG

appears to be a very competitive model to data I better than the other seven models.

In Figs 7 and 8, we show the estimated PDFs, estimated CDFs and P-P plots of all tested dis-

tributions using the estimators obtained in Table 1. From these figures, it is noticed that the

Fig 4. The bias estimates and MSEs of the KuIG for various values of n when (α, β, γ) = (0.1, 3.1, 3.5).

https://doi.org/10.1371/journal.pone.0241970.g004
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KuIG fits the first data better than the other seven models. The likelihood ratio test (LRT) can

be used here to test if the fit by KuIG model is statistically superior to the fit by A and IG mod-

els for data set I. Table 2 gives the values of the LRT, degree of freedom (d.f) and its P-values

for data I. Based on the P-values, we will reject the null hypothesis (H0) at a level of significance

α = 0.05.

The profile of L(Ω) for the parameters of KuIG in case of the first real set of data is given in

Fig 9 which confirms that only one solution is existed for the likelihood equations. The total

test time (TTT) plot which specifies some qualitative readings about the failure rate shape is

also given in Fig 9.

9.2. Complete data set II

The second data introduced by [45] represents the tiredness lifetime of 101 6061-T6 aluminum

coupons (see, A2 in S1 Appendix). Table 3 presents the MLEs, KS and the P-values for all com-

pared distributions. Also, the values of–L, AIC, CAIC, HQIC, BIC, A� and W� are determined

for these distributions. From Table 3, we find that the KuIG is the best model between all stud-

ied distributions. Figs 10 and 11 shows the estimated PDFs, estimated CDFs and P-P plots of

Fig 5. The bias estimates and MSEs of the KuIG for various values of n when (α, β, γ) = (0.3, 2.1, 3.5).

https://doi.org/10.1371/journal.pone.0241970.g005
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Fig 6. The bias estimates and MSEs of the KuIG for various values of n when (α, β, γ) = (0.7, 2.1, 3.5).

https://doi.org/10.1371/journal.pone.0241970.g006

Table 1. The MLEs, KS, P-values, –L, AIC, CAIC, HQIC, BIC, A� and W� values for data I.

Statistics Models

IFW EIFW IW IR IE A IG KuIG

α̂ 61.167 2.376 4461827 810.504 29.215 125.662 1.249 79.042

β̂ 0.0859 0.164 4.655 –– –– –– 119.762 18.694

γ̂ –– 81.512 –– –– –– –– –– 26.554

KS 0.146 0.136 0.146 0.325 0.477 0.162 0.139 0.124

P-value 0.479 0.567 0.482 0.002 6.15×10−7 0.354 0.538 0.681

–L 104.963 104.141 105.323 118.201 137.262 107.950 107.884 103.988

AIC 213.927 214.282 214.647 238.401 276.523 217.901 219.768 213.976

CAIC 214.355 215.171 215.075 238.539 276.661 218.039 220.196 214.865

BIC 216.795 218.584 217.515 239.835 277.957 219.335 222.636 218.278

HQIC 214.862 215.684 215.582 238.869 276.990 218.368 220.702 215.379

W� 0.078 0.0742 0.083 0.075 0.074 0.122 0.118 0.074

A� 0.467 0.397 0.503 0.403 0.392 0.804 0.778 0.394

https://doi.org/10.1371/journal.pone.0241970.t001
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the tested distributions using the estimators obtained in Table 3. These figures confirm that

the KuIG fits data II better than all seven tested models. Fig 12 gives the profile of the L(Ω) of

the parameters α, β and γ and the TTT-plot for the second real set of data. From the profile of

the L(Ω), we conclude that one and only solution is existed for the likelihood equations.

Table 4 presents the values of LRT, d.f with the P-values for data set II. We deduce that the null

hypotheses (H0) are rejected at α = 0.05.

9.3. Complete data set III

The third complete data set symbolizes the simulated strengths of glass fibers presented by

[46] (see, A3 in S1 Appendix). In Table 5, we present the MLEs, KS and the P-values for all

tested distributions. Moreover, the values of–L, AIC, CAIC, HQIC, BIC, A� and W� are deter-

mined for these distributions. From Table 5, we find that the KuIG is the best model between

all studied distributions. The estimated PDFs, estimated CDFs with the P-P plots of the tested

distributions using the estimators obtained in Table 5 are presented in Figs 13 and 14. These

figures confirm that the KuIG fits data set III better than all seven tested models. Fig 15 shows

the profile of the L(Ω) of the parameters α, β and γ and the TTT-plot. It is appeared, from the

profile of the L(Ω), that one and only solution exists for the likelihood equations. Table 6

describes the values of LRT, d.f with the P-values for data III. According to the P-values, the

null hypothesis (H0) will be refused at α = 0.05.

9.4. Data set IV (Type-II right censored data)

The censored data analyzed here was introduced by [47] which represents the fatigue life for

10 bearings of a specific type in hours and a sample of size k = 8 from this data is taken (see,

A4 in S1 Appendix). Table 7 shows the MLEs, –L, and KS with the P-values for the A, IG and

KuIG distributions. It is clear that, the KuIG has the lowest -L and KS value and the highest P-

value and this emphasizes that KuIG fits the studied data here better than A and IG.

Fig 7. The estimated PDFs (left panel) and the estimated CDFs (right panel) of data I.

https://doi.org/10.1371/journal.pone.0241970.g007
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9.5. Data set V (Upper record data)

The record data analyzed here are introduced by [48] which contains n = 11 lifetimes to break-

down of an electric isolating fluid exposed to thirty kilovolt (see, A5 in S1 Appendix). From

this data, it is found that the upper record values are 2.836, 3.120, 5.169 and 5.272. Table 8

summarizes the MLEs, –L, and KS with the P-values for A, IG and KuIG distributions. It is

clear that, the KuIG has the lowermost -L and KS value and the uppermost P-value and this

emphasizes that the KuIG fits this type of data better than the A and IG models.

Fig 8. The P-P plots for data I.

https://doi.org/10.1371/journal.pone.0241970.g008

Table 2. The LRT, degree of freedom and P-value for data I.

Models Null Hypothesis (H0) Λ D.F P-value

A α = γ = 1 or x1, x2, . . ., xn ~ A(β) 7.925 2 0.019

IG γ = 1 or x1, x2, . . ., xn ~ IG(β) 7.792 1 0.005

https://doi.org/10.1371/journal.pone.0241970.t002
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10. Conclusions

In this article, we proposed a new model named KuIG which is considered as an extension and

generalization to inverse Gompertz and A distributions. The studied model is characterized by

an upside down bathtub-shaped curve hazard rate function depending upon the shape param-

eters. Also, the KuIG is appropriate for testing the goodness of fit of some special sub-models,

such as the IG and A distributions. Some statistical and mathematical properties including the

quantiles, median, mode, moments, PWMs, entropies, skewness and kurtosis of KuIG are

derived and discussed. Also, some basic functions used in reliability theory are obtained such

Fig 9. The profile of L(Ω) for data set I (left panel) and the TTT plot (right panel).

https://doi.org/10.1371/journal.pone.0241970.g009

Table 3. The MLEs, KS, P-values, –L, AIC, CAIC, HQIC, BIC, A� and W� values for data II.

Statistics Models

IFW EIFW IW IR IE A IG KuIG

α̂ 295.466 78.792 3.28×1010 16361.23 129.933 705.55 7.435 599.595

β̂ 0.0206 0.0386 5.051 –– –– –– 501.775 53.955

γ̂ –– 58.724 –– –– –– –– –– 180.479

KS 0.139 0.113 0.133 0.403 0.506 0.366 0.206 0.067

P-value 0.039 0.153 0.055 1.21×10−14 0.0 3.77×10−12 0.00038 0.761

–L 476.101 465.265 475.186 530.197 595.547 517.597 494.448 456.431

AIC 956.202 936.531 954.372 1062.393 1193.094 1037.194 992.896 918.862

CAIC 956.325 936.778 954.494 1062.434 1193.135 1037.234 993.018 919.109

BIC 961.432 944.376 959.602 1065.009 1195.709 1039.809 998.126 926.707

HQIC 958.319 939.707 956.489 1063.452 1194.153 1038.253 995.013 922.038

W� 0.437 0.238 0.432 0.172 0.121 1.204 0.803 0.056

A� 2.548 1.349 2.493 0.975 0.689 7.025 4.707 0.360

https://doi.org/10.1371/journal.pone.0241970.t003
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Fig 10. The estimated PDFs (left panel) and the estimated CDFs (right panel) of data II.

https://doi.org/10.1371/journal.pone.0241970.g010

Fig 11. The P-P plots of data II.

https://doi.org/10.1371/journal.pone.0241970.g011

PLOS ONE Kumaraswamy inverse Gompertz distribution

PLOS ONE | https://doi.org/10.1371/journal.pone.0241970 December 3, 2020 17 / 23

https://doi.org/10.1371/journal.pone.0241970.g010
https://doi.org/10.1371/journal.pone.0241970.g011
https://doi.org/10.1371/journal.pone.0241970


Fig 12. The profile of L(Ω) for data II (left panel) and the TTT plot (right panel).

https://doi.org/10.1371/journal.pone.0241970.g012

Table 4. The LRT, degree of freedom and P-value of data II.

Models Null Hypothesis (H0) Λ D.F P-value

A α = γ = 1 or x1, x2, . . ., xn ~ A(β) 122.332 2 0

IG γ = 1 or x1, x2, . . ., xn ~ IG(β) 76.034 1 0

https://doi.org/10.1371/journal.pone.0241970.t004

Table 5. The MLEs, KS, P-values, –L, AIC, CAIC, HQIC, BIC, A� and W� values of data III.

Statistics Models

IFW EIFW IW IR IE A IG KuIG

α̂ 3.732 4.169 6.498 2.233 1.526 2.111 0.032 0.684

β̂ 1.869 1.666 5.438 –– –– –– 7.583 4.223

γ̂ –– 0.544 –– –– –– –– –– 3.452

KS 0.082 0.084 0.077 0.360 0.468 0.521 0.101 0.068

P-value 0.756 0.739 0.819 7.762×10−8 3.537×10−13 4.44×10−16 0.508 0.917

–L 20.618 20.593 20.064 53.381 92.805 63.322 22.809 19.719

AIC 45.237 47.186 44.128 108.762 187.609 128.645 49.617 45.439

CAIC 45.437 47.593 44.328 108.827 187.675 128.710 49.817 45.847

BIC 49.523 53.615 48.414 110.905 189.753 130.788 53.903 51.869

HQIC 46.923 49.715 45.814 109.604 188.452 129.487 51.303 47.969

W� 0.079 0.081 0.071 0.087 0.126 0.0629 0.138 0.0610

A� 0.610 0.616 0.533 0.709 0.982 0.514 0.928 0.471

https://doi.org/10.1371/journal.pone.0241970.t005
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Fig 13. The estimated PDFs (left panel) and the estimated CDFs (right panel) for data III.

https://doi.org/10.1371/journal.pone.0241970.g013

Fig 14. The P-P plots of data III.

https://doi.org/10.1371/journal.pone.0241970.g014
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as the reliability function, HRF, reversed HRF, MTTF, MRL and MWT. The parameters of

KuIG are appreciated using the MLE in case of complete, type-II right censored and upper

record data. A simulation is done to determine the performance of MLEs according to biases

and MSEs. Three complete data sets are analyzed using the KuIG and it is compared with

Fig 15. The profile of L(Ω) for data set III (left panel) and the TTT plot (right panel).

https://doi.org/10.1371/journal.pone.0241970.g015

Table 6. The LRT, degree of freedom and P-value for data set III.

Models Null Hypothesis (H0) Λ D.F P-value

A α = γ = 1 or x1, x2, . . ., xn ~ A(β) 87.204 2 0

IG γ = 1 or x1, x2, . . ., xn ~ IG(β) 6.177 1 0.013

https://doi.org/10.1371/journal.pone.0241970.t006

Table 7. The MLEs, K-S, P-values and –L values for type-II right censored data.

Models MLEs -L KS P-value

A â ¼ 1295:5 29.224 0.367 0.135

IG â ¼ 2:211; b̂ ¼ 1:144 24.357 0.349 0.175

KuIG â ¼ 1:560; b̂ ¼ 1201:6; ĝ ¼ 0:909 22.971 0.159 0.961

https://doi.org/10.1371/journal.pone.0241970.t007

Table 8. The MLEs, –L, KS, and P-values for upper record data.

Models MLEs -L KS P-value

A â ¼ 7:136 7.592 0.687 0.046

IG â ¼ 2:82� 10� 3; b̂ ¼ 26:399 3.25 0.513 0.285

KuIG â ¼ 0:204; b̂ ¼ 13:606; ĝ ¼ 2:235 2.993 0.479 0.317

https://doi.org/10.1371/journal.pone.0241970.t008
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seven other life time distributions. Also, we analyzed a type-II right censored and upper record

data and it is compared with the IG and A distributions. It is found that the KuIG has more

flexibility for fitting the various data in engineering applications than the mentioned models.

Future works include (i) bivariate extension of the KuIG, (ii) KuIG-G family of distributions,

(iii) different estimation methods of the KuIG and (iv) discrete case of the KuIG.
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