
1

Vol.:(0123456789)

Scientific Reports |         (2021) 11:7273  | https://doi.org/10.1038/s41598-021-86618-z

www.nature.com/scientificreports

CMIP5 climate projections 
and RUSLE‑based soil erosion 
assessment in the central part 
of Iran
Fatemeh Hateffard1, Safwan Mohammed2*, Karam Alsafadi3,4, Glory O. Enaruvbe5, 
Ahmad Heidari6, Hazem Ghassan Abdo7,8,9 & Jesús Rodrigo‑Comino10,11 

Soil erosion (SE) and climate change are closely related to environmental challenges that influence 
human wellbeing. However, the potential impacts of both processes in semi-arid areas are difficult 
to be predicted because of atmospheric variations and non-sustainable land use management. 
Thus, models can be employed to estimate the potential effects of different climatic scenarios on 
environmental and human interactions. In this research, we present a novel study where changes 
in soil erosion by water in the central part of Iran under current and future climate scenarios are 
analyzed using the Climate Model Intercomparison Project-5 (CMIP5) under three Representative 
Concentration Pathway-RCP 2.6, 4.5 and 8.5 scenarios. Results showed that the estimated annual 
rate of SE in the study area in 2005, 2010, 2015 and 2019 averaged approximately 12.8 t ha−1 y−1. The 
rangeland areas registered the highest soil erosion values, especially in RCP2.6 and RCP8.5 for 2070 
with overall values of 4.25 t ha−1 y−1 and 4.1 t ha−1 y−1, respectively. They were followed by agriculture 
fields with 1.31 t ha−1 y−1 and 1.33 t ha−1 y−1. The lowest results were located in the residential areas 
with 0.61 t ha−1 y−1 and 0.63 t ha−1 y−1 in RCP2.6 and RCP8.5 for 2070, respectively. In contrast, RCP4.5 
showed that the total soil erosion could experience a decrease in rangelands by − 0.24 t ha−1 y−1 (2050), 
and − 0.18 t ha−1 y−1 (2070) or a slight increase in the other land uses. We conclude that this study 
provides new insights for policymakers and stakeholders to develop appropriate strategies to achieve 
sustainable land resources planning in semi-arid areas that could be affected by future and unforeseen 
climate change scenarios.

Changes in land uses have consistently been described because of rapid population growth and the expansion of 
human settlement around the world1–7. These changes play important roles in shaping the landscape and altering 
land resources, sometimes with negative impacts8. Numerous scholars have concluded that unregulated land-use 
changes lead to environmental degradation that poses a major threat to the socioeconomic and ecological sustain-
ability of soil as a vital resource9–11. Increasing pressure on land resources because of unsustainable cultivation, 
overgrazing, deforestation, climate change and drought, urbanization and poor land management practices are 
worsening land degradation on a global scale12–15. Among them, soil erosion (SE) is one of the common forms of 
land degradation that is related to unsustainable environmental management. Soil erosion is particularly severe 
in arid and semi-arid regions15–20.

SE is a complex process resulting from the impacts of wind, precipitation, human activities and associated 
runoff processes that are influenced by parent material, soil properties, relief and vegetation cover21,22. Although 
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SE may occur naturally, anthropogenic activities such as land-use change, agriculture, livestock grazing or defor-
estation are known to exacerbate erosion and soil degradation23–25. Therefore, SE is considered a natural and 
human-induced challenge9,13,22, that leads to severe adverse socioeconomic and environmental damage in many 
societies26,27. Despite the important implications of SE on sustainable use of soil; however, there is limited infor-
mation on current and future scenarios. The dearth of this information is linked to the complexity of erosion 
processes which makes SE estimation expensive, time-consuming and difficult28,29. This difficulty has resulted in 
the development of various models and tools that seek to simplify SE modelling and improve our understanding 
of the pattern and processes of SE.

The Universal Soil Loss Equation (USLE)30,31 model is widely used for estimating SE because it integrates 
many of the components of the SE process13,26,29,32,33. Apart from the anthropogenic factors driving SE, recent 
studies show that other factors influencing land degradation are climate-related32,34,35. On the other hand, the 
Intergovernmental Panel on Climate Change (IPCC) has launched the four future scenarios for earth greenhouse 
gases (GHGs) emission, which is known as Representative Concentration Pathways (RCPs) 2.6, 4.5, 6, and 8.536. 
These scenarios simulate different GHGs emission, the RCP2.6 refer to low GHGs emission, the RCP4.5, and 
RCP6 express as stabilization scenarios, while RCP8.5 denote high GHGs emission37. Studies have been car-
ried out to predict the impact of future climate on soil erosion by using different CMIP5-RCP scenarios (i.e. 
Tibetan Plateau38; Lancang–Mekong River39; Minab Dam Watershed35; Burkina Faso40; mid-Yarlung Tsangpo 
River region41).

SE is a natural geomorphological process (erosion, transport and sedimentation) but after human disturbances 
can be considered as a land degradation one, which has been a recurring challenge for decades over the world 
for stakeholders, and especially, in countries such as Iran. Recently, scientists have examined land degradation 
indicators including desertification42, deforestation43, salinization44, alkalization of soils45, overgrazing46, intensive 
land-use changes47, and especially, water and wind erosion48,49. Many of these studies integrated remote sens-
ing, Geographic Information System (GIS) and the RUSLE approach for the estimation of SE50–55. Other recent 
techniques such as Artificial Neural Networks or Machine Learning techniques are also becoming popular for 
erosion simulation and modelling in Iran29,56,57. However, despite the numerous studies on SE estimation, there is 
limited information on SE estimation based on future climate change (CC) scenarios in Iran and other arid and 
semi-arid countries. Thus, the main goals of this research are to 1) estimate the current SE in the central part of 
Iran, and 2) predict SE changes under future climate scenarios using Climate Model Intercomparison Project-5 
(CMIP5). We hypothesize that this will provide important information for policymakers and stakeholders to 
develop appropriate strategies to achieve sustainable land resource planning, utilization and management.

Material and methods
Study area.  This study was conducted in an area covering 5833 km2 in Alborz Province located in central 
Iran. The area lies between the latitude 35° 31′–36° 21′ N and longitude 50° 10′–51° 30′ E (Fig. 1). The climate 
of this area is classified as semi-arid bordering to arid58. Mean annual rainfall reaches 251 mm and the mean 
monthly temperature 14.1  °C. During the year, the temperature typically varies from − 2 to 35.2  °C and the 
precipitation ranges from 1 or 2 mm to 78 mm in the rainy month (https://​weath​erspa​rk.​com). The study area 
is characterized by a range of land use and land cover categories including rangeland, agricultural land, saline 
and bare lands.

Data collection and pre‑processing.  The soil database was elaborated for several years by the Soil Sci-
ence Department of the University of Tehran. To predict the spatial distribution of soil texture and soil organic 
carbon of the study area; Decision Tree (DT) and Artificial Neural Network (ANN) models were generated using 
70% of data obtained from laboratory analysis of soil samples. Model testing was based on 15% of the data while 
15% was used for model validation. As the performance of the DT is better than ANN (Appendix 1 and 2), the 
output of the DT model was adopted as the main input for calculating the K factor59.

Digital elevation models (DEM) and cloud-free Landsat images of the study area were obtained from the 
United State Geological Survey (USGS) website at (https://​earth​explo​rer.​usgs.​gov). The images obtained include 
Landsat 7 Enhanced Thematic Mapper Plus (ETM +) Level-1 of 27 October 2005, 10 November 2010, 24 Novem-
ber 2015 and 18 October 2019. SCL-off error in the images was corrected using Landsat Toolbox extension in 
ArcGIS 10.5 (https://​www.​esri.​com/​en-​us/​about/​about-​esri/​overv​iew) (ESRI, USA).

Downscaled CMIP5 monthly precipitation parameter was acquired from the WorldClim Data Portal at 1 km 
resolution (https://​www.​world​clim.​org/). The CMIP5 data from Global Climate Models (GCMs) are available for 
four representative concentration pathways (RCPs) as released by the twenty-first century in its 5th Assessment 
Report (IPCC, 2014). The GCM outputs have been downscaled and calibrated, (i.e. bias-corrected using World-
Clim v.1.4 as current baseline climate)60,61. Previous research has shown that different CC scenarios produced 
different result in assessments of GCMs performance in Iranian territory62,63. In this research, the HadGEM2-ES 
model was used for the calculation of rainfall erosivity R-factor. For an investigation of the impacts of future CC 
on SE by water, the output layers of the current climate and projected CC according to the HadGEM2-ES model 
and several RCP (RCP2.6, 4.5, and 8.5) were used in our calculation of the R factor.

Soil erosion estimation.  In this study, RUSLE31,64 was used for estimating and predict SE. This is one of 
the universal pioneer methods for SE estimation and modelling65. It is recognized as an empirical model limited 
to calculating rill and inter-rill erosion, without considering gully erosion21. SE estimation using RUSLE is based 
on the following Eq. (1):

(1)ϑ = R · K · LS · C · P

https://weatherspark.com
https://earthexplorer.usgs.gov
https://www.esri.com/en-us/about/about-esri/overview
https://www.worldclim.org/
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where ϑ represents the annual soil loss (metric tons per hectare per year); R is the rainfall erosivity (megajoule 
millimeters per hectare per hour per year); K means soil erodibility (metric ton hours per megajoules per mil-
limeter); LS corresponds to the topographic factor (length and steepness- unitless); C is the land cover/ land use 
factor (unitless); and, P characterizes support/conservation practice (unitless).

Rainfall erosivity R.  R factor refers to the kinetic energy of raindrops which could significantly affect the stabil-
ity of soil aggregates and enhance soil loss66–70. In this study, the R factor was calculated using a monthly database 
approach as following31,71–74 in Eq. (2):

where R is a rainfall erosivity factor (MJ mm ha−1 h−1 per year); pi represents monthly rainfall (mm); and, P 
corresponds to the annual rainfall (mm).

The R factor was calculated for two different periods to account for the past, current and future values. The ini-
tial value of the R factor was obtained by computing the average values from 1990–2019 (Raverage (1990–2019)) and was 
considered as a representative average result for the past and current time interval. For future climate projection, 
two different average values were selected for the R factor. The first one was from 2040–2060 (Raverage (2040–2060)) 
and the second one from 2060–2080 (Raverage (2060–2080)).

Soil erodibility K.  K factor reflects the susceptibility of soil aggregates to detachment by raindrops and its trans-
portation by runoff75–77. The K values were calculated using soil data derived from the DT model simulation78 
based on Eq. (3):

where SAN: sand%, SIL: silt%, CLA: clay%, OM: organic matter%, SN1 = 1 − SAN/100.
Afterwards, each pixel was assigned a K value in the GIS environment.

Topographic factor LS.  The Slope length (L) and steepness (S) play vital roles in SE and reflect the potential con-
tribution of topography in runoff and SE65. The LS factor was computed using the following equation79,80 (Eq. 4):

(2)R =

12
∑

i=1

1.75× 10

(

1.5 log10

(

p2i
P

)

−0.8188

)

(3)
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(

1− SIL
100

)

×
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×
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)
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)

Figure 1.   Study area with soil sampling sites shown on the Digital Elevation Model (DEM), values of pixels 
were mapped by ArcGIS 10.5 (https://​www.​esri.​com/​en-​us/​about/​about-​esri/​overv​iew).

https://www.esri.com/en-us/about/about-esri/overview
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where FlAc is the flow accumulation (contributing to the upslope area to a given cell) with a cell size of 30 m. 
Flow accumulation map was derived from DEM in the ArcHydro extension of the spatial analyst tool.

Cover management factor (C).  The C factor plays a vital role against SE by protecting the soil surface from the 
direct effect of raindrops, where erosion is significantly correlated with vegetation coverage72,81,82. In this study, 
the C value was generated by applying Eq. 5, which is based on the Normalized Difference Vegetation Index 
(NDVI) as follows83:

where ∀ = 2 and γ = 1. Although there are other three approaches for determining the C factor, the remote sensing 
approach based on NDVI has been widely used13,84,85. The average C factor (Cx) of C2005; C2010; C2015 and C2019 
was calculated and used as a constant input for addressing the impact of climate projection on SE. It is worth 
to mention here that satellite images were collected in November and April for each target year, then the aver-
age NDVI was calculated for both images to get a representative image for each target year. This approach was 
undertaken to overcome the fact that NDVI varies widely throughout the year because it is affected by vegetation 
growth dynamics.

Support practice factor P.  The P factor refers to soil loss from up and downslope tillage under specific support-
ing practices. For instance, contouring agriculture, strip-cropping and terracing affect the direction of surface 
runoff and modify flow pattern86,87. In this study, the P-factor map was derived from DEM and the appropriate 
value was assigned to each category of the slope following Morgan88 (Table 1).

The spatial pattern of SE was derived by multiplying all the factor together (pixel-by-pixel) to generate a 
current and future SE map of the study area. In terms of future SE, LS, K, P factors were considered as constant 
(similar to the current situation), C factor was calculated as an average of (C2005, C2010, C2015, C2019), while R fac-
tor was estimated as an average for two different periods the 2050s and 2070s. Hence, the future erosion model 
could be express ass follow:

The methodology was represented in a flowchart in Fig. 2, and Table 2 shows a summary of the data sources 
used in this study.

Statistical analysis.  We estimated mean values, standard deviations and mean errors for SE factors and 
total erosion rates using the Extract Values by Points’ tool of ArcGIS 10.5 (https://​www.​esri.​com/​en-​us/​about/​
about-​esri/​overv​iew ). Finally, the correlation between total SE and each respective factor was determined using 
a correlation matrix.

Results
Factors influencing soil erosion.  In this study, the soil erodibility (K) factor widely varied. It ranges from 
0.2 t·ha·h·ha−1·MJ−1·mm−1 to 0.4 t·ha·h·ha−1·MJ−1·mm−1 with a mean value of 0.25 t·ha·h·ha−1·MJ−1·mm−1. This 
variation appears to be influenced by land use and soil type. For instance, the K factor values range from 0.11 
t·ha·h·ha−1·MJ−1·mm−1 (less resistant to SE) in the northern, eastern and southern parts of the study area, to 
0.45 t·ha·h·ha−1·MJ−1·mm−1 (most resistant to SE) the central, northwest and western parts. Erodibility is par-
ticularly high in the cultivated area (0.3–0.44 t ha h ha−1 MJ−1 mm−1) but lower in areas with high relief (0.25–
0.01 t ha h ha−1 MJ−1 mm−1) (Fig. 3a).

Figure 3b shows that the mean value of the slope length (LS) factor is 4. In the study area, the LS factor 
ranges from 0.5 to 8.6. The LS value is higher in the high and dissected escarpments in northern, northwest, and 
northeastern parts of the study area than in the south and southwest ones that are characterized by gentle slopes 
and low runoff potential. Although the average P factor value is 2.5, more than 60% of the study area registered 
a low P factor (Fig. 3c). The high values of the P factor coincide with the physiography and severity of slopes in 
the study area.

(4)LS =

(

FlAc×
Cell size

22.1

)0.4

×
(

sin slope× 0.896
)1.3

(5)C = exp

(

−∀
NDVI

γ−NDVI

)

(6)RCP2.6, RCP4.5, RCP8.5: ϑ = Raverage 2040−2060 · K · LS · C(average) · P

Table 1.   The P factor value for different slope gradients.

Slope (%) P factor

9–12 0.6

13–16 0.7

17–20 0.8

21–25 0.9

 > 25 0.95

https://www.esri.com/en-us/about/about-esri/overview
https://www.esri.com/en-us/about/about-esri/overview
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Rainfall erosivity factor ranged between 84 MJ mm ha−1 h−1 per year in lower-lying terrain areas but increased 
rapidly to 164 MJ mm ha−1 h−1 per year at higher terrain (Fig. 3d). The annual mean of R-value in the study area 
was 112 MJ mm ha−1 h−1 per year.

Figure 4 shows the normalized difference vegetation index (NDVI) and the land cover management factor in 
the study area. Variation in NDVI values (Fig. 4a) during the period of this study were low in marked contrasts 
to the values of cover management distribution factor. Figure 4b shows C factor values in 2005, 2010, 2015, and 
2019. There was a remarkable difference in the C factor during the period of this study. This is particularly sig-
nificant in 2005 and 2019 and 2010 and 2015. Consequently, the land covers during 2010 and 2015 are the most 
vulnerable to increasing trend of erosion.

The spatial pattern of soil erosion.  Figure 5 shows that the estimated annual rate of SE in the study area 
during 2005, 2010, 2015 and 2019 reaches approximately 12.8 t ha−1 y−1. The northern region of the study is more 

Figure 2.   Methodological flowchart for modelling SE in the central part of Iran.

Table 2.   Data description and sources.

Factor Type Format Spatial resolution Source

R factor

1970–2000

TIFF 1 km2 WorldClim v.1.4 and v2.1
RCP 2.6

RCP 4.5

RCP 8.5

K factor Soil samples .xlsx converted to TIFF – 320 Soil samples and DT modeling

LS factor DEM Raster 30 m http://​opent​opo.​sdsc.​edu/​lidar?​format=​sd

C factor NDVI2005–2010–2015–2019 Raster 30 m https://​earth​explo​rer.​usgs.​gov/

P factor DEM Raster 30 m http://​opent​opo.​sdsc.​edu/​lidar?​format=​sd

http://opentopo.sdsc.edu/lidar?format=sd
https://earthexplorer.usgs.gov/
http://opentopo.sdsc.edu/lidar?format=sd
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prone to soil erosion as this part of the study area accounts for more than 20 t ha−1 y−1 of erosion in contrast to 
the southern parts > (1 t ha−1 y−1).

Table 3 indicates the area affected per SE categories (%) under both the current and projected climate change 
scenarios. The annual soil loss in most parts of the region range between 0.1 and 5 t ha−1 y−1.

Table 4 shows the matrix of statistical correlation between RUSLE criteria and the values of SE in the study 
area. The table indicates that although slope length and management practices are correlated with SE in the study 
area, slope length has a greater influence on SE than management practices. This is in marked contrast with R, 
K and C factors that seem to be more fragile in relation to semi-dry physiographic features in the study area.

Projected soil erosion.  Three scenarios of projected R factor for 2040–2060 and 2060–2080 were deter-
mined from the fifth phase of the Coupled Model Intercomparison Project (CMIP5) models. A comparison of 
the baseline projected R factor values calculated from monthly rainfall rates of 40 years (i.e. 1960–2000) with the 
future values of projected R factor derived from three Representative Concentration Pathways (RCPs) is shown 
in Fig. 6. The highest values of the R factor (< 150 MJ mm ha−1 h−1) are mainly concentrated in the west (a) and 
northwestern (b and c) part of the study area. A similar pattern is observed in the projected values (Fig. 6d–f). 
Figure 7 shows the changes between baseline and projected SE in the study area under three CC scenarios of 
RCPs. This confirms that the regions with higher values of the R factor are located in the eastern and northeast-
ern regions. 

Projected future SE values indicate that there will be a high soil loss (> 5 t ha−1 y−1) in the north, northwest, 
and far southern parts of the study area in three scenarios of RCPs (Fig. 8). These future changes show that the 
spatial distribution of SE is similar to the baseline values (Fig. 5). This future simulation indicates that those 
same areas would be subject to accelerate SE if adequate soil conservation strategies are not developed and 
implemented. Notably, areas of high erosion values (> 5 t ha−1 y−1) reach up to 19.7% in the RCP2.6 (2060–2080) 
and 19.1% in the RCP8.5 (2060–2080) (Table 3 and Figs. 8 and 9). Spatial differences between RUSLE under 
different RCPs scenarios and RUSLE-2019 show an accelerated erosion trend in most areas of the study area. 
The highest values of SE were mainly located in the northwestern parts for the three RCPs (re-coloured), and 
especially under the RCP8.5 scenario.

Detecting the land uses prone to SE.  Table 5 shows the results of baseline and future SE quantities 
according to the land cover types in the study area. There is an upward trend in the quantities of SE. Rangeland 
areas accounted for the highest amount of SE especially in RCP2.6 (2070) and RCP8.5 (2070) with an overall 
amount of 4.25 t ha−1 y−1 and 4.1 t ha−1 y−1, respectively. Then, they are followed by agricultural areas with 1.31 
t ha−1 y−1 (RCP2.6 in 2070) and 1.33 t ha−1 y−1 (RCP8.5 in 2070). Also, bare land areas were predicted to register 
up to 0.34 t ha−1 y−1 and 0.35 t ha−1 y−1 in RCP2.6 (2070) and RCP8.5 (2070), respectively. The lowest amount of 

Figure 3.   Spatial pattern of (a) K factor, (b) LS factor, (c) P factor, (d) R factors in Central Iran, values of pixels 
were mapped by ArcGIS 10.5 (https://​www.​esri.​com/​en-​us/​about/​about-​esri/​overv​iew).

https://www.esri.com/en-us/about/about-esri/overview
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SE was estimated in the residential areas reaching 0.61 t ha−1 y−1 and 0.63 t ha−1 y−1 in RCP2.6 (2070) and RCP8.5 
(2070), respectively.

Table 6 summarizes the changes in statistical parameters from the baseline for each land cover. SE was pro-
jected to increase in the 2070s under both RCP2.6 and RCP8.5. In contrast, predicted SE in RCP 4.5 is expected 
to decline in rangelands by − 0.24 t ha−1 y−1 (the 2050s), and − 0.18 t ha−1 y−1 (the 2070s) but it would slightly 
increase for the other land-use types.

Discussion
In the semi-arid regions of Iran, SE by water is one of the most complex environmental problems threatening 
agricultural fields and, subsequently, human well-being. SE in these areas has been evaluated by several studies 
dealing with water erosion. However, there is a limited number of investigations that have rarely approached 
the topic of SE rates prediction according to climate covariates across remote areas89. In the current study, the 
impact of future CC on SE was investigated in the semi-arid central part of Iran featured by fragile and motivating 
properties for land and biodiversity degradation. We did not consider wind erosion in this study, but it is relevant 
to highlight that future approaches, should combine both water and wind types90. The five RUSLE factors (R, 
K, C, LS, and P) were extracted utilizing information from field survey and remote sensing sources. Then, these 

Figure 4.   (a) NDVI; and (b) Cover management (C-factor) distribution (2005; 2010; 2015; 2019), values of 
pixels were mapped by ArcGIS 10.5 (https://​www.​esri.​com/​en-​us/​about/​about-​esri/​overv​iew).

https://www.esri.com/en-us/about/about-esri/overview
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thematic raster layers were modelled and merged in the GIS environment to calculate the annual rates of SE and 
considers the spatial–temporal dimensions of SE in the Central Part of Iran. In this regard, given the integration 
of improved methods in effectively calculating erosion with recent data sources, the provided SE values by water 
could indicate an elevated accuracy and objectivity considering others obtained from prior studies (Table 7).

The baseline and downscaled R factor in this study was computed and mapped based on monthly precipita-
tion data obtained by WorldClim v.1.4 and v2.1data Portal at 1 km. resolution. Accurate mapping of baseline R 
factor values led to improved results in estimating SE, especially in an area with low annual precipitation rates 
and highly governed by climatic conditions. These results could give new insights, for example, to foresee espe-
cially the occurrence of rills and gullies among other SE processes because they are very sensitive to changes in 
rainfall patterns and human impacts99,100.

Figure 5.   Spatial pattern of soil erosion in the study area, values of pixels were mapped by ArcGIS 10.5 (https://​
www.​esri.​com/​en-​us/​about/​about-​esri/​overv​iew).

Table 3.   Area affected per SE categories (%) under current climate and climate change projection. ϑ is annual 
soil loss (metric tons per hectare per year).

ϑ Baseline 1970–2000 ϑ RCP 2.6 ϑ RCP 4.5 ϑ RCP 8.5

2005 (%) 2010 (%) 2015 (%) 2019 (%) 2040–2060 (%) 2060–2080 (%) 2040–2060 (%) 2060–2080 (%) 2040–2060 (%) 2060–2080 (%)

ϑ categories (t/h/y)

0 4.96 4.96 4.96 4.96 4.96 4.96 4.96 4.96 4.96 4.96

0.01–0 3.95 5.15 4.97 3.83 3.74 3.45 3.64 3.73 3.73 3.37

0.1–0.01 16.68 18.63 18.86 16.63 16.35 15.41 16.08 16.34 16.38 15.22

1–0.1 27.76 28.06 27.43 27.88 28.32 27.88 28.64 28.17 28.62 28.25

5–1 28.81 29.67 28.55 28.86 29.87 28.65 30.18 29.63 30.26 29.11

10–5 12.02 9.6 10.48 12.02 11.54 12.83 11.45 11.74 11.21 12.63

20–10 4.64 3.18 3.81 4.64 4.17 5.37 4.05 4.33 3.87 5.1

 > 20 1.18 0.75 0.95 1.18 1.05 1.45 1 1.1 0.95 1.36

https://www.esri.com/en-us/about/about-esri/overview
https://www.esri.com/en-us/about/about-esri/overview
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Table 4.   Matrix between correlation SE variables and ϑ on a pixel level (n = 5,683,158). All r values are 
significant at 95% probability level, where for a sample size of the 5.7 million at 2-tailed person correlation; the 
r critical value is 0.0008; i.e. all the correlation values within the table are significant (p < 0.05).

ϑ C-Factor K-Factor LS-Factor P-Factor R-Factor

ϑ 1 0.057  − 0.003 0.77 0.31  − 0.05

C-Factor 1  − 0.06 0.03 0.11  − 0.02

K-Factor 1  − 0.07  − 0.21 0.07

LS-Factor 1 0.23  − 0.08

P-Factor 1  − 0.14

R-Factor 1

Figure 6.   Projected changes in R factor values based on the HadGEM2-ES model and RCP for different time 
series, values of pixels were mapped by ArcGIS 10.5 (https://​www.​esri.​com/​en-​us/​about/​about-​esri/​overv​iew).

Figure 7.   Projected future changes of R factor compared with the baseline (1970- 2000), values of pixels were 
mapped by ArcGIS 10.5 (https://​www.​esri.​com/​en-​us/​about/​about-​esri/​overv​iew).

https://www.esri.com/en-us/about/about-esri/overview
https://www.esri.com/en-us/about/about-esri/overview
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Based on the validated modelling process (DT and ANN) fed by the analysis results of 362 soil samples, 
the spatial distribution of the K factor was mapped. Moreover, K factor values are improved because of testing 
two reliable models in calculating soil properties based on data derived from remote sensing and extended 
field survey. In this context of statistical calibration, the DT model provided strong correlations in calculating 
the soil characteristic with regression of R2 above 70% in all measurements. However, there is still a further 
way to improve this model if we consider recent investigations. For example, in China, Wang et al.101 con-
firmed that based on the nonlinear best fitting techniques, K factor prediction by combining Geometric Mean 

Figure 8.   Projected future SE changes under three climate scenarios of RCPs (SE: Soil Erosion), values of pixels 
were mapped by ArcGIS 10.5 (https://​www.​esri.​com/​en-​us/​about/​about-​esri/​overv​iew).

Figure 9.   Spatial differences between RUSLE under different RCPs scenarios and RUSLE-2019, values of pixels 
were mapped by ArcGIS 10.5 (https://​www.​esri.​com/​en-​us/​about/​about-​esri/​overv​iew).

https://www.esri.com/en-us/about/about-esri/overview
https://www.esri.com/en-us/about/about-esri/overview
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Diameter based and soil organic matter (SOM). Another recent study conducted in Uruguay by Beretta-Blanco 
and Carrasco-Lettelier102 demonstrated that the implementation of soil taxonomy, chemical composition, and 
parent materials could increase the accuracy in linear estimations of this factor. These ideas agree with recent 
reviews published about soil mapping techniques which remark the importance of not obviating key proper-
ties since the soils are results of multiple and complex interactions103–105. In our study, the average K value was 
0.25 t·ha·h·ha−1·MJ−1·mm−1, whereas the average OM was 1.9% and clay 27.43%, which contribute markedly 
to rising the K value in the study area. However, the K value in the study area in line with other studies in 
the Middle East and other semiarid regions. For instance, in southern Syria K value was ranged from 0.22 to 

Table 5.   Zonal statistical (Mean t ha−1 y−1, Std.) for each land cover under current climate and projected CC 
according to HadGEM2-ES model and several RCP (i.e. RCP 2.6, 4.5, and 8.5).

L.C Rangeland Agricultural Residential Bare land

Statistic Mean Std Mean Std Mean Std Mean Std

Baseline 3.91 6.88 1.15 11.4 0.53 1.9 0.3 1.31

RCP 2.6
2050s 3.72 6.97 1.19 13.1 0.51 1.8 0.32 1.36

2070s 4.25 7.7 1.31 13.6 0.61 2.1 0.34 1.46

RCP 4.5
2050s 3.67 6.71 1.17 12.1 0.55 1.9 0.32 1.35

2070s 3.8 6.94 1.2 12.5 0.54 1.9 0.31 1.32

RCP 8.5
2050s 3.6 6.62 1.15 12.1 0.55 1.9 0.31 1.32

2070s 4.1 7.6 1.33 13.8 0.63 2.2 0.35 1.5

Table 6.   Changes of statistical parameters from the baseline.

L.C Rangelands Agriculture Residential Bare lands

Statistic Mean Std Mean Std Mean Std Mean Std

RCP 2.6
2050s  − 0.19 0.6  + 0.02 0.37  − 0.02 0.18  + 0.02 0.1

2070s  + 0.34 0.56  + 0.13 0.45  + 0.07 0.24  + 0.04 0.14

RCP 4.5
2050s  − 0.24 0.58  + 0.017 0.28  + 0.02 0.18  + 0.02 0.08

2070s  − 0.18 0.5  + 0.031 0.3  + 0.01 0.13  + 0.01 0.04

RCP 8.5
2050s  − 0.31 0.63  + 0.003 0.27  + 0.01 0.19  + 0.01 0.03

2070s  + 0.22 0.57  + 0.14 0.47  + 0.1 0.3  + 0.05 0.17

Table 7.   Some erosion studies in different parts of Iran.

Location in Iran Study area Model Type Land cover Rainfall (mm)
Total erosion (t/
ha/yr) References

Central Ghareh Aghach Basin Erosion Potential 
Model (EPM) Simulated Rangeland 358 140.69 Amiri91

Northern Talar Catchment RUSLE Simulated Forest and rangeland 540 92.01 Mohammadi et al.54

Western Cham Gardalan 
watershed RUSLE Simulated Rangeland and forest 592.78 38.81 Arekhi et al.51

Southern Semikan watershed RUSLE Simulated Rangeland, forest and 
arable land 308 5.7 Melo92

North West Hashtrood USLE Erosion plots and 
simulation arable land 322 1.51 t Vaezi et al.93

North East Shirindareh River 
Basin IntErO and EPM Simulation Rangeland 318.6 2.41 Behzadfar et al.94

Different parts Different Cs-137 method Observed Rangeland More than 250 30.68 Khajavi et al.95

Different parts Different Cs-137 method Observed Forest More than 500 17.41 Khajavi et al.95

Different parts Different Cs-137 method Observed Dry open land Less than 250 60.57 Khajavi et al.95

Southwestern Mazayjan watershed USPED Simulation Rangeland and culti-
vated areas 243 10 Zakerinejad and 

Maerker96

West-central Fereydunshahr Cs-137 method Observed Pasture land 600 46.4 Rahimi et al.97

West-central Fereydunshahr Cs-137 method Observed Cultivated land 600 80.4 Rahimi et al.97

Western Ardal, Charmahal and 
Bakhtiari Cs-137 method Observed Cultivated land 600 29.8 Abbaszadeh Afshar 

et al.98
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0.36 t ha h ha−1 MJ−1 mm−168, in western Iran, was between 0.20 and 0.59 0.22 to 0.36 t ha h ha−1 MJ−1 mm−1106, 
while the average K value was 0.13 t·ha·h·ha−1·MJ−1·mm−1 in northern Turkey107.

The intense spatial–temporal variation of NDVI values has greatly affected the annual C factor values108. 
In this sense, C factor values in 2005, 2019 remarkably different from those in 2010, 2015, which could mainly 
attribute to megadrought events that hit the central part of Iran in that years109. However, C Factor, as the R 
factor, is largely sensitive to the areas characterized by a semi-arid environment and human impacts110. Conse-
quently, these two factors led to the complicated and accelerated dimensions of SE as the current study showed. 
Observing our results, also non-agricultural must be considered when this factor changes such as residential 
areas or bare lands. Karpilo et al.111 stated that there is little consensus in the erosion-science community about 
the correct values of the C factor for the effects of various slope-protection materials. Therefore, we recommend 
that policymakers and stakeholders pay attention to that areas especially where both factors show drastically 
changes from nowadays to the simulated scenario to avoid irreparable loss of fertility (bare soils) or floods and 
extreme sediment discharges (urban areas).

LS and P factors were mapped based on the reclassification of the slope raster layer. These two were found 
to be the most influencing factors for erosion acceleration. These results agree with Panagos et al.112 who high-
lighted that this factor is quite obviated. They estimated that the P factor could reduce the risk of SE by 3%, with 
vegetation cover and stone walls obtaining the largest positive impact. However, these results can vary at dif-
ferent scales. Paying attention to research conducted at the hillslope scale, Rodrigo-Comino et al.113 estimated 
in a Mediterranean old clementine plantation for the LS factor using two pre-established algorithms and ISUM 
(Improved Stock Unearthing Method) that the micro-topographical changes can show frequent irregularities 
in SE results. The authors observed high differences among the areas predicted at the moment of furrow con-
struction and the moment of data survey with soil mobilization rates of about 56.9 m3 (8.3 mm yr−1) in 19 years 
for 360 m2. Comparing LS and P factor maps with the final map of the RUSLE model explained that with rising 
length and percentage of the slope of the area, intensity and rate of soil erosion also is increased which is along 
with the result of Mohammadi and et al.54.

Multi-digital SE mapping enables calculation of the annual rate of SE which was reached to more than 20 t 
ha−1 y−1. The spatiotemporal variation of the resulting SE indicates that there is a spatial concentration of erosion 
in the northern, northeast, and northwestern regions. The given results indicate that the northern, northeastern 
and northwestern regions were the most affected in 2005, 2010, 2015, and 2019, respectively. These areas are 
characterized by mountainous terrain and steep slopes. Our results visibly confirmed that soil erosion could 
be easily affected by a different kind of land cover. The land use map (Appendix 3) showed that rangelands are 
dominated in the northern, northeastern and northwestern regions which has the highest soil erosion values, 
where LS factor ranges from 4–85 (Fig. 3b). On the contrary, bare land dominates in the gentle slope area (LS 
factor = 0.5–1), which minimize erosion processes. In this regard, Table 4 showed that the highest correlation 
(r = 0.77, p < 0.05) between topography (LS) and soil erosion, which confirm the eminent role of topography in 
developing the soil erosion process in the study area. In light of this rangeland and following agricultural regions 
showing the highest value of SE explosibility, demanded higher protection and management. Thus, that area 
should be considered in any future land conservation plan as a high priority considering topographical changes 
as key drivers of weather changes and SE intensity114–116. This finding completely confirmed the result of the 
research for Borrelli et al.117, in which they discussed in the high slope areas with rare vegetation the risk of SE 
is high. However, bare land has shown the least values of SE in the current situation, which located on a gentle 
slope (central part) in compression with other land use.

To assess the effect of future CC on SE susceptibility, data derived from CMIP5 by three scenarios of CMIP5-
RCP were used in calculating future values of the projected R factor. However, the utilized approaches in the 
present study are consistent with those presented by Yigini and Panagos118 which assumed that future changes 
in precipitation values will inevitably lead to a change in SE rates globally. Future values of SE were predicted in 
the study area according to the regional CC concerning three scenarios of RCPs. These future values indicate 
that the northern, northwest and northeastern regions are the most sensitive and vulnerable to CC, especially 
under RCP8.5 which consistent with the pathway that involves huge amounts of greenhouse gas emissions119. 
High SE rates are located mainly along mountainous terrain; hence, it will be the most affected by changes in 
precipitation patterns for climatic characteristics in semi-arid areas120. Changes include an increase in extreme 
precipitation events across the study area, thus a greater precipitation intensity with increase SE potentials by 
runoff in the steep slope regions. Within this context, prediction of future SE is highly important to provide 
policymakers with appropriate tools for developing action plans against different possible soil erosion scenarios. 
Alewell et al.121, stressed the importance of modeling SE on a different scale for soil conservation planning and 
policy governance. Meanwhile, Borrelli et al.117 emphasized the importance of adaptation of conservation strate-
gies based on RCP2.6 and RCP8.5 scenarios.

Future projections of CC in this study provide a spatial interpretation of the future SE in light of different 
scenarios. Despite the accuracy and quality of available results and the possibility of using them in the manage-
ment of soil erosion, some inputs lead to uncertainty in present simulation outcomes. For example, the R factor 
values were calculated based on the monthly and yearly averages of precipitation (Eq. 3), based on 3 scenarios 
of RCPs, are still not certain, which could explain the low correlation between projected future R factor and 
SE in Table 4. However, the adopted calculation method is a suitable alternative in light of the scarcity of data 
required to calculate the values of the R factor according to the kinetic raindrop energy approach (basically, 
rainfall records at 15–30 min time interval). Besides this, there is a great difficulty in predicting future C factor 
with complete accuracy, because the C factor is complex and highly sensitive to environmental changes as was 
above-discussed. The current spatial outputs are of sufficient reliability for the K, LS and P factors. Consequently, 
this study presented serious and reliable spatial scenarios about the future of SE in the study area.
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Considering all the factors, it is obvious that SE in the northern and northeastern parts which are dominated 
by rangeland, higher precipitation, and mountains (high relief topography) is suffering from severe erosion and 
also have the highest potential for SE. After the assessment of the research results and justifying them according 
to the geological factors in the study area, we concluded that geology also plays an important role in soil erosion 
activation at large scales but is mainly reflected in the form of the susceptibility of soil erosion (K-factor). Igneous 
formations that cover the north part of the study area are correlated with the minimum susceptibility of K-factor 
while basaltic and tuff formations, due to the lightweight and high porosity, can contribute more to soil formation 
processes and therefore to the soil erosion factor. In the foothill which sedimentation is the main characteristic, 
soil erosion has experienced a low rate too. Two parts of the study area revealed a high susceptibility, one is in 
the Taleghan area that the signs of massive erosion are obvious, and another one located at the Eshtehard with 
the evidence of gully erosion and dissolution erosion types.

Remarkably, this investigation verified the findings of other researchers in this part of Iran as well as many 
other regions of Iran94,122. The output of this research can be used to take measures of sustainable agriculture in 
an arid study area environment and to work on identifying priorities for spatial conservation. Also, SE could be 
mitigated by maintaining vegetation cover, using cover crops, reducing soil disturbance by tillage among other 
measures123–126.

Conclusions
Soil erosion is one of the most pressing environmental issues in light of the accelerating impacts of global climate 
change. Multisource GIS provides an objective and advanced platform in soil erosion modeling with accurate 
and reliable results. Spatial correlation between climate change, soil erosion and land cover change using global 
models, such as RUSLE, can effectively assist in the spatial management process, especially in arid environments. 
In the present study, the spatial–temporal distribution of potential soil erosion in the central part of Iran was 
determined based on future climate change scenarios. The experimental RUSLE model was chosen based on 
the data specificity of the study area. This model provides the possibility to investigate the current and future 
spatial distributions of soil erosion rate relying on predictive data. The key findings are summarized, as follows:

1.	 The average R factor was 112 MJ mm  ha−1  h−1 per year, P factor was 2.5, and the K value was 0.25 
t·ha·h·ha−1·MJ−1·mm−1. The C factor was ranged between 0 and 1, while LS was 0.5–8.6.

2.	 The estimated annual rate of SE is approximately 12.8 t ha−1 y−1 in Central Iran.
3.	 Projected future SE values indicate that there will be a high soil loss (> 5 t ha−1 y−1) in the north, northwest, 

and far southern parts of the study area in three scenarios of RCPs
4.	 Rangeland areas registered the highest amount of SE especially in RCP2.6 (2070) and RCP8.5 (2070), fol-

lowed by agricultural areas. Also, bare land areas were predicted to considerable SE rates
5.	 The lowest amounts of SE were estimated for the residential areas in RCP2.6 (2070) and RCP8.5 (2070).
6.	 SE will be increased in the 2070s under both RCP2.6 and RCP8.5. On the contrary, RCP 4.5 showed that the 

total SE was predicted to be decreased in rangelands and increased slightly under other land use.

The output of this research will help decision-makers and local authorities for developing a local plan for land 
conservation against SE by different climate change scenarios.
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