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Objectives: Chronic kidney disease (CKD) is a common chronic condition with

high incidence and insidious onset. Glomerular injury (GI) and tubular injury

(TI) represent early manifestations of CKD and could indicate the risk of its

development. In this study, we aimed to classify GI and TI using three machine

learning algorithms to promote their early diagnosis and slow the progression

of CKD.

Methods: Demographic information, physical examination, blood, and

morning urine samples were first collected from 13,550 subjects in 10 counties

in Shanxi province for classification of GI and TI. Besides, LASSO regression

was employed for feature selection of explanatory variables, and the SMOTE

(synthetic minority over-sampling technique) algorithm was used to balance

target datasets, i.e., GI and TI. Afterward, Random Forest (RF), Naive Bayes

(NB), and logistic regression (LR) were constructed to achieve classification of

GI and TI, respectively.

Results: A total of 12,330 participants enrolled in this study, with 20

explanatory variables. The number of patients with GI, and TI were 1,587

(12.8%) and 1,456 (11.8%), respectively. After feature selection by LASSO, 14 and

15 explanatory variables remained in these two datasets. Besides, after SMOTE,

the number of patients and normal ones were 6,165, 6,165 for GI, and 6,165,

6,164 for TI, respectively. RF outperformed NB and LR in terms of accuracy

(78.14, 80.49%), sensitivity (82.00, 84.60%), specificity (74.29, 76.09%), and AUC

(0.868, 0.885) for both GI and TI; the four variables contributing most to the

classification of GI and TI represented SBP, DBP, sex, age and age, SBP, FPG,

and GHb, respectively.

Conclusion: RF boasts good performance in classifying GI and TI, which

allows for early auxiliary diagnosis of GI and TI, thus facilitating to help alleviate

the progression of CKD, and enjoying great prospects in clinical practice.
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Introduction

Chronic kidney disease (CKD) is a common chronic
condition worldwide, with a prevalence of 13.4% (1). Due
to its imperceptible symptoms at the initial stages, it may
progress into end-stage renal disease, which requires kidney
transplantation, posing a substantial financial burden to the
society leading to a lower quality of life and higher mortality
rate. Additionally, it’s highly associated with such complications
as cardiovascular disease (2), emerging as another “silent killer”
that threatens human life after tumors and diabetes. Renal injury
is the prerequisite for CKD, including glomerular injury (GI)
and tubular injury (TI), and thus early diagnosis of GI and TI
is of practical significance to alleviate the progression of CKD.
How to better make an early diagnosis of renal injury is now a
topic running into the forefront of research.

In 2012, Luxia Zhang employed logistic regression to predict
CKD, but it comes with drawbacks (3). The first one concerns its
sensitivity to multicollinearity; the second one is that maximum
likelihood estimation does not fit the true distribution of the
data well. A better model is needed. With artificial intelligence
springing up, data-driven algorithms pick up pace, and have
become a research hotspot in the life sciences, enjoying great
popularity in cardiovascular diseases (4), tumors (5), immune
diseases (6), and neurological diseases (7). Also, its application
in renal diseases is on the rise, from acute kidney injury
prediction (8) to kidney transplantation outcome prediction
(9), interstitial fibrosis, and tubular atrophy detection (10). One
of the well-known algorithms represents Random forest (RF),
which has been shown a powerful tool in disease auxiliary
diagnosis (11, 12). However, it has not yet been determined in
glomerular and tubular injury.

Feature selection is of great necessity in constructing
classifiers, since the presence of irrelevant features may
be responsible for the poor model performance (13). L1
regularization, Absolute Shrinkage and Selection Operator
(LASSO) regression is a welcome choice. It is characterized by
the inclusion of an L1 regularization penalty term in fitting
generalized linear regression, which makes the sum of the
absolute values of the regression coefficients of the model
lower than a particular value. It aims to minimize the sum
of squared residuals, forcing the regression coefficients of
variables that contribute less to the model to be compressed
to zero and achieving a feature sparse process (14, 15). Also, it
could eliminate predictors with autocorrelation or redundancy,
allowing for automated variable selection within the model, and
significantly contributing to the performance of classification
models (16, 17). Another headwind in the development of
classifiers relates to imbalanced datasets. It is not unusual
in medical research, because the number of non-patients is
extremely larger than that of patients, which serves as an
obstacle to predictive performance (18). RF is sensitive to

response variables with unbalanced data, and imbalances in
classes in the data tend to tend to larger classes in the
output of the model, resulting in some classification errors,
resulting in lower classification accuracy (19). It has been
documented that machine learning methods with data balancing
techniques represent effective approach for stroke prediction
with imbalanced data. As such, it’s crucial to balance the data
prior to model construction (20).

In this study, we aimed to (1) employ LASSO algorithm to
conduct feature selection for GI and TI; (2) use the classical and
widely accepted SMOTE (Synthetic Minority Over-sampling
Technique) algorithm to handle the imbalanced classes of GI
and TI; (3) employ the mature machine learning algorithm,
Random Forest (RF) to make a classification of GI and
TI, respectively, and compare its performance with logistic
regression (LR) and Naive Bayes (NB), thus achieving the
auxiliary diagnosis of GI and TI and providing a new idea for
clinical practice in delaying the progression of CKD.

Participants and methods

Study participants

Shanxi Provincial People’s Hospital conducted CKD
screening for permanent residents aged ≥ 40 years in the
northern region of Shanxi Province (Ningwu County), the
central regions (Yu County, Yangqu County, Lin County,
Shouyang County), and the southern regions (Zezhou County,
Huozhou City, Hejin City, Linyi County, and Ruicheng County)
from April 2019 to November 2019. A total of 13,550 residents
volunteered for this screening, and 12,285 were eventually
enrolled in the study, including 5,206 men and 7,079 women
aged 41–91 years.

Inclusion criteria: (1) residents aged 40 years or older; (2)
conscious participants without communication impairment; (3)
participants understanding the significance of the study and
willing to sign a written informed consent; (4) participants with
no cognitive impairment or mental illness; (5) more than 1 year
of local residents as of the survey date. Exclusion criteria: (1)
Severely incomplete information recorded; (2) poor compliance;
(3) pregnant women or those with a history of substance abuse.

Data collection

Questionnaires, physical examination, and laboratory
analysis were used to collect data. (1) The questionnaire
comprised demographic information (including age, sex,
annual income, educational levels), lifestyle (including smoking,
alcohol consumption, diet, and exercise). The questionnaire was
administered online and completed by the subjects themselves
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or their family members. (2) Physical examination included
height, weight and blood pressure (systolic blood pressure,
diastolic blood pressure), which were measured twice and then
the mean value was calculated. All data were measured by a
medical professional. Body mass index (BMI) was calculated by
weight in kilograms divided by the square of height in meters.

(3) Fasting venous blood was collected from subjects for
fasting blood glucose (FPG), glycated hemoglobin (GHb),
homocysteine (Hcy), total cholesterol (TC), triglycerides (TG),
low-density lipoprotein cholesterol (LDL-C) and high-density
lipoprotein (HDL-C). (4) Morning urine specimens were
collected from subjects. After centrifugation at 3,000 r/min for
10 min, the supernatant was extracted (low-speed centrifuge
Anhui Zhongke Zhongjia SC3616), and α1-microglobulin

(α1MG), urinary creatinine (UCr), and microalbuminuria
(MAU) were determined by latex turbidimetry, sarcosine
oxidase, and immunoturbidimetry, respectively.

Variable assignments

Information on the annual income, educational levels,
health history, and lifestyle of the study participants was
obtained from the questionnaire. Annual income was defined
as < 5K yuan, 5K–10K yuan, 10K–20K yuan, > 20K yuan;
education levels were defined as ≤ primary school, ≤ middle
school, ≤ high school, ≥ bachelor’s degree; smoking was
classified as yes or no; alcohol consumption was classified

FIGURE 1

Before and after SMOTE of response variables for GI and TI. SMOTE, Synthetic Minority Over-Sampling Technique. It’s a good and powerful way
to handle imbalanced data, and it was conducted under the parameters of k = 5, C.perc = “balance,” dist = “Overlap.” (A) GI before SMOTE; (B)
TI before SMOTE; (C) GI after SMOTE; (D) TI after SMOTE.

Frontiers in Medicine 03 frontiersin.org

https://doi.org/10.3389/fmed.2022.911737
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-09-911737 July 25, 2022 Time: 16:38 # 4

Song et al. 10.3389/fmed.2022.911737

as always (>100 g/time and 3 times/week), sometimes (<3
times/week or < 100 g/time) and rarely; exercise was classified as
“none or a little” or “regular” (≥3 times/week, ≥ 30 min/time).
BMI was defined as underweight (<18.5 kg/m2), normal weight
(18.5–24.0 kg/m2), overweight (24.0–28.0 kg/m2), obesity
(≥28 kg/m2). ACR was defined as urinary microalbumin
divided by urinary creatinine multiplied 8.84; MCR was
defined as urinary microglobulin divided by urinary creatinine
multiplied 8.84.

Explanatory variables
(1) Questionnaire: demographic information (age, sex,

educational levels, annual income, residence, etc.); lifestyle
(smoking, alcohol, exercise, salt consumption, diet). (2)
Morning blood: HDL, LDL, TG, TC, Hcy, FPG, GHb. (3)
Physical examination: SBP, DBP, BMI. 20 variables in total.

Response variables
ACR ≥ 30 mg/g was defined as GI; MCR > 23 mg/g was

defined as TI. The presence of GI, TI was assigned 1; otherwise,
they were defined as 0. In this study, we employed RF, LR and
NB to make a classification of GI and TI, respectively.

L1 regularization, absolute shrinkage
and selection operator regression

Absolute Shrinkage and Selection Operator (LASSO) is one
of the common methods for feature selection. It is characterized
by the inclusion of an L1 regularization penalty term in fitting
generalized linear regression, which makes the sum of the
absolute values of the regression coefficients of the model lower
than a particular value. It aims to minimize the sum of squared
residuals, forcing the regression coefficients of variables that
contribute less to the model to be compressed to zero and

FIGURE 2

Workflow of the model construction.

achieving a feature sparse process (14, 15). LASSO was used to
select the collected explanatory variables, and to determine those
more relevant to the response variables.

Synthetic minority over-sampling
technique algorithm

The Synthetic Minority Over-Sampling Technique
(SMOTE) is an oversampling technique that is an effective
algorithm for dealing with imbalances between data classes
(21). It’s employed to synthetically enlarge the minority class
using K-nearest neighors to obtain a balanced data set (22) and
has been shown good performance in such fields as network
intrusion detection systems and disease detection. In this study,
there is a serious imbalance in the response variables, GI and
TI (Figures 1A,B). SMOTE was used to balance the classes
to facilitate the machine learning models to better learn the
inter-data features, thus making the best classification judgment.

Random forest

RF, a data-driven integrated learning algorithm, could
obtain multiple new training data by an autonomous sampling
of the training set, constructing multiple classification trees
based on the parallelization of these new data, and achieving
de-correlation between the trees by introducing the selection
of independent variables. By doing so, the diversity of the
classification trees originates from both sample and independent
variable perturbations to achieve the effect of reducing the
model variance, and finally to vote on the classification results
of multiple trees to obtain the final classification results (23, 24).
The workflow of the model construction is shown in Figure 2.

Statistical methods

Statistical description
Qualitative data are expressed as percentages (%),

and quantitative data are expressed as mean ± standard
deviation (M ± SD) or median ± interquartile
[(Median(P25, P75))], as appropriate.

TABLE 1 Clinical parameters of study subjects (quantitative ones).

Variables x ± s Variables x ± s

Age(y) 58.75± 9.49 TC (mmol/L) 4.43± 0.95

LDL (mmol/L) 2.35± 0.84 TG (mmol/L) 1.73± 0.82

HDL (mmol/L) 1.30± 0.37 Hcy (mmol/L) 22.98± 14.26

FPG (mmol/L) 4.97± 1.36 SBP (mmHg) 136.10± 18.39

GHb (mmol/L) 5.54± 1.09 DBP (mmHg) 82.84± 10.76
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TABLE 2 Clinical parameters of study subjects (qualitative ones).

Variables Percentage (%) Variables Percentage (%) Variables Percentage (%)

Education BMI Income (Yuan)

≤Primary 32.7 Underweight 1.7 <5k 41.8

≤Junior 50.9 Normal 39.5 5k–10k 25.5

≤Senior 11.9 Overweight 42.6 10k–20k 10.3

≥Bachelor 4.5 Obesity 16.3 >20k 22.4

Salt consumption Alcohol Diet

Light 26.3 Rarely 84.7 Vegetable 33.5

Moderate 60.5 Sometimes 13.2 Balanced 61.9

Salty 13.1 Always 2.1 Meat 4.6

Exercise Smoking Sex

Regular 41.7 No 76.2 Male 42.4

None or a little 58.3 Yes 23.8 Female 57.6

FIGURE 3

Results of feature selection using LASSO. When Lamda is minimum, corresponding features were taken into model construction (14 features for
GI, and 15 feature for TI). (A) Feature selection for GI; (B) feature selection for TI.

Model construction
The datasets were divided into training set (80%) and

testing set (20%). The former ones were used for models
training, i.e., RF, NB, and LR, while the latter ones were
employed for evaluation of model performance. All analyses
were implemented in R software (version 4.0.3).

Evaluation parameters

The evaluation parameters comprised Accuracy (1),
Specificity (2), Sensitivity (3) and area under the receiver
operating curve (AUC). The predicted result was defined as
True Positive (TP) when patients with renal conditions were

classified as patients and True Negative (TN) when healthy
ones were classified as healthy. Besides, the predicted result was
False Positive (FP) if healthy subjects are considered patients;
similarly, False Negative (FN) if patients are considered healthy
subjects. Accuracy is to evaluate how accurate the machine
learning algorithms are to detect what it is supposed to measure.
Specificity is the ability to correctly exclude those without renal
conditions and Sensitivity is to correctly identify those with
renal conditions.

Accuracy = (TN + TP)
(TP + TN + FP + FN) × 100% (1)

Specificity = TN
(TN + FP) × 100% (2)
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Sensitivity = TP
(TP + FN) × 100% (3)

Results

Baseline characteristics

A total of 12,330 people were included in this study, 5,230
men and 7,100 women, the number of GI was 1,587 (12.8%)
and the number of TI was 1,456 (11.8%). Besides, the number
of participants with both GI and TI was 2,439 (19.7%). Other
parameters are detailed in Tables 1, 2.

Feature selection and results of
sampling technique

As shown in Figures 3A,B, after LASSO feature selection,
14 and 15 explanatory variables remained in the two datasets,
respectively, in which data 1 with GI as the response variable
excluded six variables of annual income, residence, LDL, HDL,
smoking, and exercise; while data 2 with TI as the response
variable excluded five variables of TC, LDL, HDL, exercise, and
salt consumption. The remained variables are comparable for GI
(except TG and sex) and TI (Supplementary Tables 1, 2).

As shown in Figures 1C,D, after resampling by SMOTE, the
number of patients and normal ones were 6,165, 6,165 for GI,
and 6,165, 6,164 for TI, espectively.

Model performance

When constructing model for GI, the number of GI and
non-GI in the training set were both 4,932, and 1,233 in the
testing set, respectively. When constructing model for GI, the
number of TI and non-TI in the training set were 4,973 and
4,891, respectively, and 1,273 and 1,192 in the testing set. The
accuracy, sensitivity, specificity and AUC of RF for classification
of GI and TI performed better than NB and LR in both the
training set and testing set, which shows that RF does have a high
diagnostic value for classification (Tables 3, 4 and Figure 4).

TABLE 3 Performance evaluation of the three classifiers on the
training set (GI/TI).

Model Accuracy (%) Sensitivity (%) Specificity (%)

RF 99.90/99.92 99.96/99.94 99.84/99.90

NB 65.39/67.06 52.08/54.26 78.71/79.65

LR 66.40/68.52 64.90/66.94 67.90/70.08

TABLE 4 Performance evaluation of the three classifiers on the
testing set (GI/TI).

Model Accuracy(%) Sensitivity(%) Specificity(%)

RF 78.14/80.49 82.00/84.60 74.29/76.09

NB 65.17/65.68 52.23/53.34 78.10/78.86

LR 66.87/67.51 64.23/66.06 69.51/69.04

Feature importances

We indicated the contribution of the explanatory variables
to the model by %IncMSE, and the larger the %IncMSE, the
more important the variables were for the RF model. The four
variables that contributed most to the classification of GI in the
RF model represented SBP, DBP, sex, and age. The four variables
that were most important for the classification of TI constituted
age, SBP, FPG, and GHb (Figure 5).

Discussion

In this study, ACR and MCR levels were used as screening
indicators for GI and TI, and ACR ≥ 30 mg/g was considered
GI; MCR > 23 mg/g was considered TI. Besides, the machine
learning model RF was used to classify them, and we compared
its classification performance with NB, and LR.

This study suggested that the accuracy, sensitivity, specificity
and AUC of the RF algorithm outperformed other classifiers
in both the training set and testing set. Yet its performance
in the testing set was comparatively lower than that in the
training set, because the classification performance based on the
training set was prone to overfitting (25), while the results of the
testing set could better reflect the classification performance of
the model, which proves their potential applications in GI and
TI-aided diagnosis.

Of note, the RF model is sensitive to response variables with
unbalanced data. Imbalanced classes in the data would leave
the output of the model tending to larger classes, causing some
classification errors, and leading to a less accurate classification
performance (20). As such, SMOTE algorithm was employed
to resample the data set with GI and TI as response variables,
respectively, before performing the classification task to achieve
balanced classes. By doing so, the learning capability of the
model could be maximized, and a more accurate predictive
performance could be achieved.

Since RF model is data-driven, a visible functional equation
is unavailable to determine the extent to which the explanatory
variables contribute to the model based on the regression
coefficients. However, a more intuitive alternative for the model
is that by outputting feature importances, the model could
explain the importance of the variables on the explanatory
variables. This study demonstrated that the four explanatory
variables with the greatest output weight of RF classifier for GI
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FIGURE 4

Comparison of the ROC curve areas of the three model classifiers. In model construction, 70% of samples were randomly divided as training set,
and the rest 30% were as testing set. AUC (area under curve) was used to evaluate the performance of these three classifiers. (A) AUC of GI in
the training set; (B) AUC of GI in the testing set; (C) AUC of TI in the training set; (D) AUC of TI in the testing set.

represented SBP, DBP, sex, and age; and the four explanatory
variables for TI constituted age, SBP, FPG, and GHb.

In a hypertensive state, abnormal glomerular
hemodynamics, spasmodic constriction of renal arteries would
reduce renal blood flow, leading to renal ischemia and long-term
hyperperfusion and hyperfiltration of glomerular capillaries,
resulting in damage to glomerular vascular endothelial cells
and podocytes (26, 27). Meanwhile, renal ischemia caused
by hypertension activates the renin-angiotensin-aldosterone
system, leading to constriction of the inlet and outlet arteries
and a further increase in glomerular pressure, which aggravates
renal ischemia. The high pressure causes damage to endothelial

cells, podocytes and tubular epithelial cells, leading to the
destruction of the filtration barrier and dysfunction of
reabsorption, thus, resulting in proteinuria occurrence (28, 29).
Additionally, hypertension can lead to thickening of glomerular
duct wall hardening, renal parenchymal ischemia, which would
further increase the production of vasoactive substances,
stimulate interstitial collagen deposition, and eventually leading
to glomerular sclerosis and kidney injury (30).

It has been documented that kidney disease in China is
more prevalent in male patients, suggesting that sex is also
one contributor to degenerative changes in kidney structure
and function. The prevalence of CKD has been reported to be
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FIGURE 5

Contributions of explanatory variables to the random forest model. The “%IncMSE” is the increase in mean squared error, where the error of the
model prediction is increased by randomly replacing the value of each predictor variable if it is more important. Therefore, a larger value
indicates that the variable is more important. (A) feature importances for GI; (B) feature importances for TI.

higher in women than in men. A representative study pooling
33 population-based studies worldwide evaluated the global
prevalence of stage 1–5 CKD at 10.4% among men and 11.8%
among women aged 20 years and older (31). The reasons for
these differences are unclear, and although the GFR estimation
equation includes a gender correction factor, a single threshold
value of < 60 ml/min per 1.73 m2 for the definition of CKD
may lead to overdiagnosis of CKD in women (32). A follow-up
of Swedish patients with CKD not on dialysis in the national
registry showed that male patients had a faster decline in eGFR,
more rapid CKD progression and higher all-cause mortality
compared to women (33). Also. the results of a study are
consistent with experimental data showing the protective effect
of estrogen and the potentially deleterious effect of testosterone
on non-diabetic CKD (34). The effect of gender on CKD
incidence, prevalence, and progression needs further study, and
the development of gender-specific CKD markers is also a hot
topic of current research.

After the age of 40, the glomerular filtration rate decreases
at a rate of 1 ml/min/1.73 per year, resulting in stiffening
of the renal vessel wall, glomerular atrophy, sclerosis, tubular
atrophy, and interstitial fibrosis, which eventually lead to renal
hypofunction (35). In diabetic patients, high blood glucose
concentration would cause glucose metabolism disorder,
hemodynamic changes, oxidative stress, which induce renal
tubular epithelial cell hypertrophy, tubular basement membrane
destruction, interstitial cell infiltration, and renal tubular

interstitial fibrosis, contributing to reabsorption dysfunction
(36, 37). Therefore, the present study shows that RF has some
clinical practice combined with feature selection by LASSO.

There are also some limitations in this paper. Firstly, the
study constructed the models with data from Shanxi Province,
and no other external datasets are available to validate the
model performance. Our ongoing work is to collect samples
from other areas, to validate the generalization capabilities of
the model. Secondly, this study was initially considered for
cost-effectiveness and other indicators reflecting CKD were not
collected, such as blood creatinine, which will also be the focus
of our next step. Additionally, as CKD was more prevalent in
people aged ≥ 40 years, this study centered on those over 40
years. In the future, we consider surveys on those aged 18–
40 years to improve the prediction model in younger groups.
Finally, GI and TI were defined only by surrogate parameters,
ACR and MCR, which may not well accurately reflect the renal
conditions. In our future work, we would conduct a follow-up
for those with positive urine protein.

In short, as early manifestations of CKD, GI and TI have
emerged as a global public health issue; their early diagnosis
and corresponding treatment are of great importance. Our
results demonstrate the potential value of machine learning
algorithms in GI and TI-assisted diagnosis, which facilitates
reducing the workload of doctors, while achieving automated
diagnosis and treatment decisions, and thus could be promoted
in clinical practice.
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