
Research Article
Parallel MapReduce: Maximizing Cloud Resource
Utilization and Performance Improvement Using Parallel
Execution Strategies

Ahmed Abdulhakim Al-Absi ,1,2 Najeeb Abbas Al-Sammarraie,2

Wael Mohamed Shaher Yafooz,2 and Dae-Ki Kang 3

1Department of Smart Computing, Kyungdong University, Global Campus, 46 4-gil, Gosung, Gangwondo 24764, Republic of Korea
2Faculty of Computer and Information Technology, Al-Madinah International University,
2 Jalan Tengku Ampuan Zabedah E/9E, 40100 Shah Alam, Selangor, Malaysia
3Department of Computer & Information Engineering, Dongseo University, 47 Jurye-ro, Sasang-gu, Busan 47011, Republic of Korea

Correspondence should be addressed to Dae-Ki Kang; dkkang@dongseo.ac.kr

Received 12 April 2018; Accepted 30 September 2018; Published 17 October 2018

Academic Editor: Gerald J. Wyckoff

Copyright © 2018 Ahmed Abdulhakim Al-Absi et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

MapReduce is the preferred cloud computing framework used in large data analysis and application processing. MapReduce
frameworks currently in place suffer performance degradation due to the adoption of sequential processing approaches with little
modification and thus exhibit underutilization of cloud resources. To overcome this drawback and reduce costs, we introduce a
Parallel MapReduce (𝑃𝑀𝑅) framework in this paper. We design a novel parallel execution strategy of Map and Reduce worker
nodes. Our strategy enables further performance improvement and efficient utilization of cloud resources execution of Map and
Reduce functions to utilize multicore environments available with computing nodes. We explain in detail makespan modeling and
working principle of the 𝑃𝑀𝑅 framework in the paper. Performance of 𝑃𝑀𝑅 is compared with Hadoop through experiments
considering three biomedical applications. Experiments conducted for BLAST, CAP3, and DeepBind biomedical applications
report makespan time reduction of 38.92%, 18.00%, and 34.62% considering the 𝑃𝑀𝑅 framework against Hadoop framework.
Experiments’ results prove that the 𝑃𝑀𝑅 cloud computing platform proposed is robust, cost-effective, and scalable, which
sufficiently supports diverse applications on public and private cloud platforms. Consequently, overall presentation and results
indicate that there is good matching between theoretical makespan modeling presented and experimental values investigated.

1. Introduction

Delivery model of data intensive applications/services on
cloud platforms is the new paradigm. Scalable storage and
computing capabilities of cloud platforms aid deliverymodels
with various aspects.The cloud ismaintained using distribut-
ed computing frameworks capable of handling and process-
ing a large amount of data. Of all cloud frameworks available
[1–5], Hadoop MapReduce is the most widely adopted [6, 7]
owing to its ease of deployment, scalability, and open-source
nature.

The Hadoop MapReduce model predominantly consists
of the following phases: Setup,Map, Shuffle, Sort, andReduce,

which is shown in Figure 1. The Hadoop frameworks consist
of a master node and a cluster of computing nodes. Jobs sub-
mitted to Hadoop are further distributed into Map and
Reduce tasks. In the Setup phase, input data of a job to be
processed (residing generally on the Hadoop Distributed File
Systems (HDFS)) is logically partitioned into homogenous
volumes called chunks for the Map worker nodes. Hadoop
divides each MapReduce job into a set of tasks where each
chunk is processed by the Map worker. The Map phase takes
input as key/value pair as (𝑘1 , V1) and generates a list of (𝑘2, V2)
intermediate key/value pairs as output. The Shuffle phase
begins with completion of the Map phase that collects the
intermediate key/value pairs from all the Map tasks. A Sort

Hindawi
BioMed Research International
Volume 2018, Article ID 7501042, 17 pages
https://doi.org/10.1155/2018/7501042

http://orcid.org/0000-0001-6272-7756
http://orcid.org/0000-0002-4147-2835
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2018/7501042


2 BioMed Research International

Data 
Store 1

Data 
Store n

Input key, value pairs Input key, value pairs

Shuffle and Sort intermediate values by output key 

MAP
WORKER

MAP 
WORKER

……..

REDUCE 
WORKER

REDUCE 
WORKER

REDUCE 
WORKER

Final k1, 1

k1, 1

Final k2, 2

k2, 2

Final k3, 3

k3, 3

(k1, 1) (k2, 2) (k3, 3) (k1, 1) (k2, 2) (k3, 3)

Figure 1: Hadoop MapReduce computation model.

operation is performed on the intermediate key/value pairs
of the Map phase. For simplicity, the Sort and Shuffle phases
are cumulatively considered in the Shuffle phase.The Reduce
phase processes sorted intermediate data based on user de-
fined functions. The output of the Reduce phase is stored/
written to HDFS.

The Hadoop MapReduce platform suffers from a num-
ber of drawbacks. The preconfigured memory allocator for
Hadoop jobs leads to issues of buffer concurrency amongst
jobs and heavy disk read seeks. The memory allocator issues
result in increasing makespan time and induce high input/
output (I/O) overheads [5]. The jobs scheduled on Hadoop
cloud environments do not consider parameters such as
memory requirement and multicore environment for linear
scalability, which seriously affects performance [8]. In Ha-
doop, the Reduce tasks are started after completion of all Map
tasks. Hadoop assumes homogenous Map execution times
considering homogenous distributed data, which is not real-
istic [9]. Assumed homogenous Map execution times and
serial execution strategy put forth utilized Map workers (and
their resources) that have completed their tasks and are
waiting for the other Map workers to complete theirs [10]. In
cloud environments where organizations/users are charged
according to (storage, computation, and communication) re-
sources utilized, these issues burden the costs in addition to
affecting performance [11]. Hadoop platforms do not support
flexible pricing [12]. Scalability is an issue owing to the cluster
based nature of Hadoop platforms. Processing of streaming
data is also an issue with Hadoop [10]. To overcome these
drawbacks, researchers have adopted various techniques.

In [5], they addressed the issues related to Hadoop mem-
ory management by adopting a global memory management
technique. They proposed a prioritization model of memory

allocation and revocation by adopting a rule based heuristic
approach. A multithread execution engine is used to achieve
global memory management. To address the garbage collec-
tion issue of a Java virtual machine (JVM) and to improve
the data access rate in Hadoop, they adopted a multicache
mechanism for sequential and interleaved disk access. Their
model improves the memory utilization and balances the
performance of I/O and CPU. In [5], the authors did not take
the network I/O performance into consideration.

In [8], aGPU basedmodel to address the linear scalability
issue of Hadoop is presented. They addressed the research
challenges of integrating Hadoop and GPU and how the
MapReduce job can be executed using CUDA based GPU. In
Hadoop MapReduce framework, the jobs run inside a JVM.
Managing of jobs, creation of jobs, and executing of jobs suf-
fer from computation overhead and reduce the efficiency of
Just-In-Time (JIT) compilation due to the short-lived nature
of jobs in the JVM. To overcome this, they adopted GPU
based job execution approaches such as JNI, JCuda, Hadoop
Pipes, and Hadoop Streaming. They have analyzed and eva-
luated detailed comparison of protocol of their pros and cons.

To address issues related to sequential execution in [13],
a Cloud MapReduce (CMR) framework is discussed. Here,
they developed a parallelized model by adopting a pipelining
execution approach to process the streaming and batch data.
Their cloud based MapReduce model supports parallelism
between Map and Reduce phases and also among individual
jobs.

The increased demand in data analytics for computing
scientific/bioinformatics data has resulted in increased size
of bioinformatics data. Computing and storing these huge
data require a huge infrastructure. Computing bioinformatics
application by adopting Cloud platform is a viable option for



BioMed Research International 3

analyzing the genomic structure and its evolutionary pattern
of large bioinformatics data [14–18] which is generated by the
Next Generation Sequencing (NGS) technologies. Various
cloud based bioinformatics applications have been developed
to compute large bioinformatics data, CloudAligner [18],
CloudBurst [19], Myrna [20], and Crossbow [21]. Cloud tech-
nologies allow the user to compute bioinformatics application
and charges the user based on their usage. Reducing the com-
putation cost in such environment is an area that needs to be
considered during designing a bioinformatics computation
model.

Reducing execution times and effective resource utiliza-
tion with minimal costs are always a desired feature of cloud-
computing frameworks. To achieve this goal, a Parallel
MapReduce (𝑃𝑀𝑅) framework is proposed in this paper.The𝑃𝑀𝑅 adopts a parallel execution strategy similar to the tech-
nique presented in [13]. In conventional MapReduce sys-
tems, the Map phase is executed first, and then Reduce phase
execution is considered. In the proposed PMR, Reduce phase
execution is initiated in a parallel fashion, as soon as two
or more Map worker nodes have completed their tasks. The
adoption of such execution strategies enables reduction of un-
utilizedworker resources. To further reducemakespan, paral-
lel execution of the Map and Reduce functions is adopted uti-
lizing multicore environments available with nodes. A make-
spanmodel to describe operations of the 𝑃𝑀𝑅 is presented in
future sections. Bioinformatics applications are synonymous
with big data. Processing of such computationally heavy
applications is considered on cloud platforms as investigated
in [22, 23]. Performance evaluation of the PMR framework is
carried out using bioinformatics applications. Themajor con-
tributions can be summarized as follows:

(i) Makespanmodeling and design of𝑃𝑀𝑅 cloud frame-
work

(ii) Parallel execution strategy of the Map and Reduce
phase

(iii) Maximizing cloud resource utilization by computing
on multicore environments in Map and Reduce

(iv) Performance evaluation on state-of-the-art biomedi-
cal applications like BLAST, CAP3, and DeepBind

(v) Experiments considering diverse cloud configura-
tions and varied application configuration

(vi) Correlation between theoreticalmakespanmodel and
experimental values

Beside the data management and computing issues, there
exist numerous security issues and challenges in provisioning
security in cloud computing environment and in ensuring
ethical treatment of biomedical data. When MapReduce is
carried out in distributed settings, users maintain very little
control over these computations, causing several security and
privacy concerns. MapReduce activities may be subverted or
compromised by malicious or cheating nodes. Such secu-
rity issues have been discussed and highlighted by many
researchers as in [24–26].However, addressing security issues
is beyond the scope of this paper.

The paper organization is as follows: In Section 2, the
related works are discussed. In Section 3, the proposed 𝑃𝑀𝑅
framework is presented. The results and the experimental
study are presented in the penultimate section. The conclud-
ing remarks are discussed in the last section.

2. Literature Review

D. Dahiphale et al. [13] presented a cloud based MapReduce
model to overcome the shortcomings of the HadoopMapRe-
duce model which are as follows: Hadoop processes the Map
and Reduce phases in a sequential manner, scalability is not
efficient due to cluster based computing mechanism, process-
ing of stream data is not supported, and lastly it does not
support flexible pricing. To overcome the issue of sequential
execution, they proposed a cloud based Parallel MapReduce
model where the tasks are executed by the Amazon EC2
instances (virtual machine (worker)); to process stream and
batch data in a parallel manner, a pipeliningmodel is adopted
which provides flexible pricing by using an Amazon cloud
Spot Instance. Experiment result shows that the CMRmodel
processes tasks in a parallel manner, improves the through-
put, and shows a speedup improvement of 30% over the
Hadoop MapReduce model for larger datasets.

X. Shi et al. [5] presented a framework for memory inten-
sive computing to overcome the shortcomings of the Hadoop
MapReduce model. In Hadoop, tasks are executed based on
the available CPU cores and memory is allocated based on
a preset configuration which lead to memory bottleneck due
to buffer concurrency and heavy disk seeks resulting in I/O
wait occupancy which further increases the makespan time.
To address this, they presented a rule based heuristicmodel to
prioritize memory allocation and revocation for global mem-
ory management. They presented a multithread approach
for which they developed disk access serialization, multi-
cache technique for efficient garbage collection in JVM. The
experimental study shows that execution of memory inten-
sive computation time is improved by 40% over the Hadoop
MapReduce model.

Babak Alipanahi et al. [27] presented a model by adopt-
ing deep learning techniques for DNA- and RNA-binding
protein for pattern discovery. The specificity of protein is
generally described using position weight matrices (PWMs)
and the learning sequence specificity in the high throughput
model has the following challenges. Firstly, there is the
varied nature data from different sources. For example, chro-
matin immunoprecipitation provides varying putatively
bound sequence length of ranked list, for each sequence,
RNAcompete assay and protein binding microarray provide
a specificity coefficient, and HT-SELEX produces a very high
similarity sequence set. Secondly, each data provider has its
unique biases, artifacts, and limitation for which it needs
to identify the pertinent specificity. Lastly, the data are in
huge size which requires a computation model to integrate
all data from different sources. To overcome these challenges,
they presented a model, namely, DeepBind, whose charac-
teristics are as follows. It is applicable for both sequence and
microarray data and works well across different technologies
without correcting for technology-specific biases. Sequences



4 BioMed Research International

are processed in a parallel manner by using a graphics pro-
cessing unit (GPU), which can train the predicting model
automatically and canwithstand amodest degree of noisy and
incorrectly labeled trained data. Experiments are conducted
on in vitro data for both training and testing which shows that
the DeepBind model is a scalable modular pattern discovery
technique based on deep learning which does not depend on
application specific heuristics such as “seed finding.”

K. Mahadik et al. [28] presented a parallelized BLAST
model to overcome issues related to mpiBLAST which are
as follows. It segments the database and processes each short
query in parallel but due to rapid growth of NGS it has re-
sulted in increased size of sequences (long query sequences)
which can bemillions of protein/nucleotide sequences which
limits the mpiBLAST resulting in scheduling overhead and
increasing the makespan time. The mpiBLAST task com-
pletion time of short queries is faster as compared to large
queries which create improper load balancing among nodes.
To address this, they presented a parallel model of BLAST,
namely, ORION, splitting individual queries into overlapping
fragments to process large query sequences on the Hadoop
MapReduce platform. Experimental outcomes show that
theirmodel achieves a speedup of 12.3x overmpiBLASTwith-
out compromising on accuracy.

J. Ekanayake et al. [29] presented a cloud based MapRe-
duce model, namely, Microsoft DryadLINQ and Apache Ha-
doop, for bioinformatics applications and it was compared
with the existing MPI framework.The pairwise Alu sequence
alignment and CAP3 [30] application is considered. To eva-
luate the scheduling performance of these frameworks, an
inhomogeneous dataset is considered. Their outcomes show
that two cloud frameworks have a significant advantage over
MPI in terms of fault tolerance, parallel execution by adopt-
ing the MapReduce framework, robustness, and flexibility
since MPI is memory based whereas the DryadLINQ and
Hadoop model is file oriented based. Experimental analysis
is conducted for varied sequence sizes and the result shows
that Hadoop performs better than DryadLINQ for inhomo-
geneous data for both applications.

Y. Wu et al. [31] presented an outliers based execution
strategy𝑁𝑂2 for computation intensive applications in order
to reduce the makespan and overhead of computation; many
existing approaches that adopt a MapReduce framework are
suitable for data intensive application since their scheduler
state is defined by I/O status. They designed a framework for
computation intensive tasks by adopting instrumentation to
detect task progress and automatic instrument point selector
to reduce overhead and finally for outlier’s detection without
resorting to biased progress calculation K-means is adopted.
The𝑁𝑂2 framework is evaluated by using application CAP3
and ImageMagick on both local cluster and cloud environ-
ment. Their threshold based outlier model improves the task
completion time by 25% with minimal overhead.

3. The Proposed PMR Framework

The𝑃𝑀𝑅 framework incorporates similar functions available
in conventional MapReduce frameworks. Accordingly, the
Map, Shuffle (including Sort), and Reduce phases exist in

𝑃𝑀𝑅. For the sake of representation simplicity, the Shuffle
andReduce phases are cumulatively considered in theReduce
phase. The Map phase takes input data for processing and
generates a list of key pair values of result 𝑀(𝑘𝑒𝑦1, V𝑎𝑙1) 󳨀→𝑙(𝑘𝑒𝑦2, V𝑎𝑙2). This generated key 𝑘𝑒𝑦2 and list of different
values are integrated together and put into a reducer func-
tion. The reducer function takes intermediate key 𝑘𝑒𝑦2 and
processes the values and generates a new set of values 𝑙(V𝑎𝑙3).

The 𝑃𝑀𝑅 job execution is performed on multiple virtual
machines forming a computing cluster, where one is a master
node and the others are worker nodes/slave nodes. The mas-
ter node distributes andmonitors tasks among worker nodes.
Worker nodes periodically send their resource utilization
details to the master node. Master nodes schedule the task
based on availability of worker resources.

To minimize makespan of job execution and maximize
utilization of cloud resource (available with worker nodes),
the proposed 𝑃𝑀𝑅 adopts a parallel execution strategy; i.e.,
Reduce phase execution is initiated in a parallel fashion, as
soon as two or more Map worker nodes have completed
their tasks. The worker nodes are considered to have more
than one computing core; the 𝑃𝑀𝑅 framework presents
parallel execution of the Map and Reduce functions adopted
utilizing multicore environments and a makespan model of
the proposed 𝑃𝑀𝑅 is described and presented in Section 3.1.

The 𝑃𝑀𝑅 function is a combination of the Map task and
Reduce task. The input dataset is split into uniform block
sized data called chunks and is distributed among the com-
puting nodes. In 𝑃𝑀𝑅, the chunk obtained is further split to
parallelize execution of user defined Map and Reduce func-
tions. The user defined Map function is applied on the input
and intermediate output is generated which is input data for
the Reduce task. The Reduce stage is a combination of two
phases, Shuffle and Reduce. Output data which is generated
from the Map task is fed as an input in the Shuffle phase; the
already completedMap task is shuffled and then sorted in this
phase.Now, the sorted data is fed into the user definedReduce
function and the generated output is written back to cloud
storage.

A Map function in terms of computation time and input/
output data dependencies can be represented as a tuple

(󳨀󳨀󳨀→𝑆𝑖𝑧𝑒𝑖𝑛M, 𝑆M,M↓,M󳨀→,M↑) , (1)

where󳨀󳨀󳨀→𝑆𝑖𝑧𝑒𝑖𝑛M is the average input data processed by each Map
worker. Variables M↓,M󳨀→ and M↑ represent the maxi-
mum, average, and minimum computation time of the Map
function.Output of theMap function stored in the cloud to be
processed by Reduce workers is represented as a ratio be-
tween output and input data 𝑆M.

Similarly, the 𝑃𝑀𝑅 Reduce function is represented as

(𝑆M, 𝑆𝑅, 𝑅↓, 𝑅󳨀→, 𝑅↑) , (2)

where 𝑆M is output data of Map functions stored in the cloud
(represented as a ratio). Output of the Reduce function or the
task assigned to 𝑃𝑀𝑅 is represented as 𝑆𝑅 (ratio of Reduce



BioMed Research International 5

output to input). Minimum, average, and maximum compu-
tation times of the Reduce function are 𝑅↓, 𝑅󳨀→ and 𝑅↑. The
Reduce stage incorporates Shuffle and Sort operations.

Reducing execution time and minimizing cost of cloud
usage are always desirable attributes. In this paper, a make-
span model to describe operation of the 𝑃𝑀𝑅 framework is
presented. Obtaining actual makespan times is very complex
and is always a challenge. A number of dependencies exist,
like hardware parameters, network conditions, cluster node
performance, cloud storage parameters, data transfer rates,
etc. in obtaining makespans. The makespan model of 𝑃𝑀𝑅
described below only considers functional changes incorpo-
rated to improve performance in conventional MapReduce
frameworks. Modeling described below is based on work
presented in [32].

3.1. PMRMakespan Model

3.1.1. Preliminaries and Makespan Bound Establishment. The
makespan function is computed as the time required to com-
plete a job of input data size and number of resources which
is allocated to 𝑃𝑀𝑅. Let us consider a job 𝐽 to be executed
on the 𝑃𝑀𝑅 cloud platform considering data𝐷. Let the cloud
platform have 𝑛 + 1 number of nodes/workers. Each worker
is said to have 𝑝 cores that can be utilized for computation.
One worker node acts as the master node leaving 𝑛 number
of workers to perform Map and Reduce computation. Job𝐽 is considered to be distributed and computed using an 𝑥
number of Map and Reduce tasks. The data 𝐷 is also accord-
ingly split into 𝑥 chunks represented as 𝐷󸀠. In conventional
MapReduce platforms, 𝐷󸀠 = (𝐷/𝑛). PMR considers a similar
approach for computing 𝐷󸀠. The time utilized to complete 𝑥
tasks is represented asT1,T2, . . . ,T𝑥. In the proposed PMR
framework, the chunks 𝐷󸀠 are further split into𝐷󸀠󸀠 = (𝐷󸀠/𝑝)
for parallel execution. In PMR execution of the 𝑥𝑡ℎ task,T𝑥 =
T↑ = max{t1, ⋅ ⋅ ⋅ t𝑝}, where t𝑝 represents execution of task on
the 𝑝𝑡ℎ core considering corresponding data 𝐷󸀠󸀠.

Average (𝜎) and maximum time (𝛽) duration taken by 𝑥
tasks to complete job 𝐽 can be represented as

𝜎 = ∑𝑥𝑗=1T𝑗
𝑥

𝛽 = max
𝑗

{T𝑗} .
(3)

Let us consider an optimistic scenario that 𝑥 tasks are
uniformly distributed among 𝑞 worker nodes (minimum
time taken to process (𝑥 × 𝜎) work). Overall, the time taken
to compute these tasks is (𝑥 × 𝜎)/𝑞 and it is the lower bound
time.

𝑙𝑏 = 𝑥 × 𝜎
𝑞 . (4)

To compute the upper bound time, a pessimistic scenario
is considered, where the longest processing task

←󳨀
T ∈ (T1,

T2, . . . ,T𝑥) with makespan of 𝛽 is the last processed task.

Therefore, the time taken before the last task
←󳨀
T is upper

bounded as follows:

(∑𝑥𝑗=1T𝑗)
𝑞 ≤ (𝑥 − 1) × 𝜎

𝑞 . (5)

Therefore, the overall timespan for this longest task
←󳨀
T

is upper bounded as ((𝑥 − 1) × 𝜎)/𝑞 + 𝛽. The probable job
makespan range due to nondeterminism and scheduling is
obtained by the difference lower bound and upper bound.
This is a key factor when the time taken of the longest task
is trivial as compared to the overall makespan; i.e., 𝛽 ≪(𝑥 × 𝜎/𝑞).

𝑢𝑏 = (𝑥 − 1) × 𝜎
𝑞 + 𝛽. (6)

3.1.2. Makespan of a Job on the PMR Framework. Let us con-
sider a jobJ which is submitted to the 𝑃𝑀𝑅 framework; the
jobJ is split into 𝑋J

M
number of Map tasks and 𝑋J

𝑅 number
of Reduce tasks. Let SJ

M
and S

J

R
represent the number of

Map and Reduce workers allocated for theJ𝑡ℎ job.
To compute the makespan of the Map tasks, the lower

and upper bounds are computed. Using (3), average (M󳨀→)
and maximum (M↑) makespan of Map tasks of job J are
computed. Using M↑,and M󳨀→ computed in (4), the lower
bound of the Map phase, i.e.,T𝑙𝑏𝑀, is defined as

T
𝑙𝑏
𝑀 = 𝑋J

M
×M󳨀→

S
J
M

. (7)

Similarly, the upper bound T𝑢𝑏𝑀 or the maximum execu-
tion time of the Map phase in 𝑃𝑀𝑅 using (6) is defined as

T
𝑢𝑏
𝑀 = (𝑋J

M
− 1) ×M󳨀→

S
J
M

+M↑
. (8)

Considering the lower (T𝑙𝑏𝑀) and upper (T𝑢𝑏𝑀) bounds
computed, the makespan of the Map phase in 𝑃𝑀𝑅 is com-
puted as

󳨀→
T𝑀 = (T𝑢𝑏𝑀 +T𝑙𝑏𝑀)

2 . (9)

The average makespan of each Map worker node is com-
puted as

󳨀→
T𝑀󳨀→ =

󳨀→
T𝑀

S
J
M

. (10)

Themakespan of the PMRMap phase consisting ofSJ
M

=𝑞worker nodes is shown in Figure 2 of the paper. Ascertaining
bounds ofmakespan, i.e.,T𝑢𝑏𝑀 andT𝑙𝑏𝑀, is shown in the figure.

The Reduce workers are initiated when at least two Map
worker nodes have finished their computational tasks. The



6 BioMed Research International

MAP WORKER 1

Makespan Time (t)

MAP WORKER 2

MAP WORKER 3

MAP WORKER 4

MAP WORKER 5

MAP WORKER 6

−

−

−

MAP WORKER q-2

MAP WORKER q-1

MAP WORKER q

lb
M

ub
M

(lb
M − ub

M)

Figure 2: Map phase makespan of PMR framework.

Reduce phase is initiated at (T𝑢𝑏𝑀 −T𝑙𝑏𝑀) time instance. Inter-
mediate data generated by Map worker nodes is processed
using the Shuffle, Sort, and Reduce functions defined. Aver-
age execution timeR󳨀→ andmaximum execution timeR↑ of
the Reduce phase considering SJ

R
workers are derived using

(3). Makespan bounding of the Reduce phase is computed
(the lower bound is represented asT𝑙𝑏𝑅 and the upper bound
is represented asT𝑢𝑏𝑅 ) as follows:

T
𝑙𝑏
𝑅 = 𝑋J

R
∙R󳨀→
S

J

R

(11)

T
𝑢𝑏
𝑅 = (𝑋J

R
− 1) ∙R󳨀→

S
J

R
+R↑

. (12)

The makespan of theJ𝑡ℎ job on the 𝑃𝑀𝑅 framework is a
sum of time taken to execute Map tasks and time taken to ex-
ecute Reduce tasks. Considering the best case scenario (lower
bound), the minimum makespan observed is

T
𝑙𝑏
J = T

𝑙𝑏
𝑀 +T

𝑙𝑏
𝑅 − (T𝑢𝑏𝑀 −T

𝑙𝑏
𝑀) . (13)

Simplifying (13), we get

T
𝑙𝑏
J = 2T𝑙𝑏𝑀 +T

𝑙𝑏
𝑅 −T

𝑢𝑏
𝑀. (14)

Considering the worst computing performance, the
upper bound or maximum makespan observed is

T
𝑢𝑏
J = T

𝑢𝑏
𝑀 +T

𝑢𝑏
𝑅 − (T𝑢𝑏𝑀 −T

𝑙𝑏
𝑀) (15)

T
𝑢𝑏
J = T

𝑙𝑏
𝑀 +T

𝑢𝑏
𝑅 . (16)

Themakespan of jobJ on the𝑃𝑀𝑅 framework is defined
as

󳨀→
TJ = (T𝑢𝑏J +T𝑙𝑏J)

2 . (17)

Using (14) and (16), makespan J is

󳨀→
TJ = ((T𝑙𝑏𝑀 +T𝑢𝑏𝑅 ) + (2T𝑙𝑏𝑀 +T𝑙𝑏𝑅 −T𝑢𝑏𝑀))

2
= (3T𝑙𝑏𝑀 +T𝑙𝑏𝑅 +T𝑢𝑏𝑅 −T𝑢𝑏𝑀)

2 .
(18)

3.1.3.ModelingDataDependency onMakespan. According to
[30, 31], data dependency can bemodeled using linear regres-
sion. A similar approach is adopted here. The average make-
span of the 𝑥𝑡ℎ Map worker node is defined as

M
𝑥
󳨀→ = V

𝑀
0 +

S
J

M∑
𝑤=1

(V𝑀w (𝐷󸀠
𝑝 )) , (19)

where V𝑀∗ represent variables that are application specific;
i.e., they are dependent on the Map user function.

The average makespan of the 𝑥𝑡ℎ Reduce worker node is
defined as

R
𝑥
󳨀→ = V

𝑅
0 +

S
J

R∑
𝑤=1

(V𝑅w (𝑑󸀠
𝑝 )) , (20)

where V𝑅∗ represent variables specific to the user defined
Reduce functions and 𝑑󸀠represents intermediate output data
obtained from the Map phase. For parallel execution and to
utilize all resources, it is further split similar to theMap phase.

On similar lines, the average and maximum execution
times of Map and Reduce workers are computed. Data de-
pendent computations of M󳨀→,M↑,R󳨀→,R↑ are used in
(14), (16), and (18) to compute makespan of the J𝑡ℎ job on
the 𝑃𝑀𝑅 framework considering data 𝐷. Additional details
of data dependency modeling using linear regression are
presented in [33]. The proof of the model is also presented
in [33].



BioMed Research International 7

4. Performance Evaluation

Experiments conducted to evaluate the performance of 𝑃𝑀𝑅
are presented in this section. Performance of 𝑃𝑀𝑅 is com-
pared with the state-of-the-art Hadoop framework. Hadoop
is the most widely used/adopted MapReduce platform for
computing in cloud environments [34]; hence, it is consid-
ered for comparisons. The 𝑃𝑀𝑅 framework is developed
using VC++, C#, and Node.js and deployed on the Azure
cloud. Hadoop 2, i.e., version 2.6, is used and deployed
on the Azure cloud using HDInsight. The 𝑃𝑀𝑅 framework
is deployed consisting of one master node and 4 worker
nodes. Each worker node is deployed on A3 virtual machine
instances. Each A3 VM instance consists of 4 virtual com-
puting cores, 7 GB of RAM, and 120 GB of local hard drive
space.The Hadoop platform deployed for evaluation consists
of one master and 4 worker nodes in the cluster. Uniform
configuration of 𝑃𝑀𝑅 and Hadoop frameworks on Azure
cloud is considered.

Biomedical applications characterized by processing of
massive amounts of genetic data are considered in the ex-
periments for performance evaluation. A computationally
heavy biomedical application, namely, BLAST [35], CAP3
[30], and state-of-the-art recent DeepBind [27], is adopted
for evaluation. All the genomic sequences considered for the
experimental analyses are obtained from the publicly avail-
able NCBI database [36]. For comprehensive performance
evaluations, the authors have considered various application
scenarios. In experiments conducted using BLAST, both the
Map and Reduce phases are involved. In CAP3 application,
the Map phase plays a predominant role. In DeepBind, the
Reduce phase is critical for analysis.

4.1. BLAST. Gene sequence alignment is a fundamental
operation adopted to identify similarities that exist between
a query protein sequence, DNA or RNA, and a database of
sequences maintained. Sequence alignment is computation-
ally heavy and its computation complexity is relative to the
product of two sequences being currently analyzed. Massive
volumes of sequences maintained in the database to be
searched induce an additional computation burden. BLAST is
a widely adopted bioinformatics tool for sequence alignment
which performs faster alignments, at the expense of accuracy
(possibly missing some potential hits) [35].The drawbacks of
BLASTand its improvements are discussed in [28]. For evalu-
ation here, the improved BLAST algorithm of [28] is adopted.
To improve computation time, a heuristic strategy is used
compromising accuracy minimally. In the heuristic strategy,
an initial match is found and is later extended to obtain the
complete matching sequence.

A three-stage approach is adopted in BLAST for sequence
alignment. Query sequence is represented using q and
reference sequence as r. Sequences q and r are said to con-
sist of 𝑘−length subsequences known as 𝑘 − 𝑚𝑒𝑟𝑠. In the
initial stage, also known as the 𝑘 − 𝑚𝑒𝑟 match stage, BLAST
considers each of the 𝑘 − 𝑚𝑒𝑟𝑠 of q and r and searches for𝑘−𝑚𝑒𝑟𝑠 that match in both. This process is repeated to build
a scanner of all 𝑘−letter words in query q. Then, BLAST
searches reference genomer by using the scanner built to find

𝑘 − 𝑚𝑒𝑟𝑠 of r matches with query q and these matches are𝑠𝑒𝑒𝑑𝑠 of potential hits.
In the second stage, also known as the ungapped align-

ment stage, every seed identified previously is 𝑒𝑥𝑡𝑒𝑛𝑑𝑒𝑑 in
both directions, respectively, to include matches and mis-
matches. A match is found if nucleotides in q and r are the
same. A mismatch occurs if varied nucleotides are observed
in q and r. The mismatch reduces the score and matches
increase the score of candidate sequence alignment. The
present score of sequence alignment 𝑎 and the highest score
obtained for present seed 𝑎↑ are retained. The second phase
is terminated if 𝑎↑ − 𝑎 is higher than the predefined X-drop
threshold ℎ𝑥 and returns with the highest alignment score
of the present seed. The alignment is passed to stage three if
the returned score is higher than the predefined ungapped
threshold 𝐻𝑦. The thresholds predefined establish accuracy
of alignment scores in BLAST. Computational optimization
is achieved by skipping seeds already available in previous
alignments. The initial two phases of BLAST are executed in
the Map workers of 𝑃𝑀𝑅 and Hadoop.

In stage three, gapped alignment is performed in the
left and right directions where deletion and insertion are
performed during extension of alignments. The same as the
previous stage, the highest score of alignment 𝑎↑ is kept and
if the present score 𝑎 is lower than 𝑎↑ by more than the X-
drop threshold, the stage is terminated and the corresponding
alignment outcome is obtained. Gap alignment operation is
carried out in the Reduce phase of 𝑃𝑀𝑅 and Hadoop frame-
work. The schematic of BLAST algorithm on 𝑃𝑀𝑅 frame-
work is shown in Figure 3.

Experiments conducted to evaluate performance of 𝑃𝑀𝑅
and Hadoop considered the Drosophila database as a refer-
ence database. The query genomics of varied sizes considered
is from Homo sapiens chromosomal sequences and genomic
scaffolds. A total of six different query sequences are con-
sidered similar to [28]. Configuration of each experiment is
summarized in Table 1. All six experiments are conducted
using BLAST algorithm on Hadoop and 𝑃𝑀𝑅 frameworks.
All observations retrieved through a set of log files generated
during the Map and Reduce phases of Hadoop and 𝑃𝑀𝑅
are noted and stored for further analysis. Using the log files
total makespan, Map worker makespan, and Reduce worker
makespan of Hadoop and 𝑃𝑀𝑅 is noted for each experiment.
It must be noted that the initialization time of the VM cluster
is not considered in the computing makespan as it is uniform
in 𝑃𝑀𝑅 and Hadoop owing to similar cluster configurations.

Individual task execution times of Map worker and
Reduce worker nodes observed for each BLAST experiment
executed on Hadoop and 𝑃𝑀𝑅 frameworks are graphically
shown in Figure 4. Figure 4(a) represents results obtained for
Hadoop and Figure 4(b) represents results obtained on𝑃𝑀𝑅.
Execution times of Map workers in 𝑃𝑀𝑅 and Hadoop are
dominantly higher than Reduce worker times. This is due to
the fact that major computation intensive phases (i.e., Phase
1 and Phase 2) of BLAST sequence alignment application are
carried out in the Map phase. Parallel execution of BLAST
sequence alignment utilizing all 4 cores available with each
Map worker node adopted in 𝑃𝑀𝑅 results in lower execution
timeswhen compared toHadoopMapworker nodes. Average



8 BioMed Research International

Query sequence q
(with overlap)

Reference\database 
sequence (R)

Local Memory

…

PMR Platform

Local Memory

…

PMR Platform

Alignment 
aggregation

Cloud storage

Shuffle Sort Reduce

Virtual Machine – Reduce Worker 1
Shuffle Sort Reduce

Virtual Machine – Reduce Worker w

Virtual Machine – Map Worker wVirtual Machine – Map Worker 1

Blast alignment result

Temporary Cloud storage

Cloud storage

PMR Platform PMR Platform

PMR-Master Node

Blast Blast

q1R1 q1R2 q1R
 qR1 qR2 qR

Figure 3: BLAST PMR framework.

Table 1: Information of the Genome Sequences used as queries considering equal section lengths from Homo sapiens chromosome 15 as a
reference.

Experiment Id Query genome Query genome size
(bp) Database sequence Reference genome size

(bp)
1 NT 007914 14866257 Drosophila database 122,653,977
2 AC 000156 19317006 Drosophila database 122,653,977
3 NT 011512 33734175 Drosophila database 122,653,977
4 NT 033899 47073726 Drosophila database 122,653,977
5 NT 008413 43212167 Drosophila database 122,653,977
6 NT 022517 90712458 Drosophila database 122,653,977

reduction of execution time in Map workers of 𝑃𝑀𝑅 is
34.19%, 34.15%, 34.78%, 35.29%, 35.76%, and 39.87% in
experiments conducted when compared to Hadoop Map
worker average execution times. As the query size increases,
performance improvement of 𝑃𝑀𝑅 increases. Parallel execu-
tion strategy of Reduce worker nodes proposed in 𝑃𝑀𝑅 is
clearly visible in Figure 4(b). In other words, Reduce workers
are initiated as soon as two or more Map worker nodes have
completed their tasks. The execution time of Reduce worker
nodes in 𝑃𝑀𝑅 is marginally higher than those of Hadoop.
Waiting for all Map worker nodes to complete their tasks is a
primary reason for the marginal increase in Reduce worker
execution times in 𝑀𝑅. Sequential processing, i.e., Map
workers first and then Reduce worker execution, of worker
nodes in Hadoop framework is evident from Figure 4(a).

The total makespan of𝑃𝑀𝑅 and Hadoop is dependent on
task execution time of worker nodes during the Map phase
and Reduce phase. The total makespan observed in BLAST
sequence alignment experiments executed on Hadoop and𝑃𝑀𝑅 frameworks is shown in Figure 5. Superior performance
in terms of Reduce makespan times of 𝑃𝑀𝑅 is evident when

compared to Hadoop.Though a marginal increase in Reduce
worker execution time is reported, overall execution time, i.e.,
total makespan of 𝑃𝑀𝑅, is less when compared to Hadoop.
A reduction of 29.23%, 30.61%, 32.78%, 33.17%, 33.33%, and
38.23% is reported for six experiments executed on the𝑃𝑀𝑅 framework when compared to similar experiments
executed on Hadoop framework. Average reduction of the
total makespan across all experiments is 32.89% proving
superior performance of 𝑃𝑀𝑅 when compared to Hadoop
framework.

Theoretical makespan of 𝑃𝑀𝑅, 𝑖.𝑒., J, given by (18)
is computed and compared against the practical values
observed in all the experiments. Results obtained are shown
in Figure 6. Minor variations are observed between practical
and theoretical makespan computations. Overall good cor-
relation is reported between practical makespan values and
theoretical makespan values. Based on the results presented,
it is evident that execution of BLAST sequence alignment
algorithm on the proposed 𝑃𝑀𝑅 yields superior results
when compared to similar experiments conducted on the
existing Hadoop framework. Accuracy and correctness of the



BioMed Research International 9

0 50 100 150 200

R W 1
R W 2
R W 3
R W 4

M W 1
M W 2
M W 3
M W 4

Makespan Time (s)

Ta
sk

 E
xe

cu
tio

n

BLAST Execution - Hadoop (Experiment 3)

0 10 20 30 40 50 60 70
R W 1
R W 2
R W 3
R W 4

M W 1
M W 2
M W 3
M W 4

Makespan Time (s)

Ta
sk

 E
xe

cu
tio

n

BLAST Execution - Hadoop (Experiment 1)

0 20 40 60 80 100 120

R W 1
R W 2
R W 3
R W 4

M W 1
M W 2
M W 3
M W 4

Makespan Time (s)

Ta
sk

 E
xe

cu
tio

n

BLAST Execution - Hadoop (Experiment 2)

0 50 100 150 200 250

R W 1
R W 2
R W 3
R W 4

M W 1
M W 2
M W 3
M W 4

Makespan Time (s)

Ta
sk

 E
xe

cu
tio

n

BLAST Execution - Hadoop (Experiment 4)

0 50 100 150 200 250 300

R W 1
R W 2
R W 3
R W 4

M W 1
M W 2
M W 3
M W 4

Makespan Time (s)

Ta
sk

 E
xe

cu
tio

n

BLAST Execution - Hadoop (Experiment 5)

0 50 100 150 200 250 300 350 400

R W 1
R W 2
R W 3
R W 4

M W 1
M W 2
M W 3
M W 4

Makespan Time (s)

Ta
sk

 E
xe

cu
tio

n

BLAST Execution Considering Hadoop (Experiment 6)

(a) Worker node execution times onHadoop frame-
work

0 20 40 60 80 100 120 140

R W 1
R W 2
R W 3
R W 4

M W 1
M W 2
M W 3
M W 4

Makespan Time (s)

Ta
sk

 E
xe

cu
tio

n

BLAST Execution -PMR (Experiment 3)

0 10 20 30 40 50
R W 1
R W 2
R W 3
R W 4

M W 1
M W 2
M W 3
M W 4

Makespan Time (s)

Ta
sk

 E
xe

cu
tio

n

BLAST Execution -PMR (Experiment 1) 

0 10 20 30 40 50 60 70 80

R W 1
R W 2
R W 3
R W 4

M W 1
M W 2
M W 3
M W 4

Makespan Time (s)

Ta
sk

 E
xe

cu
tio

n

BLAST Execution -PMR (Experiment 2)

0 20 40 60 80 100 120 140 160

R W 1
R W 2
R W 3
R W 4

M W 1
M W 2
M W 3
M W 4

Makespan Time (s)

Ta
sk

 E
xe

cu
tio

n

BLAST Execution - PMR (Experiment 4)

0 50 100 150 200

R W 1
R W 2
R W 3
R W 4

M W 1
M W 2
M W 3
M W 4

Makespan Time (s)

Ta
sk

 E
xe

cu
tio

n

BLAST Execution - PMR (Experiment 5)

0 50 100 150 200 250 300

R W 1
R W 2
R W 3
R W 4

M W 1
M W 2
M W 3
M W 4

Makespan Time (s)

Ta
sk

 E
xe

cu
tio

n

BLAST Execution Considering PMR (Experiment 6) 

(b) Worker node execution times on 𝑃𝑀𝑅 frame-
work

Figure 4: BLAST sequence alignment execution makespan of the Map and Reduce worker nodes. (a) On Hadoop cluster of 4 nodes. (b) On𝑃𝑀𝑅 cluster of 4 nodes.



10 BioMed Research International

1 2 3 4 5 6
Experiment Number

Hadoop
PMR

0
50

100
150
200
250
300
350
400
450

Ex
ec

ut
io

n 
Ti

m
e 

(s
)

Figure 5: BLAST sequence alignment total makespan time observed for experiments conducted on 𝑃𝑀𝑅 and Hadoop frameworks.

theoretical makespan model of 𝑃𝑀𝑅 presented are proved
through correlation measures.

4.2. CAP3. DNA sequence assembly tools are used in bioin-
formatics for gene discovery and understanding genomes
of existing/new organisms. CAP3 is one such popular tool
used to assemble DNA sequences. DNA assembly is achieved
by performing merging and aligning operations on smaller
sequence fragments to build complete genome sequences.
CAP3 eliminates poor sections observed within DNA frag-
ments, computes overlaps amongst DNA fragments, is capa-
ble of identifying false overlaps, eliminating false overlaps
identified, accumulates fragments of multiple or one overlap-
ping DNA segment to produce contigs, and performs mul-
tiple sequence alignments to produce consensus sequences.
CAP3 reads multiple gene sequences from an input FASTA
file and generates output consensus sequences written to
multiple files and also to standard outputs.

The CAP3 gene sequence assembly working principle
consists of the following key stages. Firstly, the poor regions
of 3󸀠 (three-prime) and 5󸀠 (five-prime) of each read are
identified and eliminated. False overlaps are identified and
eliminated. Secondly, to form contigs, reads are combined
based on overlapping scores in descending order. Further,
to incorporate modifications to the contigs constructed,
forward-reverse constraints are adopted. Lastly, numerous se-
quence alignments of reads are constructed per contig result-
ing in consensus sequences characterized by a quality value
for each base. Quality values of consensus sequences are used
in construction of numerous sequence alignment operations
and also in computation of overlaps. Operational steps of
CAP3 assembly model are shown in Figure 7. A detailed ex-
planation of the CAP3 gene sequence assembly is provided
in [30].

In the experiments conducted, CAP3 gene sequence
assembly is directly adopted in the Map phase of 𝑃𝑀𝑅 and
Hadoop. In the Reduce phase, result aggregation is consid-
ered. Performance evaluation of CAP3 execution on 𝑃𝑀𝑅
and Hadoop frameworks Homo sapiens chromosome 15 is
considered as a reference. Genome sequences of various sizes
are considered as queries and submitted to Azure cloud plat-
form in the experiments. Query sequences for experiments

are considered in accordance to [30]. CAP3 experiments
conducted with query genomic sequences (BAC datasets) are
summarized in Table 2. All four experiments are conducted
using CAP3 algorithm on the Hadoop and𝑃𝑀𝑅 frameworks.
Observations are retrieved through a set of log files generated
during Map and Reduce phase execution on Hadoop and𝑃𝑀𝑅. Using the log files total makespan, Map worker makes-
pan and Reduce worker makespan of Hadoop and 𝑃𝑀𝑅 are
noted for each experiment. Itmust be noted that the initializa-
tion time of the VM cluster is not considered in the comput-
ing makespan as it is uniform in 𝑃𝑀𝑅 and Hadoop owing to
similar cluster configurations.

Task execution times of Map and Reduce worker nodes
observed for CAP3 experiments conducted on Hadoop and𝑃𝑀𝑅 frameworks are shown in Figure 8. Figure 8(a) repre-
sents results obtained for Hadoop and Figure 8(b) represents
results obtained on 𝑀𝑅. Execution times of Map worker
nodes are far greater than execution times of Reduce worker
nodes as CAP3 algorithm execution is carried out in the Map
phase and result accumulation is considered in the Reduce
phase. Parallel execution strategy (utilizing 4 computing
cores available with each Map worker) of CAP3 algorithm
on 𝑃𝑀𝑅 enables lower execution times when compared to
Hadoop Map worker nodes. Average reduction of execution
time in Map workers of 𝑃𝑀𝑅 reported is 19.33%, 20.07%,
15.09%, and 18.21% in CAP3 experiments conducted when
compared toHadoopMapworker average execution times. In𝑃𝑀𝑅, theReduceworkers are initiated as soon as two ormore
Mapworker nodes have completed their tasks which is visible
from Figure 8(b). Sequential processing strategy (i.e., Map
workers first and then Reduce workers execution) of worker
nodes in the Hadoop framework is evident from Figure 8(a).
Execution time of Reduceworker nodes in𝑃𝑀𝑅 ismarginally
higher by about 15.42% than those of Hadoop.Waiting for all
Mapworker nodes to complete their tasks is a primary reason
for the marginal increase in Reduce worker execution times
in𝑀𝑅.

The total makespan observed in CAP3 experiments exe-
cuted on the Hadoop and 𝑃𝑀𝑅 frameworks is presented in
Figure 9. Superior performance in terms of Reduce mak-
espan times of 𝑃𝑀𝑅 is evident when compared to Hadoop.
Though amarginal increase in Reduce worker execution time



BioMed Research International 11

Table 2: Information of the Genome Sequences used in CAP3 experiments.

Experiment Number Dataset GenBank
accession number

Number of reads
(bp)

Average Length of
reads (bp)

Length of
provided

sequences (bp)
1 203 AC004669 1812 598 89779
2 216 AC004638 2353 614 124645
3 322F16 AF111103 4297 1011 159179
4 526N18 AF123462 3221 965 180182

1 2 3 4 5 6

Experiment Number
PMR
PMR -Theory

0

50

100

150

200

250

300
Ex

ec
ut

io
n 

Ti
m

e 
(s

)

Figure 6: Correlation between theoretical and practical makespan times for BLAST sequence alignment execution on PMR framework.

Removal of 
poor regions of 

each read

Computation 
of overlaps 

among reads

Wrongly 
identified 
overlap 
removal

Contig 
construction

Generation of 
consensus sequences 
and construction of 
multiple sequence 

alignments

Figure 7: Steps for CAP3 sequencing assembly.

is reported, overall execution time, i.e., total makespan of𝑃𝑀𝑅, is less when compared to Hadoop. A reduction
of 18.97%, 20%, 15.03%, and 18.01% is reported for the
four experiments executed on the 𝑃𝑀𝑅 framework when
compared to similar experiments executed on the Hadoop
framework. Average reduction of the total makespan across
all experiments is 18% proving superior performance of 𝑃𝑀𝑅
when compared to the Hadoop framework. Makespan time
for experiment 2 is greater than other experiments as the
number of differences considered in CAP3 is 17 larger than
values considered in other experiments. Similar nature of ex-
ecution times is reported in [29] validating CAP3 execution
experiments presented here.

Theoretical makespan of 𝑃𝑀𝑅 for all four CAP3 exper-
iments is computed using (18). Comparison between the-
oretical and experimental makespan values is presented in
Figure 10. Minor differences are reported between practical
and theoretical makespan computations proving correctness
of 𝑃𝑀𝑅makespan modeling presented.

The results presented in this section prove that CAP3
sequence assembly execution on the 𝑃𝑀𝑅 cloud framework
developed exhibits superior performance when compared to
similar CAP3 experiments executed on the existing Hadoop
cloud framework.

4.3. DeepBind Analysis to Identify Binding Sites. In recent
times, deep learning techniques have been extensively used
for various applications. Deep learning techniques are
adopted predominantly when large amounts of data are to
be processed or analyzed. To meet large computing needs of
deep learning techniques, GPU are used. Motivated by this,
the authors of the paper consider very recent state-of-the-
art “DeepBind” biomedical application execution on a cloud
platform. To the best of our knowledge, no such attempt to
consider cloud platforms for DeepBind execution has been
reported.

Alternative splicing, transcription, and gene regulations
biomedical operations are dependent on DNA- and RNA-
binding proteins. DNA- andRNA-binding proteins described
using sequence specificities are critical in identifying diseases
and deriving models of regulatory processes that occur in
biological systems. Position weight matrices are used in
characterizing specificities of a protein. Binding sites on
genomic sequences are identified by scanning positionweight
matrices over the considered genomic sequences. DeepBind
is used to predict sequence specificities. DeepBind adopts
deep convolutional neural networks to achieve accurate
prediction. Comprehensive details and sequence specificity



12 BioMed Research International

0 500 1000 1500

R W 1
R W 2
R W 3
R W 4

M W 1
M W 2
M W 3
M W 4

Makespan Time (s) 

Ta
sk

 E
xe

cu
tio

n

CAP Execution - Hadoop (Experiment 1)

0 1000 2000 3000 4000 5000 6000 7000

R W 1
R W 2
R W 3
R W 4

M W 1
M W 2
M W 3
M W 4

Makespan Time (s) 

Ta
sk

 E
xe

cu
tio

n

CAP Execution - Hadoop (Experiment 2) 

0 1000 2000 3000 4000 5000 6000

R W 1
R W 2
R W 3
R W 4

M W 1
M W 2
M W 3
M W 4

Makespan Time (s) 

Ta
sk

 E
xe

cu
tio

n

CAP Execution - Hadoop (Experiment 3)

0 500 1000 1500 2000 2500 3000 3500

R W 1
R W 2
R W 3
R W 4

M W 1
M W 2
M W 3
M W 4

Makespan Time (s)

Ta
sk

 E
xe

cu
tio

n

CAP Execution - Hadoop (Experiment 4)

(a) Worker node execution times on Hadoop framework

0 200 400 600 800 1000 1200 1400

R W 1
R W 2
R W 3
R W 4

M W 1
M W 2
M W 3
M W 4

Makespan Time (s) 

Ta
sk

 E
xe

cu
tio

n

CAP Execution - PMR (Experiment 1) 

0 1000 2000 3000 4000 5000

R W 1
R W 2
R W 3
R W 4

M W 1
M W 2
M W 3
M W 4

Makespan Time (s) 
Ta

sk
 E

xe
cu

tio
n

CAP Execution - PMR (Experiment 2) 

0 1000 2000 3000 4000 5000

R W 1
R W 2
R W 3
R W 4

M W 1
M W 2
M W 3
M W 4

Makespan Time (s) 

Ta
sk

 E
xe

cu
tio

n

CAP Execution - PMR (Experiment 3) 

0 500 1000 1500 2000 2500

R W 1
R W 2
R W 3
R W 4

M W 1
M W 2
M W 3
M W 4

Makespan Time (s)

Ta
sk

 E
xe

cu
tio

n

CAP Execution Considering PMR (Experiment 4)

(b) Worker node execution times on 𝑃𝑀𝑅 framework

Figure 8: CAP3 sequence assembly execution makespan of the Map and Reduce worker nodes. (a) On Hadoop cluster of 4 nodes. (b) On𝑃𝑀𝑅 cluster of 4 nodes.

prediction accuracy of the DeepBind application are available
in [27].

DeepBind is developed using a two-phase approach, a
training phase and testing phase. Training phase execution
is carried out using Map workers in the Hadoop and 𝑃𝑀𝑅
frameworks. The trained weights are stored in the cloud
memory for further processing. The testing phase of Deep-
Bind is carried out at the Reduce stage in the Hadoop and

𝑃𝑀𝑅 frameworks. Execution strategy of DeepBind algorithm
on the 𝑃𝑀𝑅 framework is shown in Figure 11. DeepBind
application is developed using the code provided in [27]. For
performance evaluation on Hadoop and 𝑃𝑀𝑅 only testing
phase is discussed (i.e., Reduce only mode). A custom cloud
cluster of one master node and six worker nodes is deployed
for DeepBind performance evaluation. A similar cloud clus-
ter for the Hadoop framework is considered. The experiment



BioMed Research International 13

Table 3: Information of the disease-causing genomic variants used in the experiment.

Experiment 1
Case study Genome variant Experiment details

1 SP1 A disrupted SP1 binding site in the LDL-R promoter that leads to familial
hypercholesterolemia

2 TCF7L2 A cancer risk variant in a MYC enhancer weakens a TCF7L2 binding site
3 GATA1 A gained GATA1 binding site that disrupts the original globin cluster promoters

4 GATA4 A lost GATA4 binding site in the BCL-2 promoter, potentially playing a role in
ovarian granulosa cell tumors

5 RFX3 Loss of two potential RFX3 binding sites leads to abnormal cortical development

6 GABPA Gained GABP-𝛼 binding sites in the TERT promoter, which are linked to several
types of aggressive cancer

1 2 3 4
Experiment Number

Hadoop
PMR

0
1000
2000
3000
4000
5000
6000
7000
8000

Ex
ec

ut
io

n 
Ti

m
e (

s)

Figure 9: CAP3 sequence assembly total makespan time observed for experiments conducted on 𝑃𝑀𝑅 and Hadoop frameworks.

1 2 3 4
Experiment Number

PMR
PMR -Theory

0

1000

2000

3000

4000

5000

6000

7000

Ex
ec

ut
io

n 
Ti

m
e (

s)

Figure 10: Correlation between theoretical and practical makespan times for CAP3 sequence assembly execution on PMR framework.

conducted to evaluate the performance of DeepBind on the
Hadoop and 𝑃𝑀𝑅 frameworks considers a set of six disease-
causing genomic variants obtained from [27]. The disease-
causing genomic variants to be analyzed using DeepBind are
summarized in Table 3. DeepBind analysis is executed on
the Hadoop and 𝑃𝑀𝑅 frameworks deployed on a custom
cloud cluster. Log data generated is stored and used in further
analysis.

The results obtained to demonstrate the performance
of six worker cluster nodes of Hadoop and 𝑃𝑀𝑅 during
Map and Reduce phase execution are shown in Figure 12.
Performance is presented in terms of task execution times

observed per worker node. Considering Hadoop worker
nodes execution times of each node during the Map and
Reduce phase is shown in Figure 12(a). The execution
time observed for each 𝑃𝑀𝑅 worker node during the Map
and Reduce phases is shown in Figure 12(b). In the Map
phase execution, the genomic variants to be analyzed are
obtained from the cloud storage and are accumulated based
on their identities defined [27]. The query sequences of
disease-causing genomic variants to be analyzed are split for
parallelization. In theReduce phase, the split query sequences
are analyzed and results obtained are accumulated and
stored in the cloud storage. Map workers in 𝑃𝑀𝑅 exhibit



14 BioMed Research International

Query sequence q Training sequence

Local Memory

PMR Platform

Local Memory

PMR Platform

Trained data 
(weights) 

Cloud storage

Shuffle Sort Reduce

Virtual Machine – Reduce Worker 1 

Shuffle Sort Reduce

Virtual Machine – Reduce Worker w 

Virtual Machine – Map Worker wVirtual Machine – Map Worker 1 

Computed Score 

Temporary Cloud storage

Cloud storage

PMR Platform PMR Platform

DeepBind DeepBind
PM

R-
M

as
te

r N
od

e
Training data1

Training datan

Compute Binding Score1
Compute Binding Scoren

Figure 11: DeepBind PMR framework.

0 5 10 15 20 25 30
R W 1
R W 2
R W 3
R W 4
R W 5
R W 6

M W 1
M W 2
M W 3
M W 4
M W 5
M W 6

Makespan Time (s)

Ta
sk

 E
xe

cu
tio

n

DeepBind Execution - Hadoop (Experiment 1)

(a) Worker node execution times on Hadoop framework

0 5 10 15 20
R W 1
R W 2
R W 3
R W 4
R W 5
R W 6

M W 1
M W 2
M W 3
M W 4
M W 5
M W 6

Makespan Time (s)

Ta
sk

 E
xe

cu
tio

n

DeepBind Execution - PMR (Experiment 1)

(b) Worker node execution times on 𝑃𝑀𝑅 framework

Figure 12: DeepBind execution makespan of the Map and Reduce worker nodes. (a) On Hadoop cluster of 6 nodes. (b) On 𝑃𝑀𝑅 cluster of
6 nodes.

better performance and an average execution time reduction
of 48.57% is reported when compared to Hadoop Map
worker nodes. Execution time of the six Reduce worker
nodes in Hadoop and 𝑃𝑀𝑅 is greater than Map workers
as DeepBind analysis and identification of potential binding
sites is carried out during this phase. Parallel execution
strategy of Reduce worker nodes is clear from Figure 12(b).
The Reduce phase in 𝑃𝑀𝑅 commences after 5 seconds once
Map worker node 1 (MW1) and Map worker node 5 (MP5)
have completed their task. InHadoop that adopts a sequential
approach, the Reduce phase is initiated after all worker nodes
have completed their tasks. Parallel execution of DeepBind
analysis utilizing all 4 computing cores available with Reduce
worker nodes and parallel initiation of the Reduce phase
in 𝑃𝑀𝑅 enable average Reduce execution time of 22.22%
when compared to Hadoop Reduce worker nodes. The total
makespan observed for DeepBind experiment execution on

the Hadoop and 𝑃𝑀𝑅 cloud computing platforms is shown
in Figure 13. Total makespan reduction of 34.62% is achieved
using the 𝑃𝑀𝑅 framework when compared to the Hadoop
framework. Analysis results similar to [27] are reported for
DeepBind analysis on the Hadoop and 𝑃𝑀𝑅 frameworks.
The theoretical makespan computed using (18) for 𝑃𝑀𝑅 is
comparedwith the practical value observed in the experiment
and the results obtained are shown in Figure 14. Aminor vari-
ation between theoretical and practical values is observed.
The variation observed is predominantly due to application
dependent multiple cloud memory access operations. Based
on results obtained for DeepBind analysis, it is evident that
performance on the 𝑃𝑀𝑅 framework is far superior to its
execution on the existing Hadoop framework.

On the basis of biomedical applications considered for
performance evaluation and results obtained, it is evident that
the proposed𝑃𝑀𝑅 framework exhibits superior performance



BioMed Research International 15

1
Experiment Number

Hadoop
PMR

0

5

10

15

20

25

30

Ex
ec

ut
io

n 
Ti

m
e (

s)

Figure 13: DeepBind analysis total makespan time observed for experiments conducted on 𝑃𝑀𝑅 and Hadoop frameworks.

1
Experiment Number

PMR
PMR -Theory

0

5

10

15

20

25

30

Ex
ec

ut
io

n 
Ti

m
e (

s)

Figure 14: Correlation between theoretical and practical makespan times for DeepBind analysis execution on PMR framework.

when compared to its existing Hadoop counterpart. In
BLAST, the Map and Reduce phases are utilized. In CAP3
application, the Map phase plays a predominant role. In
DeepBind application analysis is carried out in the Reduce
phase. The proposed 𝑃𝑀𝑅 cloud computing framework is
robust and is capable of the dynamic biomedical application
scenarios presented: deployment of 𝑃𝑀𝑅 on public and
custom cloud platforms. In addition, 𝑃𝑀𝑅 exhibits low exe-
cution times and enables effective cloud resource utilization.
Low execution times enable cost reduction, always a desired
feature.

5. Conclusion and Future Work

The significance of cloud computing platforms is discussed.
The commonly adopted Hadoop MapReduce framework
working with its drawbacks is presented. To lower execution
times and enable effective utilization of cloud resources, this
paper proposes a 𝑃𝑀𝑅 cloud computing platform. A parallel
execution strategy of the Map and Reduce phases is consid-
ered in the 𝑃𝑀𝑅 framework. TheMap and Reduce functions
of 𝑃𝑀𝑅 are designed to utilize multicore environments

available with worker nodes.The paper presents the proposed𝑃𝑀𝑅 framework architecture along with makespan model-
ing. Performance of the 𝑃𝑀𝑅 cloud computing framework
is compared with the Hadoop framework. For performance
evaluation, computationally heavy biomedical applications
like BLAST, CAP3, and DeepBind are considered. Average
overall makespan times reduction of 38.92%, 18.00%, and
34.62% is achieved using the 𝑃𝑀𝑅 framework when com-
pared to the Hadoop framework for BLAST, CAP3, and
DeepBind applications. The experiments presented prove the
robustness of the 𝑃𝑀𝑅 platform, its capability to handle
diverse applications, and ease of deployment on public and
private cloud platforms.The results presented through the ex-
periments conducted prove the superior performance of𝑃𝑀𝑅 against the Hadoop framework. Good matching is re-
ported between the theoretical makespan of the 𝑃𝑀𝑅 pre-
sented and experimental values observed. In addition, adopt-
ing the 𝑃𝑀𝑅 cloud computing framework also enables cost
reduction and efficient utilization of cloud resources.

Performance study considering cloud cluster with many
nodes, additional applications, and security provisioning to



16 BioMed Research International

cloud computing framework is considered as the future work
of this paper.

Data Availability

Thedata is available at the National Center for Biotechnology
Information. (2015). [Online]. Available: http://www.ncbi
.nlm.nih.gov/

Conflicts of Interest

The authors declare that there are no conflicts of interest re-
garding the publication of this paper.

Acknowledgments

This work was supported by the National Research Founda-
tion of Korea (NRF) grant funded by the Korea government
(MEST) (no. NRF-2015R1D1A1A01061328).

References

[1] J. Dean and S.Ghemawat, “MapReduce: simplified data process-
ing on large clusters,” Communications of the ACM, vol. 51, no.
1, pp. 137–150, 2004.

[2] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I.
Stoica, “Spark: Cluster Computing with Working Sets,” in
Proceedings of the in Proceedings of the 2nd USENIX Conference
on Hot topics in Cloud Computing, Boston, MA, June 2010.

[3] G. Malewicz, M. H. Austern, A. J. C. Bik et al., “Pregel: a sys-
tem for large-scale graph processing,” inProceedings of the Inter-
national Conference on Management of Data (SIGMOD ’10), pp.
135–146, June 2010.

[4] S. Ghemawat, H. Gobioff, and S. Leung, “The Google file sys-
tem,” in Proceedings of the the nineteenth ACM symposium, p.
29, Bolton Landing, NY, USA, October 2003.

[5] X. Shi, M. Chen, L. He et al., “Mammoth: Gearing Hadoop
Towards Memory-Intensive MapReduce Applications,” IEEE
Transactions on Parallel and Distributed Systems, vol. 26, no. 8,
pp. 2300–2315, 2015.

[6] L. Person, “World Hadoop Market - Opportunities and Fore-
casts,” Allied Market Research, p. 108, 2020.

[7] SNS Research, The Big Data Market 2014–2020: Opportunities,
Challenges, Strategies, Industry Verticals and Forecasts, SNS
Research, 2014.

[8] J. Zhu, J. Li, E. Hardesty, H. Jiang, and K.-C. Li, “GPU-in-Ha-
doop: Enabling MapReduce across distributed heterogeneous
platforms,” in Proceedings of the 2014 13th IEEE/ACIS Interna-
tional Conference on Computer and Information Science, ICIS
2014 - Proceedings, pp. 321–326, China, June 2014.

[9] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, I. Stoica,
and ldquo., “Improving Mapreduce Performance in Heteroge-
neous Environments, rdquo,” in Proceedings of the Proc. Eighth
USENIX Conf, pp. 29–42, 2008.

[10] L. D. Stein, “The case for cloud computing in genome informat-
ics,” Genome Biology, vol. 11, no. 5, article 207, 2010.

[11] D. P. Wall, P. Kudtarkar, V. A. Fusaro, R. Pivovarov, P. Patil, and
P. J. Tonellato, “Cloud computing for comparative genomics,”
BMC Bioinformatics, vol. 11, no. 1, article 259, 2010.

[12] A. Rosenthal, P. Mork, M. H. Li, J. Stanford, D. Koester, and
P. Reynolds, “Cloud computing: a new business paradigm for
biomedical information sharing,” Journal of Biomedical Infor-
matics, vol. 43, no. 2, pp. 342–353, 2010.

[13] D. Dahiphale, R. Karve, A. V. Vasilakos et al., “An advanced
MapReduce: cloud MapReduce, enhancements and applica-
tions,” IEEE Transactions on Network and Service Management,
vol. 11, no. 1, pp. 101–115, 2014.

[14] E. Deelman, G. Singh,M. Livny, B. Berriman, and J. Good, “The
cost of doing science on the cloud: the montage example,” in
Proceedings of the ACM/IEEE Conference on Supercomputing,
IEEE Press, November 2008.

[15] N. Chohan, C. Castillo, M. Spreitzer, M. Steinder, A. Tantawi,
andC.Krintz, “See spot run: using spot instances formapreduce
workflows , in,” in Proceedings of the Proc. 2010 USENIX Con-
ference on Hot Topics in Cloud Computing, p. 7, 2010.

[16] R. S.Thakur, R. Bandopadhyay, B. Chaudhary, and S. Chatterjee,
“Now and next-generation sequencing techniques: Future of
sequence analysis using cloud computing,” Frontiers in Genetics,
vol. 3, 2012.

[17] J. Chen, F. Qian,W. Yan, and B. Shen, “Translational biomedical
informatics in the cloud: present and future,” BioMed Research
International, vol. 2013, Article ID 658925, 8 pages, 2013.

[18] T.Nguyen,W. Shi, andD. Ruden, “CloudAligner: a fast and full-
featured MapReduce based tool for sequence mapping,” BMC
Research Notes, vol. 4, article 171, 2011.

[19] M. C. Schatz, “CloudBurst: highly sensitive read mapping with
MapReduce,”Bioinformatics, vol. 25, no. 11, pp. 1363–1369, 2009.

[20] B. Langmead, K. D. Hansen, and J. T. Leek, “Cloud-scale RNA-
sequencing differential expression analysis with Myrna,” Ge-
nome Biology, vol. 11, no. 8, p. R83, 2010.

[21] B. Langmead, M. C. Schatz, J. Lin, M. Pop, and S. L. Salzberg,
“Searching for SNPs with cloud computing,” Genome Biology,
vol. 10, no. 11, article R134, 2009.

[22] A. A. Al-Absi and D. Kang, “A Novel Parallel Computation
Model with Efficient Local Memory Management for Data-
Intensive Applications,” in Proceedings of the 2015 IEEE 8th
International Conference on Cloud Computing (CLOUD), pp.
958–963, New York City, NY, USA, June 2015.

[23] A. Al-Absi and Dae-K Kang I, “Long Read Alignment with
ParallelMapReduceCloud Platform,” BioMed Research Interna-
tional, vol. 2015, Article ID 807407, 13 pages, 2015.

[24] E. Yoon and A. Squicciarini, “Toward Detecting Compromised
MapReduce Workers through Log Analysis,” in Proceedings of
the 14th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing, pp. 41–50, Chicago, IL, USA, 2014.

[25] D. Dang, Y. Liu, X. Zhang, and S. Huang, “A Crowdsourcing
Worker Quality Evaluation Algorithm on MapReduce for Big
Data Applications,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 27, no. 7, pp. 1879–1888, 2016.

[26] S.D.Tetali,M. Lesani, R.Majumdar, andT.Millstein, “MrCrypt:
Static analysis for secure cloud computations,” in Proceedings
of the 2013 28th ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA
2013, pp. 271–286, USA, October 2013.

[27] B. Alipanahi, A. Delong, M. T. Weirauch, and B. J. Frey, “Pre-
dicting the sequence specificities of DNA- and RNA-binding
proteins by deep learning,” Nature Biotechnology, vol. 33, no. 8,
pp. 831–838, 2015.

http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/


BioMed Research International 17

[28] K. Mahadik, S. Chaterji, B. Zhou, M. Kulkarni, and S. Bagchi,
“Orion: Scaling Genomic Sequence Matching with Fine-
GrainedParallelization,” inProceedings of the International Con-
ference for High Performance Computing, Networking, Storage
and Analysis, SC 2014, pp. 449–460, USA, November 2014.

[29] J. Ekanayake, T. Gunarathne, and J. Qiu, “Cloud technologies
for bioinformatics applications,” IEEE Transactions on Parallel
and Distributed Systems, vol. 22, no. 6, pp. 998–1011, 2011.

[30] X. Huang and A. Madan, “CAP3: a DNA sequence assembly
program,” Genome Research, vol. 9, no. 9, pp. 868–877, 1999.

[31] Y. Wu, W. Guo, J. Ren, X. Zhao, and W. Zheng, “𝑁𝑂2: speeding
up parallel processing of massive compute-intensive tasks,”
Institute of Electrical and Electronics Engineers. Transactions on
Computers, vol. 63, no. 10, pp. 2487–2499, 2014.

[32] Z. Zhang, L. Cherkasova, and B. T. Loo, “Optimizing cost and
performance trade-offs for MapReduce job processing in the
cloud,” in Proceedings of the IEEE/IFIP Network Operations and
Management Symposium: Management in a Software Defined
World, NOMS 2014, Poland, May 2014.

[33] K. Chen, J. Powers, S. Guo, and F. Tian, “CRESP: Towards opti-
mal resource provisioning for MapReduce computing in public
clouds,” IEEE Transactions on Parallel and Distributed Systems,
vol. 25, no. 6, pp. 1403–1412, 2014.

[34] T. White, Hadoop: The Definitive Guide. OReilly Media, The
Definitive Guide. O’Reilly Media, Hadoop, 2009.

[35] S. F. Altschul,W. Gish, W.Miller, E.W.Myers, andD. J. Lipman,
“Basic local alignment search tool,” Journal ofMolecular Biology,
vol. 215, no. 3, pp. 403–410, 1990.

[36] National Center for Biotechnology Information, 2015, http://
www.ncbi.nlm.nih.gov/.

http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/

