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Purpose of review

Nonalcoholic fatty liver is the result of an imbalance between lipid storage [from meal, de novo lipogenesis
(DNL) and fatty acid (FA) uptake] and disposal (oxidation and VLDL output). Knowledge on the contribution
of each of these pathways to liver fat content in humans is essential to develop tailored strategies to prevent
and treat nonalcoholic fatty liver. Here, we review the techniques available to study the different storage
pathways and review dietary modulation of these pathways.

Recent findings

The type of carbohydrate and fat could be of importance in modulating DNL, as complex carbohydrates
and omega-3 FAs have been shown to reduce DNL. No effects were found on the other pathways,
however studies investigating this are scarce.

Summary

Techniques used to assess storage pathways are predominantly stable isotope techniques, which require
specific expertise and are costly. Validated biomarkers are often lacking. These methodological limitations
also translate into a limited number of studies investigating to what extent storage pathways can be
modulated by diet. Further research is needed to elucidate in more detail the impact that fat and
carbohydrate type can have on liver fat storage pathways and content.
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A dramatic rise in the prevalence of nonalcoholic
fatty liver (NAFL) has been observed over the last few
decades and it is now considered to be the most
common liver disorder worldwide [1]. NAFL is char-
acterized by excessive fat accumulation in the liver
that is not associated with high alcohol consump-
tion and NAFL can progress to more severe stages of
liver disease. Importantly, even if no further pro-
gression of liver disease occurs, NAFL per se is also
very strongly associated with metabolic diseases
such as cardiovascular disease and type II diabetes
[2–4]. Excessive fat accumulation in the liver is
thought to be the result of an imbalance between
lipid storage (due to increased delivery and synthe-
sis), and disposal (Fig. 1). It is now well established
that fat that is stored in the liver (in hepatocytes)
originates from three main sources: first, direct fat
storage from a meal; second, de novo synthesis of
fatty acids (FAs) from glucose, fructose or amino
acids (de novo lipogenesis; DNL); third, from uptake
of plasma non-esterified FAs (NEFA) mainly derived
from adipose tissue lipolysis (Fig. 1). Knowledge on
uthor(s). Published by Wolters Kluwe
fat content in humans is sparse [5,6], in part because
appropriate techniques are lacking. Gaining a better
understanding of the mechanisms, which contrib-
ute to hepatic fat accumulation is crucial to the
development of effective treatment strategies for
NAFL and its associated metabolic disturbances.
Here, we discuss the techniques available to study
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KEY POINTS

� Stable isotope techniques can be used to accurately
determine liver fat storage pathways.

� High-carbohydrate diets increase liver fat mainly by
strongly stimulating DNL.

� Dietary fat retention in liver seems to be robust and not
strongly affected by diet composition.

� Non-esterified FAs uptake is the main contributor to liver
fat, however only limited number of studies examined if it
is affected by dietary fat and carbohydrate composition,
and therefore needs further study.

FIGURE 1. Overview of liver fat storage and disposal pathway
de novo lipogenesis from carbohydrates and adipose tissue deriv
pathways are mitochondrial fatty acid oxidation and ketogenesis
triglyceride incorporation into VLDL-particles to be secreted into th
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storage pathways contributing to NAFL and review
recent nutritional studies using these techniques to
investigate whether these pathways can be modu-
lated by diet.
TECHNIQUES DETERMINING DIETARY FAT
UPTAKE

Following a meal, dietary fat is taken up in the
enterocytes where chylomicrons are formed that
will enter the systemic circulation. As the particles
deposit triglyceride in muscle and adipose tissue,
chylomicron remnants are formed. The liver is the
major site for uptake of these remnant particles.
s. Storage pathways include direct fat storage from a meal,
ed non-esterified fatty acid uptake. Liver lipid disposal
after initial ß-oxidation (acetyl-CoA disposal), and
e circulation.
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Dietary fat uptake is commonly measured by using
FA tracers enriched with the stable carbon isotope
13C [7,8,9

&&

,10
&&

] or deuterium (2H) [5,6,11,12], due
to their low natural abundance (1.1 and 0.015%,
respectively). Usually, a meal with 13C-labeled pal-
mitate, deuterated tri-palmitate or [2H35] stearate is
given to trace incorporation of meal fat in VLDL
triglyceride (VLDL-TG) [5–8,9

&&

,10
&&

,11,12]. The FA
composition and the tracer enrichment were shown
to be similar in VLDL-TG and liver triglyceride
(determined from liver biopsies), therefore the tracer
enrichment of plasma VLDL-TGs can be used as a
surrogate for liver fat enrichment and can be used to
determine hepatic storage of meal fat [5,13]. Isoto-
pic enrichments in VLDL-TG are generally deter-
mined by gas chromatography–mass spectrometry.

To investigate tracer enrichments directly in the
liver, liver biopsies have been used [5]. An alternative
approach is through magnetic resonance spectros-
copy (MRS) or PET methodology, assessing which
proportion of the lipids in a meal is ending up in
the liver. MRS techniques can be used to measure 13C
enrichment directly in the liver after consumption of
13C–labeled FAs [14,15]. With so called 13C-edited
methods, the superior sensitivity and localization of
1H-MRS can be used to quantify the signal of 1H
nuclei directly linked to 13C and therefore, the 1H-
MRS signal becomes proportional of 13C enrichment
(‘indirect’ 13C spectroscopy or 13C-edited 1H-MRS).
Indeed, it was shown that such indirect 13C spectros-
copy can be used to ‘track’ the 13C-FAs originating
from a meal [15,16

&

]. Since the 13C signal is followed
over time in the liver, the measured 13C signal in the
liver reflects net storage of dietary fat (uptake minus
disposal), also referred to as dietary fat retention.

PET has been used in combination with oral
intake of 14(R,S)-[(18)F]fluoro-6-thia-heptadecanoic
acid (18FTHA) tracer, a long chain FA analog contain-
ing 18fluor [17]. The radioactive signal of this tracer
can be measured in time and in different target
organs, including the liver. 18FTHA cannot be metab-
olized after entering the organs, but can be esterified
and incorporated in protein complexes and therefore
can leave the liver when secreted in VLDL. Therefore,
it reflects the balance between uptake and export,
where oxidation is not considered [17].
TECHNIQUES DETERMINING DE NOVO
LIPOGENESIS

DNL is another pathway contributing to liver fat
accumulation. Acetyl-CoA, derived from catabolic
pathways of carbohydrates or amino acids, serves as
the main substrate for this process. Most frequently,
13C-acetate [5,6,11,12,18–25] and deuterium oxide
[8,9

&&

,26–31,32
&&

] have been used in studies to
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determine DNL contribution to liver fat, and have
already been described elaborately in earlier reviews
[33,34]. In short, 13C-acetate is intravenously
infused and will be converted into acetyl-CoA in
hepatocytes, thereby labeling the intrahepatic ace-
tyl-CoA pool and becoming a substrate for DNL to
ultimately end up in newly formed palmitate. Based
on tracer enrichments in the intrahepatic acetyl-
CoA precursor pool and the product pool of
VLDL-palmitate, fractional synthesis of FAs can be
determined from the precursor to product ratio
using mass isotopomer distribution analysis
[35,36]. Less demanding is the use of deuterium
oxide, which is administrated orally and enriches
the body water pool in deuterium. Consequently,
deuterium will also be incorporated in NADPH, a
metabolite that is used in the last step of the DNL
pathway for the de novo synthesis of palmitate, thus
labeling the palmitate formed in DNL [33].

In addition to the use of stable isotope tracers,
plasma FA levels/ratios are often used to infer
hepatic DNL, as reviewed before [33]. In large-scale
studies, where more costly and time-consuming
techniques would not be feasible, these indices
can be used as an alternative marker for tracer-based
methods. The most widely used plasma (VLDL-TG)
marker is the lipogenic index (16 : 0/18 : 2n6)
[7,24,37–39], which has been shown to be in agree-
ment with 13C labeled acetate measurements follow-
ing a high-carbohydrate diet [24]. Furthermore, the
percentagewise increase in palmitate (new palmi-
tate) upon fructose (and glucose) feeding has been
suggested as marker for DNL [40]. Important to note
is that these markers should be used within the
defined feeding conditions they are designed for,
namely high simple carbohydrate and fructose feed-
ing, as recently it has been shown that the lipogenic
index poorly reflects DNL in habitual diet condi-
tions [41

&&

]. This is likely due to the significant effect
that dietary fat intake can have on the lipid compo-
sition, and thereby also palmitate content, of VLDL-
TG. The Stearoyl-CoA desaturase index of 16 : 1n�7
to 16 : 0 (SCD1(16)) has also been linked to DNL
[7,42], however also here its use under habitual diet
conditions has been questioned [41

&&

].
TECHNIQUES DETERMINING NON-
ESTERIFIED FATTY ACID UPTAKE

The largest contributor to hepatic fat originates
from uptake of plasma NEFA, mainly originating
from adipose tissue lipolysis, while spillover FAs
can also contribute. Contribution of NEFA to liver
fat can be assessed using intravenous infusion of
palmitate tracer, to label the plasma NEFA pool, and
subsequent determination of tracer enrichment in
r Health, Inc. www.co-lipidology.com 11
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VLDL-TG. The assumption is made that palmitate is
representative for all plasma free FAs with respect to
turnover and incorporation in VLDL [43]. Basically,
the method is similar to the method used to measure
dietary fat uptake by labeling dietary FAs. However,
by infusing the labeled palmitate instead of provid-
ing the tracer orally, the plasma NEFA pool is labeled
and the palmitate that will be taken up by the liver
will represent NEFA contribution to liver fat. Tracing
back the labeled palmitate in VLDL-TG thus pro-
vides information on the contribution of plasma
NEFA to liver fat. The most frequently used palmi-
tate tracer is 13C-labeled palmitate [5,6,8,11,20], but
also intravenous deuterium palmitate tracers have
been used to assess NEFA contribution to VLDL-TG
[12,44]. The preferred tracer depends on whether
the measurement is combined with other tracers
and which isotopes these contain.

In addition to tracing the labeled FAs in VLDL-
TG, FA radiotracers have also been used in combina-
tion with PET imaging [45–47]. In this respect, the
earlier mentioned 18FTHA tracer can be used to trace
NEFA uptake by the liver. Upon intravenous injec-
tion, FTHA dilutes in the NEFA pool and can be taken
up by the liver. The amount of FTHA trapped in the
liver determined with PET imaging provides informa-
tion on the balance between hepatic NEFA uptake
and export, as FTHA cannot be oxidized. Another FA
tracer that has been combined with PET imaging is
11C-labeled palmitate [48,49]. In contrast to FTHA,
11C-labeled palmitate can be oxidized completely
and therefore fat oxidative rates can be determined
by using compartmental modeling. Also the uptake
of FA can be determined with 11C palmitate.
NUTRITIONAL EFFECTS ON DIETARY FAT
UPTAKE

Nutritional effects on dietary fat contribution to
fattening of the liver are hardly studied, likely due
to the fact that this source is the smallest contributor
with reported values of around 10–20% of the total
liver fat pool [5,6,15]. In 2008, a study performed by
Chong et al. [7] showed by using oral administration
of [U-13C]palmitate that dietary fat contribution to
VLDL-TG was similar upon a 3-day high-fat and 3-
day high-carbohydrate diet in eight healthy volun-
teers (around 15% 6 h after a mixed meal). Recently,
several nutritional intervention studies have been
performed focusing on the type of fat and carbohy-
drate. Parry et al. [10

&&

] showed that, compared with
a 4-week diet enriched with free sugar, a 4-week diet
enriched with saturated fat (SFA) increased liver fat
content and exaggerated postprandial plasma glu-
cose and insulin responses in 16 overweight males.
There was, however, no difference in dietary fat
12 www.co-lipidology.com
contribution to VLDL-TG, with values around 5–
10% 6 h after a meal as determined by using
[U-13C]palmitate [10

&&

]. Another study, by Green
et al. [9

&&

], investigated the effect of omega-3 FA
supplementation [4 g/day eicosapentaenoic acid
(EPA)þdocosahexaenoic acid (DHA) as ethyl esters]
for 8 weeks in 38 healthy men and did not find
differences in dietary fat contribution either, as
measured 6 h after a meal and compared with base-
line. Also here, liver fat content did change upon the
nutritional intervention [9

&&

]. These results suggest
that the effect of type of FA on liver fat content is not
specifically due to changes in dietary fat contribu-
tion. However, as these studies lack a proper control
arm, it remains not unequivocally determined what
the exact potential impact of fat type on dietary fat
contribution is. The type of carbohydrates in a meal
might also influence dietary fat contribution to liver
fat. A randomized cross-over study investigating the
effects of a high-fructose/low-glucose meal com-
pared with a low-fructose/high-glucose meal on
DNL, FA partitioning and dietary FA oxidation,
showed by using [U-13C]palmitate that in 16 healthy
volunteers the relative contribution of dietary FAs to
VLDL-TG 6 h after meal consumption is lower after a
high-fructose/low-glucose compared with a low-
fructose/high-glucose meal [32

&&

]. The absolute
amount of dietary fat contribution was however
not significantly different between the two meals.
Together with above mentioned results this suggests
that the relative contribution of meal-derived fat
storage is rather robust. To date, spectroscopy and
PET methods have not been used to investigate the
impact of nutrition on dietary fat contribution.
NUTRITIONAL EFFECTS ON DE NOVO
LIPOGENESIS

DNL can be a significant contributor to liver fat
accumulation, as is shown by increased fasting
DNL contribution to VLDL-TG in people with NAFL
(20–25% vs. 5–10% in healthy individuals) [5,6,8].
Postprandially, DNL contribution is expected to be
higher, and indeed, contribution of 20–25% to
VLDL-TG after two meals were reported in healthy
individuals determined by 13C-acetate experiments
to measure DNL contribution up to 11 h after the
first meal in six individuals [6]. Effects of dietary
interventions on DNL have been studied frequently.
Specifically, the effect of dietary carbohydrate and
fat on DNL has been a topic of great interest. Using
the before mentioned tracer methodologies, several
studies indicate that high-carbohydrate diets
increase fasting and postprandial fractional DNL
in both lean and obese volunteers when compared
with diets high in fat and similar in protein
Volume 32 � Number 1 � February 2021
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[20,24,30,39,50,51]. Mardinoglu et al. [52] found
that replacing carbohydrates (4 vs. 40% energy)
by both fat (72 vs. 42% energy) and protein (24
vs. 18% energy) for 14 days in 10 overweight/obese
volunteers with NAFL rapidly reduced fasting DNL,
as determined by deuterium oxide. Importantly, the
reduction in DNL was associated with other favor-
able metabolic changes as increased ß-hydroxybu-
tyrate, reflecting increased liver fat oxidation,
probably underlying the drastic reduction of 44%
in liver fat content over the 14-day study period.
Furthermore, overfeeding with simple carbohy-
drates for 3–4 weeks has been shown to increase
DNL, as measured by deuterated water and lipogenic
index, parallel to an increase in liver fat [37,38,53].
The effect of carbohydrate intake on DNL may be
dependent on the type of carbohydrate consumed,
as DNL rates have been reported to be higher upon
meals/diets high in fructose than meals/diets high
in glucose or complex carbohydrates [19,21,32

&&

]
and it has been shown in a small study population
of three healthy volunteers that an increase in pal-
mitate-rich and lineolate-poor VLDL-TG mediated
by a 10-day high-sugar diet can be reduced by 7–10
day substitution of dietary starch for sugar [54].
Dietary fat composition might also influence
DNL, as Green et al. [9

&&

] recently showed by using
deuterated water that 8-week supplementation with
the omega-3 FAs EPA and DHA at a dose of 4 g/day
decreased both fasting and postprandial DNL com-
pared with baseline in 38 healthy men. Protein
content could also be of interest in modulating
hepatic DNL, as a randomized crossover study in
nine healthy males comparing the effects of a con-
trol meal (15% protein) and an isoenergetic high-
protein meal (lower in fat and carbohydrate, 32%
protein) showed that the lipogenic index (C16 : 0/
C18 : 2) was increased 4 h after the high-protein
meal compared to the control meal [55

&&

].
NUTRITIONAL EFFECTS ON NON-
ESTERIFIED FATTY ACID UPTAKE

The largest contributor to hepatic fat, at least in the
fasted state, is NEFA uptake with a contribution of
around 60–65% [5,6]. Nevertheless, nutritional
studies focusing on dietary impact on hepatic NEFA
contribution are limited. Parks et al. [20] determined
NEFA contribution to VLDL-TG using intravenous
infusion of 13C-palmitate tracer upon a 1-week con-
trol diet (35% fat) and upon a following 5-week low-
fat/high-carbohydrate diet (15% fat) in six healthy
volunteers and five hypertriglyceridemic volun-
teers, and showed that the contribution in the fast-
ing state was lower upon the low-fat diet in
hypertriglyceridemic volunteers, but not different
0957-9672 Copyright � 2020 The Author(s). Published by Wolters Kluwe
in healthy volunteers. NEFA contribution to VLDL-
TG has also been compared between a 3-day high-
carbohydrate/low-fat diet and 3-day high-fat/low-
carbohydrate diet in a randomized crossover study,
showing no differences in NEFA contribution 6 h
post meal in eight healthy volunteers by using
intravenous infusion of 2H2-palmitic acid [7].
Recently, NEFA contribution was compared
between a 4-week relatively high-fat diet enriched
in SFA and a 4-week relatively high-carbohydrate
diet enriched in free sugars under eucaloric condi-
tions, using 2H2-palmitate in sixteen overweight
males [10

&&

]. Previously, it was found that under
conditions of excess calorie intake, overconsump-
tion of SFA increases liver fat content to a larger
extent (55% relative increase) as compared with
overconsumption of free sugars (33% relative
increase), independent of body weight changes
[53]. The increase upon excess SFA intake was found
to be mediated by increased lipolysis rates, suggest-
ing larger NEFA contribution [53]. Under eucaloric
conditions however, NEFA contribution 6 h after
meal consumption was not increased upon 4-week
high-SFA intake when compared with 4-week high
simple carbohydrate intake, consistent with similar
effect of these diets on liver fat content [10

&&

]. Simi-
lar as mentioned for the studies on dietary fat reten-
tion, PET techniques have not been used to
investigate the dietary effects on NEFA contribution.
FUTURE DIRECTIONS

Of the three different storage pathways, DNL has
been studied most extensively, with diets high in
carbohydrates (and especially fructose and simple
sugars) leading to the strongest stimulation of DNL.
The other pathways have been studied less inten-
sively and need further investigation as both have
been shown to significantly contribute to liver fat
[5,6,15]. Important to take into consideration is the
composition of the different macronutrients, as
some recent studies have shown that specific types
of carbohydrate and fat could have distinct effects,
mainly on DNL. To investigate such nutritional
effects, MRS and PET imaging methodologies, which
have hardly been applied, can be of great value.
CONCLUSION

Despite the availability of a wide range in techni-
ques to measure liver fat storage pathways, knowl-
edge on the effect of nutrition on the contribution
of each pathway to liver fattening in humans is still
very limited. This is most likely due to the special-
ized expertise and facilities needed to perform iso-
tope tracer studies and the high costs of such studies.
r Health, Inc. www.co-lipidology.com 13
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Future research on the modulation of storage path-
ways is however crucial to the development of effec-
tive treatment strategies for NAFL and its associated
metabolic disturbances.
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