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Purpose: In recent years, machine learning techniques have received increasing attention as

a promising approach to differentiating patients from healthy subjects. Therefore, some

resting-state functional magnetic resonance neuroimaging (R-fMRI) studies have used inter-

regional functional connections as discriminative features. The aim of this study was to

investigate ADHD-related spatially distributed discriminative features derived from whole-

brain resting-state functional connectivity patterns using machine learning.

Patients and Methods: We measured the interregional functional connections of the

R-fMRI data from 40 ADHD patients and 28 matched typically developing controls.

Machine learning was used to discriminate ADHD patients from controls. Classification

performance was assessed by permutation tests.

Results: The results from the model with the highest classification accuracy showed that

85.3% of participants were correctly identified using leave-one-out cross-validation (LOOV)

with support vector machine (SVM). The majority of the most discriminative functional

connections were located within or between the cerebellum, default mode network (DMN)

and frontoparietal regions. Approximately half of the most discriminative connections were

associated with the cerebellum. The cerebellum, right superior orbitofrontal cortex, left

olfactory cortex, left gyrus rectus, right superior temporal pole, right calcarine gyrus and

bilateral inferior occipital cortex showed the highest discriminative power in classification.

Regarding the brain–behaviour relationships, some functional connections between the

cerebellum and DMN regions were significantly correlated with behavioural symptoms in

ADHD (P < 0.05).

Conclusion: This study indicated that whole-brain resting-state functional connections

might provide potential neuroimaging-based information for clinically assisting the diagnosis

of ADHD.

Keywords: attention deficit hyperactivity disorder, ADHD, resting-state fMRI, R-fMRI,

machine learning approach, support vector machine, SVM, leave-one-out cross-validation

Introduction
Attention-deficit/hyperactivity disorder (ADHD) labelled as a neurobiologically based

developmental disorder, most often occurs and is diagnosed in childhood.1 This

disorder is characterized by symptoms that include a persistent pattern of inattention

and/or hyperactivity-impulsive behaviour.2 Impairing symptoms of ADHD in many

individuals with a childhood diagnosis may persist into adulthood,3 leading to a variety
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of problems, such as unstable interpersonal relationships and

poor job or school performance.4 Despite its high prevalence

and risks, the precise pathology of ADHD remains unclear.5

The neural mechanisms underlying these clinical character-

istics are still poorly understood and require further investi-

gation to better understand ADHD pathology and to improve

diagnosis.6 Clinically, the current diagnosis of ADHDmainly

relies on the behavioural symptoms gathered from teachers

and/or parents, and objective neurobiological tests are

needed.7 Recently, there have been an increasing number of

attempts to discover possible neurobiological underpinnings

in children with ADHD by using various methods.8 Previous

studies of ADHD have mainly focused on localized deficits

in some brain regions within attention systems, such as the

dorsal lateral prefrontal and anterior cingulate cortices

(ACC).8,9 It has subsequently and often been reported that

ADHD patients presented interregional functional dyscon-

nectivity and dysregulation of distributed brain

networks.10,11 The interactive disruptions between and

within various brain networks may underlie ADHD

symptoms.12 For example, a prefrontal–striatal pathway is

related to cognitive regulation, while dysfunction in this

pathway has long been regarded as a neuropsychological

correlate of ADHD.13 This pathway has been expanded to

include the cerebellum.14,15 Recently, accumulating evidence

has also suggested that the prefrontal-striatal-cerebellar path-

way associated with ADHD should be extended to include

other regions and their interrelationships, such as the invol-

vement of the occipital or temporal cortex.13 Along with

these results with ADHD, evidence has supported the

hypothesis that clinical symptoms of ADHD result from

aberrant interactions in large-scale brain networks.

In recent years, machine learning techniques have

received much attention as a promising approach to differ-

entiating psychiatric patients from healthy controls.16,17

Therefore, some studies have adopted whole-brain func-

tional connections as discriminative features to identify

patients.18,19 For example, using resting-state functional

magnetic resonance neuroimaging (R-fMRI), Zeng et al

detected disorder-related connectivity patterns from

whole-brain functional connections and then used them

to discriminate major depressed patients from matched

healthy subjects by means of machine learning.20

Similarly, Li et al utilized a machine learning method

based on whole-brain functional connections to extract

and analyse classification features that characterized dif-

ferential connectivity patterns between the schizophrenia

group and the healthy control group.21 Rosenberg et al

reported that network connections in the brain associated

with sustained attention performance were used to predict

ADHD symptoms.22 As a data-driven technique, machine

learning helps seek potential neuroimaging-based indices

to identify patients at the individual level. It also serves in

an exploratory manner, based on distributed discriminative

features, to further highlight the brain connectivity patterns

underlying the behavioural symptoms.23 However, the

proportions of functional connections that significantly

contribute to ADHD differentiation have not yet been

clarified. The ADHD-related brain regions had distributed

characteristics, but little is known about the relative con-

tribution of each brain region to ADHD identification.

The present study examined whether machine learning

techniques could utilize whole-brain resting-state func-

tional connectivity patterns to differentiate ADHD patients

from healthy participants at the individual level with

a high degree of accuracy. As mentioned above, dysregu-

lation in the prefrontal-striatal-cerebellar pathway has been

shown to be significantly involved in ADHD. We hypothe-

size that the prefrontal-striatal-cerebellar pathway will

have a relevant and highly predictive value in differentiat-

ing individuals with ADHD.

Methods
Participants
The characteristics of the participants are specified in Table 1.

Forty patients with ADHD (40 males, 0 females; mean age

11.83 years and standard deviation of age 2.88) and 28 sex-

and age-matched healthy controls (HC; 28 males, 0 females;

mean age 11.99 years and standard deviation of age 3.05)

were included in the present study. These participants were

part of the New York University Child Study Center (NYU)

dataset deposited at the Neuroimaging Informatics Tools and

Table 1 Demographic and Clinical Data

Groups ADHD HC P-value

No. of subjects 40 28

Age 11.83±2.88 11.99±3.05 0.82

Age range 7.35 ±17.61 7.26±17.70

Inattentive 69.37±8.6992 45.78±8.29 <0.001*

Hyper/Impulsive 69.3±8.69 45.39±3.919 <0.001*

Full4IQ 107.45±13.80 116.21±10.38 0.005

Verbal IQ 108.32±12.11 115.75±10.83 0.011

Performance IQ 104.5±15.38 112.92±11.44 0.017

Notes: Values are shown as the mean ± SD. *two-sample t-test.
Abbreviations: SD, standard deviation; ADHD, attention deficit hyperactivity

disorder; HC, health control.
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Resources Clearinghouse (NITRC) platform (http://fcon_

1000.projects.nitrc.org/indi/retro/cobre.html). We screened

68 subjects according to strict exclusion criteria: 1) left or

mixed-handedness; 2) poor quality fMRI images (signal loss)

or insufficient phenotypic data; 3) intelligence less than 80 and

image quality check; and 4) large head motions (see the

following section for details) during the R-fMRI scan.

The Diagnostic and Statistical Manual of Mental

Disorders, Fourth Edition (DSM-IV) was used for diag-

nosing ADHD. Both ADHD patients and healthy controls

had no history of neurological disorders. The present study

was carried out in accordance with the principles of the

Declaration of Helsinki and was approved by the

Institutional Review Board (IRB) of NYU and the NYU

School of Medicine. Informed consent was obtained from

the parent of each subject before participation.

Image Acquisition and Preprocessing
All images were acquired with a Siemens MAGNETOM

Allegra syngo 3.0 T MR Scanner (Siemens AG, Medical

Solutions, Erlangen, Germany). A T2*-weighted gradient-

echo EPI pulse sequence was acquired in an interleaved

order to measure the brain oxygenation level-dependent

(BOLD) signal (TR/TE = 2000/15 ms, flip angle = 90°,

field of view = 240 × 192 mm2, matrix = 96 × 96, 4 mm

isotropic spatial resolution with 33 slices and 176

volumes). A T1-weighted anatomical image in the sagittal

orientation was acquired using a magnetization-prepared

rapid gradient echo (MPRAGE) sequence (TR/TE = 2530/

3.25 ms, flip angle = 7°, slice thickness=1.33 mm) for

visualization and localization of the functional data. The

participants were instructed to relax and remain still with

their eyes close, not to fall asleep, and not to think about

anything in particular during the 6-min R-fMRI scan.

During wakeful rest, fMRI data recorded the spontaneous

fluctuations of BOLD signals which are generally thought

to reflect brain activity fluctuation. Functional connectivity

is operationally defined as the temporal correlation (mea-

sured as a Pearson’s r) between the mean BOLD time

series of different brain regions. Image acquisition para-

meters are found at the ADHD-200 website (http://fcon_

1000.projects.nitrc.org/indi/retro/cobre.html).24

Data processing was performed using a combination of

DPABI (http://www.rfmri.org/), SPM (http://www.fil.ion.

ucl.ac.uk/spm/) and custom code written in MATLAB. For

functional images of every subject, the first 10 volumes

were discarded to allow for magnetization equilibration

effects and the adaptation of the participants to the

circumstances. The remaining images were first corrected

for time delay between slices, and realigned to the first

volume for head-motion correction. The realigning step

provided a record of head motions by estimating the trans-

lations in each direction and the rotations in angular motion

about each axis for each of the consecutive volumes. All

participants exhibited a maximum displacement of less than

2 mm at each axis and an angular motion of less than 2 for

each axis. Linear regression was also used to control for

confounding factors including six motion parameters, and

the mean time series of white matter and cerebrospinal fluid

signals. The images were then normalized into a standard

stereotactic space as defined by the Montreal Neurological

Institute (resampling voxel size = 3 mm × 3 mm × 3 mm)

and smoothed with a 6-mm full-width at half-maximum

Gaussian kernel. Finally, the images underwent temporal

bandpass filtering (between 0.01 and 0.08 Hz).

Averaged R-fMRI time series for each of the 116 regions

were extracted according to the automated anatomical

labelling atlas (Table 2, the 90 cerebral and 26 cerebellar

regions).25 The 116 brain regions from the automated ana-

tomical labelling atlas were used to represent the whole

brain. Interregional functional connections were calculated

between all possible pairs of regions using Pearson correla-

tion of their mean R-fMRI time series. Correlation coeffi-

cients were converted to z values by Fisher’s r-to-z

transformation for further analysis and statistics. For each

subject, a 116×116 symmetric matrix was obtained and its

matrix’s lower triangle elements were then exacted for

feature selection. The feature space was spanned by the

(116–115)/2 = 6670 dimensional functional connections.

Feature Selection and Support Vector

Machine Classification
A flowchart of feature selection is shown in Figure 1. In

the present study, the abnormal functional connectivity

patterns in the patients with ADHD are represented by

the discriminative functional connections. The aim of fea-

ture selection was to generate the feature space for classi-

fication by retaining the most discriminative connections

and eliminating the rest. Following previous studies,20,21

this step was performed using a combination of t-tests and

leave-one-out cross-validation (LOOCV). Specifically, the

data consisting of 68 observations (connections that were

different between ADHD and HC participants) were sub-

divided into 68 folds. For each LOOCV fold, the features

were separately ranked by their absolute between-group
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t values in descending order, and the same top discrimina-

tive connections (from 5 to 500 with step of 5) were

selected. Since feature ranking was based on a slightly

different dataset of functional connections in each

LOOCV iteration and the final feature set after feature

selection differed slightly from iteration to iteration, con-

sensus features were introduced here, which were defined

as those connections with highly discriminative values in

every fold validation. This process was repeated 68 times

such that data from each participant were left out once

while t values were generated using the remaining data.

Support vector machine (SVM) with a linear kernel func-

tion was employed for classification based on the dataset

of consensus functional connectivity features with high

discriminative power.

SVM is the most popular algorithm for classification

among the machine learning techniques.24 For example,

given a set of features (e.g., functional connections) and

a label (e.g., patient and healthy), we trained SVM based

on the training dataset, which mapped the set of features to

their respective labels. The training process found the opti-

mum hyperplane that separated the training data by the

maximum margin. Thus, given a new dataset of features

derived from an observation, we could then utilize the

SVM fit to predict a label (group) for this novel observation.

Statistical Analysis and Permutation Tests
The two-sample t-test was used to compare functional

connections between the two groups for further selection

of discriminative features. Pearson correlation analysis

was performed between clinical behavioural scales (inat-

tention and hyperactivity/impulsivity scales) and func-

tional connections. The statistical threshold was set at

P = 0.05. We assessed the classification performance in

a framework of permutation tests.20 Choosing the actual

value of classification accuracy after SVM analysis as the

statistic, permutation tests were used to estimate the sta-

tistical significance of the value. Specifically, the class

labels of the training data were randomly changed before-

hand, and cross-validation was then performed on the

permuted dataset. This permutation process was repeated

10,000 times. It was assumed that classification perfor-

mance was reliable when the generalization rate obtained

by the classifier trained on the real class labels exceeded

the 95% confidence interval of the classifier trained on

randomly relabelled class labels. The sensitivity and

Table 2 Abbreviations for the 116 Regions Defined in Automated Anatomical Labeling Template

Region Name Abbreviation Region Name Abbreviation

Precentral gyrus PreCG Lingual gyrus LING

Superior frontal gyrus SFG Superior occipital gyrus SOG

Orbitofrontal cortex (superior) ORBsup Middle occipital gyrus MOG

Middle frontal gyrus MFG Inferior occipital gyrus IOG

Orbitofrontal cortex (middle) ORBmid Fusiform gyrus FFG

Inferior frontal gyrus (opercular) IFGoper Postcentral gyrus PoCG

Inferior frontal gyrus (triangular) IFGtri Superior parietal lobule SPL

Inferior frontal gyrus (orbital) IFGori Inferior parietal lobule IPL

Rolandic operculum ROL Supramarginal gyrus SMG

Supplementary motor area SMA Angular gyrus ANG

Olfactory cortex OLF Precuneus PCUN

Superior frontal gyrus (medial) SFGmed Paracentral lobule PCL

Orbitofrontal gyrus (medial) ORBmed Caudate CAU

Rectus gyrus REC Putamen PUT

Insula INS Pallidum PAL

Anterior cingulate gyrus ACG Thalamus THA

Middle cingulate gyrus MCG Heschl gyrus HES

Posterior cingulate gyrus PCG Superior temporal gyrus STG

Hippocampus HP Temporal pole (superior) TPOsup

Parahippocampal gyrus PHG Middle temporal gyrus MTG

Amygdala AMY Temporal pole (medial) TPOmed

Calcarine cortex CAL Inferior temporal gyrus ITG

Cuneus CUN Cerebellum Cer

Vermis Vms
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specificity of the classifier are commonly used to evaluate

the diagnostic values. Sensitivity is the proportion of true

positive samples correctly identified by the test, while

specificity is the proportion of true negative samples cor-

rectly identified by the test.

Results
Classification Results
As shown in Figure 2, a series of classification accuracies

are illustrated across the varying threshold ranges from 5

to 500 functional connections with the top between-group

t values. The classification accuracy was calculated dur-

ing the SVM analysis based on the consensus functional

connections derived from the cross-validation of t-test

analysis. The result with the highest classification accu-

racy indicated that 85.3% of subjects were correctly

classified at a threshold of 365 functional connections

(Figure 2A). The sensitivity and specificity were 82.1%

and 87.5%, respectively. Permutation tests (repetition

times: 10,000) demonstrated that the actual classification

accuracy was significantly higher than that with the ran-

dom label (P < 0.0001; Figure 2B).

Figure 1 Schematic diagram of feature extraction and selection. (A) The average time series of all voxels within the automated anatomical labelling (AAL) regions were used

to generate a representative time course. A pairwise Pearson correlation of these time courses resulted in a functional connectivity matrix. The lower diagonal of each

participant’s matrix was used for a feature set for that participant. (B) Feature selection using a combination of t-tests and leave-one-out cross-validation (LOOCV). The data

consisting of 68 observations (connections that were different between ADHD and HC participants) were subdivided into 68 folds. This selection was repeated 68 times

such that data from each participant were left out once, while t-test analyses were performed using the remaining data. The left-out participants were denoted as no-shaded

feature sets (only one shown here). The features were separately ranked by their absolute between-group t values in descending order, and the same top discriminative

connections (from 5 to 500 with step 5) were selected for SVM analysis.

Abbreviations: SVM, support vector machine; t-test2, two-sample t-test; LOOCV, leave-one-out cross-validation.
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The Highly Discriminative Functional

Connections and Key Brain Regions for

ADHD Identification
As shown in Figure 3, to locate these brain regions that

played key roles during identifying ADHD using the

highly discriminative functional connections, we first

partitioned the whole brain into network parts. Because

the AAL template already distinguished the cerebellum

from the brain,25 the partition analysis did not include

the cerebellum. Following a previous study,18 we aver-

aged the functional matrices of all controls to obtain

a single 90 × 90 matrix and applied K-means clustering

on the matrix rows to partition 90 regions into 5 modules

(K = 5, Euclidean distance metric). The value of K, the

optimal number of clusters, was evaluated by using the

cluster number validity analysis (silhouette) on the func-

tional connectivity of all subjects, where the number

varied from 2 to 6. Thus, the whole brain, including

the cerebellum, was separated into six networks. This

clustering approach enabled the identification of non-

overlapping functional networks that spanned the whole

brain in a data-driven manner.

Figure 4 shows the distribution pattern of the consensus

functional connections and key brain regions with high dis-

criminative power during SVM analysis. At the aforemen-

tioned highest classification result (85.3%), 154 consensus

discriminative functional connections across all LOOCV

folds were extracted for SVM classification. Based on the

aforementioned profile of network subdivision, the majority

of these connections were located in the cerebellum, DMN,

and frontoparietal network. Approximately half of the most

discriminative connections were observed in the cerebellum

with connections to the subcortical regions including the

putamen, caudate, and pallidum, the visual network includ-

ing the fusiform gyrus, lingual gyrus, cuneus, and calcarine

gyrus, the DMN including the anterior and posterior cingu-

late cortex, orbitofrontal cortex, andmedial and dorsal part of

superior frontal gyrus, and the other regions including the

inferior and superior temporal gyrus, supramarginal gyrus,

insula, rolandic operculum, and paracentral lobule. In addi-

tion, functional connections between the olfactory cortex and

the inferior and superior parietal gyrus and between the gyrus

rectus and other regions including the anterior cingulate

gyrus, putamen, caudate, and pallidum were found.

For a visual representation of the importance of key

brain regions in the SVM analysis, the diameter of each

sphere in Figure 5 was scaled by the corresponding regional

weight, which was measured by the sum of the weight of all

connections to and from that brain region. As shown in

Figures 4 and 5, there are nine brain regions with greater

weight measured by the criterion, and its regional weight is

one standard deviation more than the mean of powers of all

brain regions. These key regions included the cerebellum

(VMS10 and Cer4_5), right superior orbitofrontal cortex,

Figure 2 Classification performance of the support vector machine (SVM). (A) Classification accuracy as a function of a selected feature number (from 5 to 500 with step

of 5). The selected features for classification in the SVM were derived from the most consensus functional connections with top t values across all LOOCV folds. (B) The
permutation distribution of the highest classification accuracy estimate. The permutation was repeated 10,000 times to result in 10,000 classification accuracies based on

random labels. The classification accuracy (85.3%) based on the true labels exceeded all classification accuracies across permutations, indicating that the classifier can reliably

learn the relationship between the features and the labels with a probability higher than 0.99999.
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left gyrus rectus, left olfactory cortex, right temporal pole,

right calcarine gyrus and bilateral inferior occipital cortex.

Brain–Behaviour Relationship
As shown in Figure 6, the ADHD group exhibited statisti-

cally significant correlations between four functional connec-

tions and inattention scores (P < 0.05), including the

connections between the cerebellum and left superior tem-

poral pole (r = 0.345), the cerebellum and right middle

temporal pole (r = 0.338), the left middle orbitofrontal cortex

and left anterior cingulum (r = 0.423), and the left gyrus

rectus and right caudate (r = 0.339). These regions are mainly

located in the DMN and cerebellum. There was a functional

connection between the cerebellum and left superior tem-

poral pole that was significantly correlated with the hyper-

activity/impulsivity scales (r = 0.370, P < 0.05). These

functional connections, which are significantly correlated

with clinical behavioural scales, corresponded to 2% of all

consensus functional connections.

Discussion
The present study adopted whole-brain functional connec-

tions as discriminative features to differentiate boys with

ADHD from typically developing controls. The results

demonstrated that the functional connections with high dis-

criminative power were mainly located in the cerebellum,

DMN and frontoparietal network. Nine key brain regions

were found according to regional weight that were primarily

in the cerebellum, visual cortical areas and (para)limbic

regions. In the brain-behaviour relationship, we found statis-

tically significant correlations between clinical behavioural

scales (inattention scale and hyperactivity/impulsivity scale)

and several functional connections within the DMN or

between the cerebellum and DMN. The present study

Figure 3 Functional connectivity networks identified using clustering analysis. The defined networks were coded with different colours (visual network, red; frontoparietal

network, pink; default mode network, green; motor network, cyan; subcortical network, black; and cerebellum, dark blue).
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indicated that cerebellar and cerebellar functional connec-

tions played an important role in identifying those with

ADHD.

The cerebellum is involved in coordinating movement and

motor learning.26 Many previous studies have considered that

the cerebellum is a focal area of ADHD-related abnormal

changes.15,26 For example, a previous study reported that

reduced volumes of the cerebellum or its subregions in

ADHD were correlated with attentional problems and clinical

outcomes.27,28 In the present study, the cerebellum was one of

the most discriminative regions and had one of the most

discriminative functional connections for ADHD identifica-

tion. At this level, our findings revealed the magnitude of the

involvement of the cerebellum in identifying ADHD.

Specifically, we found that most discriminative functional

connections were the cerebellar connections with subcortical,

DMN and visual regions. The cerebellum is structurally con-

nected with prefrontal and striatal regions.29,30 Our findings

found that the connections between the cerebellum and the

putamen, caudate and pallidum were highly discriminative,

providing new evidence of the prefrontal-striatal-cerebellar

pathway being involved in ADHD.31,32 The putamen and

caudate are part of the striatum, while the pallidum is the

“output region” of the striatum. The striatum is linked to

motor performance and coordination, especially the “auto-

matic” performance of previously learned movements.33,34

Highly discriminative connections were observed between

the cerebellum and DMN regions, such as the anterior and

posterior cingulate gyrus and orbitofrontal cortex. Our find-

ings were consistent with previous studies.35,36 The cingulate

Figure 4 The distribution of consensus discriminative functional connections and their related regional weights. The ROIs are coded in different colours according to the six

defined networks. Regional weights are size-coded by discriminative power in machine learning. The line colours, which were scaled with their mean discriminative

performance in the LOOCV, represent the relative consensus functional connections. The 116 ROIs scaled by their weights are also displayed. The ROIs are colour-coded

according to the defined networks (visual, red; frontoparietal, pink; default, green; motor, cyan; subcortical, black; and cerebellum, dark blue).
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gyrus is involved in processing emotions and behaviour reg-

ulation and helps to regulate autonomic motor function. The

anterior cingulate gyrus plays a role in some functions, includ-

ing attention processing, sensory information analysis, pro-

blem solving and cognitive control.37 The anterior cingulate

gyrus and cerebellum work together to form attention con-

ditioning and motor control. The posterior cingulate gyrus is

involved in the spatial orientation of objects in an

environment.38 Connections with the cerebellum enable the

posterior cingulate gyrus to influence functions related to

movement, spatial orientation, and navigation. We found

that some connections with high discriminative power were

those between the cerebellum and visual areas, such as the

fusiform gyrus, lingual gyrus, cuneus, and calcarine gyrus,

and it may account for impairments in early-stage,

“subexecutive” attentional mechanisms.39 The highly discri-

minative connections also involved the olfactory cortex and

gyrus rectus. The anterior (orbital) surface of the frontal lobe

is composed of the gyrus rectus, the olfactory sulcus, and

orbital gyri. Our findings were consistent with previous stu-

dies about impairments and abnormalities in these areas in

those with ADHD, such as dysexecutive and orbitofrontal

dysfunction of the prefrontal cortex.40 Correspondingly, we

also found nine key regions with greater feature weights in the

ADHD identification primarily in the cerebellum, (para)lim-

bic regions, and visual areas.

In the ADHD group, several functional connections were

significantly positively correlated with ADHD symptoms:

hyperactivity/impulsivity or inattention scores. Among

these, the functional connection between the cerebellum

Figure 5 Regional importance. (A) The most discriminating brain regions formed by the top nine brain regions based on importance. (B) Regional importance is displayed

by bars. The magenta bars indicate the top discriminative regions whose discriminative powers are one standard deviation greater than the mean of powers of all

discriminative regions. X- and y-axis labels represent the brain regions and regional weights, respectively.
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and temporal pole was significantly related to two ADHD

symptoms. A previous study reported that smaller volumes

of the cerebellum and temporal pole were correlated with

higher levels of trait impulsivity in ADHD patients.40 This

finding supports the view that the relationship between the

cerebellum and temporal pole might play an important role in

ADHD symptoms. The inattention scores were significantly

positively correlated with the connection between the ante-

rior cingulate gyrus and orbitofrontal cortex and the connec-

tion between the caudate and gyrus rectus. The prefrontal

lobe has been the focus of a large number of related studies,

including those localizing selective attention in the anterior

cingulate gyrus and impulsive behaviour in the orbitofrontal

cortex.41,42 The reduction in anterior cingulate gyrus grey

matter volume in individuals with ADHD is significantly

related to selective attention deficits.43 These associations

support the aforementioned discussion on the high discrimi-

native power of the anterior cingulate gyrus and orbitofrontal

cortex and are consistent with evidence of the prefrontal-

striatal-cerebellar pathway involved in ADHD.14

The present study has some limitations. First, the sample

size was relatively small, which might limit generalizability

and statistical power for detecting subtle effects. Therefore,

the present study should be considered a proof of principle

study. Further studies with a larger sample size are needed

to assess the reproducibility of our findings. ADHD is three

times more common in males than in females, so we

screened male subjects. However, the inclusion of only

male subjects might also reduce the generalizability of the

findings to females with ADHD. Further studies should take

into account gender and sample balance between the two

groups. Second, the feature selection method might have

Figure 6 Correlations between behavioural variables and functional connections in ADHD.

Abbreviations: L, left hemisphere; R, right hemisphere; CAU, caudate; ACG, anterior cingulate gyrus; TPOsup, temporal pole (superior); TPOmed, temporal pole (medial);

REC, rectus; ORBmid, orbitofrontal cortex (middle); Cer, cerebellum.
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contained some imperfect processes that limit the classifi-

cation performance. Therefore, further studies with more

effective optimized methods are expected to improve the

classification.37 Third, the present study considered that the

resting-state brain network contains neurobiological infor-

mation regarding ADHD-related changes; however, how to

specifically influence the pathogenesis of ADHD needs

more in-depth research, especially for ADHD-related pro-

blems in thought processing.

Conclusion
The present study demonstrated that the machine learning

approach based on whole-brain resting-state functional

connections could differentiate ADHD individuals from

healthy controls. This indicated that discriminative func-

tional connections in the brain might contain biological

information for ADHD differentiation. In particular, the

majority of the most discriminating functional connections

were located within or across the cerebellum, DMN, and

frontoparietal regions, thereby indicating that connectomic

disturbances in the brain are involved in a large-scale

resting-state network. In summary, the present study

found that the prefrontal-striatal-cerebellar pathway and

cerebellar functional connections showed high predictive

value in ADHD identification. Our results suggest that the

cerebellum may play important roles in the pathophysiol-

ogy of ADHD.
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