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Advancements in metabolomic and genomic research tools are revealing new insights
into how metabolic networks can influence skeletal muscle fiber composition. In this
mini-review, we summarize the recent progress of metabolite-dependent signaling
pathways and transcriptional regulators that control glycolytic and oxidative metabolism
and ultimately influence the type of fibers in muscle depots. These mechanisms expand
the role of metabolites beyond that of basic building blocks of cellular components,
and illustrate how particular metabolites can take an active role in regulating metabolic
homeostasis and fiber adaptation. As new metabolite-dependent mechanisms emerge,
ongoing metabolomic studies have begun to help explain why distinct metabolic
pathways are used in different biological contexts and widen the view of seminal
observations like the Warburg effect.
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INTRODUCTION

The metabolic properties of skeletal muscle fibers are intimately related to the biological function
of the tissues they comprise. Investigation of the mechanisms that control fiber composition in
skeletal muscle is an active area of research, partially due to the intriguing ability of fibers to adapt
to nutritional or physiological challenges at a molecular and phenotypic level (Green et al., 1992;
Adams et al., 1993; Widrick et al., 2002; Eshima et al., 2017). The adaptive process is associated
with changes in intracellular metabolism, gene expression, and contractility of the fibers, which
can broadly affect the health of an individual. The contribution of specific metabolites to the
regulation of fiber composition has largely remained unknown due to the integrative nature of
metabolism in complex physiological systems. Recent studies, combining genetic and metabolomic
approaches, have begun to reveal novel relationships between the metabolite-regulated pathways
that can influence muscle fiber composition and the ability to undergo metabolic switching from
oxidative phosphorylation to aerobic glycolysis, a process known as the Warburg effect in cancer
cells. In this mini-review, we discuss the metabolic properties of skeletal muscle fiber types and
highlight metabolite-dependent pathways that can influence fiber composition.

METABOLIC PROPERTIES OF MUSCLE FIBERS

Skeletal muscle depots are composed of heterogeneous populations of muscle fibers that permit
a broad range of functions. Extensive research has helped define distinct types of muscle fibers
that are categorized as slow-twitch (type I) and fast-twitch (type II), which contribute to long-term
endurance or powerful bursts of movement, respectively (Szent-Gyorgyi, 2004). Slow-twitch fibers
are dense in mitochondria to allow high oxidative capacity and sustain long-term energy demands;
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whereas fast-twitch fibers are subdivided into fast-oxidative (type
IIa) or fast-glycolytic (type IIb/x), which correlate with their
mitochondrial density. While the quantity of mitochondria is
distinct between these fiber types, studies have also shown
differences in the metabolism and structural characteristics of the
mitochondria between these fiber types (Anderson and Neufer,
2006; Picard et al., 2008; Mishra et al., 2015). The energy
requirements of muscle fibers often correlate with the expression
of major myosin heavy chain (MHC) isoforms, which determine
the rate of cross-bridge cycling with type I being the slowest, type
IIa intermediate, and IIX/b the fastest. The MHC isoforms are
encoded by Myh7, Myh2, Myhl, and Myh4, which are expressed
in type I, Ila, IIx, and IIb fibers, respectively (Schiaffino and
Reggiani, 2011).

There is a tight regulation of glycolytic and oxidative
pathways in muscle fibers to ensure ATP production meets
the demand of the tissue. This is necessary because ATP
turnover rates can increase over 100-fold in active muscle
compared to rest (Gaitanos et al., 1993). When there is an
immediate energy demand (i.e., sprinting), a rapid increase
of glycolytic metabolism occurs and pyruvate is converted to
lactate, reminiscent of the Warburg effect (Warburg et al., 1927).
The importance of switching from oxidative phosphorylation
to aerobic glycolysis, which is less efficient in generating
ATP, is to increase metabolites like NAD+ that are needed
to accommodate continued glycolysis and other aspects of
cellular metabolism and growth. It is in this manner that
skeletal muscle metabolism can recapitulate metabolic hallmarks
observed in cancer cells (Lunt and Vander Heiden, 2011).
Intriguingly, regulatory pathways that control the metabolic
flexibility of skeletal muscle fibers are frequently associated
with cancer cell metabolism, including the mTORCI pathway
that stimulates aerobic glycolysis when activated in muscle.
Overtime, changes in the metabolic environment within different
fiber types can activate cell signaling and transcriptional
mechanisms that stimulate an adaptive process that causes
phenotypic changes of the fibers, a process called fiber type
switching.

METABOLITE-DEPENDENT SIGNALING
MECHANISMS REGULATING FIBER
COMPOSITION

Cell signaling pathways control the homeostatic and adaptive
properties of skeletal muscle fibers (Egan and Zierath,
2013). Several of these pathways are regulated by secondary
messengers like cyclic adenosine monophosphate (Berdeaux
and Stewart, 2012) or Cat? (Chin et al, 1998), whereas
others are dependent on intracellular metabolites. Important
metabolite-dependent pathways that effect skeletal muscle
fiber composition and cellular metabolism in accordance
with nutrient availability include the mammalian Target
of Rapamycin (mTORCI) and AMP-activated protein
kinase (AMPK) pathways (Fryer et al., 2002; Jorgensen
et al, 2006; Philp et al, 2011) (FigurelA). Cross-talk
signaling between these pathways, beyond the scope of

this review, antagonistically control the size of muscle cells
(Mounier et al., 2011).

mTORCI1 is a protein kinase that controls cellular metabolism
and growth, in part, by stimulatory effects on protein translation
(Diivel et al., 2010; Saxton and Sabatini, 2017). While the
regulation of mTORCI signaling is dependent on cell type and
proliferative state (Laplante and Sabatini, 2012), it is also effected
by metabolic stress in muscle fibers (Goodman et al., 2012).
mTORCL is activated by recruitment to the lysosomal surface
where it interacts with small GTP-binding proteins called Rags
or RHEB, which control mTORCI activity as a function of
amino acid availability or growth factor signaling, respectively
(Figure 1A). The GTP-bound state of RHEB is controlled by
the phosphatidylinositol 3-kinase/AKT signaling pathway, which
inhibits the guanosine triphosphatase-activating protein (GAP)
function of TSC1/2 toward RHEB, to permit mMTORCI activation
(Inoki et al., 2002; Tee et al., 2002). In contrast, intracellular
amino acids can regulate the GTP binding state of the Rag
proteins by affecting the GAP activity of GATOR1. GATORI is
an evolutionarily conserved complex comprised of three requisite
proteins called nitrogen permease regulator-like 2 (NPRL2),
nitrogen permease regulator-like 3 (NPRL3) and DEP domain
containing protein 5 (DEPDC5) (Dokudovskaya et al., 2011;
Wu and Tu, 2011). Low concentrations of intracellular amino
acids cause GATORI dissociation from its negative regulatory
complex called GATOR2, permitting GATORI to catalyze GTP-
Rag hydrolysis to GDP-Rag and impair mTORCI activity
(Figure 1A) (Bar-Peled et al., 2013). The ability of GATOR2
to repress GATORI function is controlled by other proteins
that respond to particular amino acids or their derivatives,
including: Sestrin (leucine) (Parmigiani et al., 2014), CASTOR
(arginine) (Chantranupong et al., 2016), and SAMTOR (S-
adenosyl methionine) (Gu et al,, 2017). The in vivo contribution
of these upstream regulators of GATORI1 and their impact on
skeletal muscle biology remains to be examined.

While each component of GATORI is necessary for
embryonic development (Kowalczyk et al., 2012; Dutchak et al.,
2015; Hughes et al., 2017), our recent studies show that loss
of NPRL2 in skeletal muscle causes constitutive activation of
mTORCI, aerobic glycolysis, and increased fast-twitch (type II)
fibers in soleus muscle (Dutchak et al., 2018). Our observations,
and others, indicate that mTORC1 regulates mitochondrial
metabolism and controls mitochondrial-dependent synthesis
of aspartate and glutamine for the generation of nitrogen-
containing metabolites required for growth, while stimulating
aerobic glycolysis to meet the cellular demands of ATP (Laxman
et al, 2014; Birsoy et al., 2015; Chen et al., 2017; Dutchak
etal., 2018). Importantly, the amino acids that activate mTORC1
can function as anaplerotic substrates in the mitochondria,
consistent with these metabolites having an active role in
regulating cellular homeostasis. During growth and proliferative
stages, oxaloacetate, and a-ketoglutarate are converted to
aspartate and glutamine in order to promote protein and
nucleotide biosynthesis, rather than being used for oxidative
metabolism (Dibble and Manning, 2013). If they are consumed
for biosynthesis, they are no longer available for the generation
of ATP by the mitochondria, and so the cells must upregulate
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FIGURE 1 | Metabolite-dependent mechanisms that influence muscle fiber composition. (A) The mTORC1 signal transduction pathway is controlled by amino acid-,
growth factor- and energy-dependent signaling mechanisms. Amino acid-dependent signaling through Sestrin, CASTOR, and SAMTOR, repress GATOR2-dependent
inhibition of GATOR1 GAP activity toward Rag GTP-binding proteins. Growth factor signaling through the phosphatidylinositol 3 kinase (PI3K): AKT pathway inhibits
the GAP activity of the tuberous sclerosis complex (TSC) toward Rheb. These pathways lead to the stimulation of mMTORC1 activity. Cellular energy status controls
mTORC1 through a regulatory loop between the growth factor signaling pathway and the sensor of AMP called AMPK. Downstream targets of mTORC1 control
protein translation and metabolic pathways that provide the substrates required for growth. (B) Ligand activation of nuclear hormone receptors (NHRs), including
PPARS and TRa, and form a heterodimer with retinoic acid receptor (RXR) that recruits coactivator proteins to the nuclear hormone response elements (NHRE) of the
promoters of genes involved in mitochondrial gene expression and skeletal muscle fiber-type switching.
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glycolysis, leading to the Warburg effect. The selective nature of
GATORLI to respond to particular amino acids and subsequently
influence carbohydrate and amino acid metabolism in the
mitochondria highlights a fundamental and conserved aspect of
metabolic homeostasis. It will be of interest for future studies
to examine the contribution of individual amino acids toward
regulating the glycolytic and oxidative pathways in different
phases of skeletal muscle development.

METABOLITE-DEPENDENT
TRANSCRIPTIONAL REGULATORS OF
FIBER COMPOSITION

Long-term changes in skeletal muscle fiber composition are
controlled by transcriptional mechanisms that regulate particular
genetic programs important to each fiber type (Braun and
Gautel, 2011). Early studies helped define signal transduction
cascades as the major regulatory mechanism of transcription
factors that contributes to fiber composition, like the calcineurin-
dependent regulation of nuclear factor of activated T cells
(NFAT) and myocyte enhancer factor 2 (MEF2) transcription
factors, involved in the fast-to-slow twitch fiber transformation
initiated by muscle contraction (Sreter et al., 1987; Kubis et al.,
1997; Chin et al., 1998; Anderson et al., 2015). More recently,
nuclear hormone receptor transcription factors have been shown
to influence the type of fibers expressed in skeletal muscle.
This class of transcription factors provide a direct link between

intracellular metabolites and genomic expression as their ability
to regulate gene transcription is dependent on ligand-activation
by small molecules, or metabolites (Figure 1B) (Evans and
Mangelsdorf, 2014).

A well categorized group of nuclear hormone receptors
known as peroxisome-proliferating activated receptors (PPARs)
are able to control cellular differentiation and metabolism
when bound to their lipid-ligands. In skeletal muscle, PPARS
regulates genes important for fatty acid transport and oxidation,
increasing lipid catabolism for energy production (Tanaka
et al,, 2003). Transgenic expression of lipid-activated PPARY
in skeletal muscle results in “marathon mice,” with increased
slow-twitch oxidative muscle fibers, decreased fast-twitch
fibers, and resistance to weight gain when fed high-fat diets
that cause normal mice to become obese (Wang et al., 2004).
Further transcriptional studies using pharmacological ligands
to activate PPAR3 showed it can induce the expression of its
transcriptional co-activator called peroxisome proliferator
activated-receptor-gamma  co-activator-1 (PGC-1a) in
muscle, which regulates mitochondrial gene expression
(Lin et al., 2005; Hondares et al., 2007).

PGCla is a co-activator of nuclear hormone receptors
that can drive the formation of oxidative fiber-types and
regulate the expression of specific genes important for oxidative
metabolism (Lin et al., 2002; Olesen et al., 2010; Fernandez-
Marcos and Auwerx, 2011). Overexpression of PGC-1a, using the
muscle creatine kinase promoter, cause type II fibers to exhibit
characteristics of type I fibers, with more myoglobin, troponin
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I (slow) and resistance to electrically stimulated fatigue (Lin
et al., 2002). In an opposite manner, PGC-1la skeletal muscle
knockout mice show a shift from type I and type Ia, to type
IIx and IIb fibers (Handschin et al., 2007). PGC-1a activation
is controlled by post-translational modification, including: (1)
cell signaling networks, including AMPK, p38, PKA, AKT, (2)
acetylation/deacetylation by GCN5 and SIRT1, respectively, and
(3) methylation by PRMT1 (Fernandez-Marcos and Auwerx,
2011). Recently, studies of PGC-1a have identified multiple splice
isoforms of the gene, and shown that novel variant called PGC-
la4 is increased with strength training (Ruas et al., 2012; Ydfors
et al,, 2013; Chan and Arany, 2014). Isoform PGC-1a4 regulates
targets involved in two major signaling pathways, IGF1 signaling
and myostatin, to promote strength and size of skeletal muscle
(Ruasetal., 2012), in contrast to PGC-1a isoform 1 that promotes
oxidative fibers (Lin et al., 2002).

The thyroid hormone nuclear receptor is activated by
triiodothyronine (T3), a product of tyrosine metabolism, and
contributes to skeletal muscle energy metabolism by regulating
the transcription of mitochondrial genes and stimulating fiber
type switching (Brent, 2012; De Andrade et al, 2015). T3
regulates the transcription of both nuclear and mitochondrial
genes by binding to nuclear thyroid hormone receptors (TRa
and TRP) or a truncated forms of TRa called p43, located
in the mitochondrial matrix (Brent, 2012; Lombardi et al,
2015). In mitochondrial matrix, T3 binding to p43 promotes
transcription of mitochondrial genes involved in slow-twitch
fiber metabolism, whereas p43 depletion has been shown
to induce a switch to fast-twitch fibers and cause muscle
hypertrophy (Pessemesse et al., 2011).

These studies highlight the importance of ligand-activated
transcription factors and their co-activators in regulating
mitochondrial biogenesis and fiber composition in muscle
depots. Future approaches to refine the complex transcriptional
networks involved in skeletal muscles physiology will benefit
by using tissue specific models, as above, because confounding
metabolic phenotypes can occur with whole body-knockout and
transgenic expression systems.

FUTURE PERSPECTIVES

The metabolic contribution to skeletal muscle fiber type
composition is an important consideration for human health
and disease. By combining scientific observations from exercise
physiology to biochemistry, we are beginning to understand the
logical basis of the intertwined nature of metabolism and skeletal
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