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Abstract: This paper attempts to compare regular shot peening (RSP) and semi-random shot peening
(SRSP). A characteristic of the first method is that the peening elements hit the treated surface in
sequence, with a regular distance maintained between the dimples. The other method (SRSP) is a
controlled modification of the shot-peening process, which is random by nature. The shot-peening
method used in this study differs from conventional shot peening (shot blasting and vibratory
shot peening) in that it allows controlled and repeatable determination of the configuration and
distribution of impacts exerted by the peening element on the workpiece surface, which makes the
process more repeatable and easier to model. Specimens of EN-AW 7075 aluminum alloy were used
for testing. The following variables were used in the experiments: ball diameter, impact energy, and
distance between the dimples. Microhardness distribution in the surface layer, 2D surface roughness,
and surface topography were analyzed. FEM simulations of the residual stress distribution in the
surface layer were performed. It has been found that regular shot peening results in reduced surface
roughness, while semi-random shot peening leads to higher surface layer hardening.

Keywords: regular shot peening; semi-random shot peening; surface layer; surface roughness;
microhardness; residual stress

1. Introduction

Machine components used in many industries often require adequate preparation of
both surface and surface layers in order to improve surface roughness and performance
properties such as fatigue strength, corrosion resistance, and wear resistance. One way to
achieve this is to use mechanical surface machining, which includes processes such as shot
peening and burnishing [1].

The idea of shot peening is shown in Figure 1a. The peening element with a defined or—
in the case of vibratory shot peening and blasting—undefined energy hits the workpiece
and thus mirrors its shape on the machined surface. Plastic deformation is caused by a
system of forces inducing surface pressures, the values of which exceed the yield stress
of the machined material. The mirroring of the shape of the shot-peening element on the
workpiece surface changes the arrangement of surface micro-irregularities. At the same
time, work hardening, which occurs during the process, leads to changes in the properties
of the surface layer, e.g., residual stresses (Figure 1b).

In the burnishing process, a hard and smooth burnishing element either hits or exerts
pressure on the surface of the workpiece. Although burnishing elements usually have the
shape of a sphere, cylinder, or cone, they may also be solids composed of a cylinder and
a cone or of a sphere segment and a torus segment. The burnishing process is associated
with plastic deformation of the workpiece surface layer, as well as with changes in the
geometric structure of the workpiece surface.
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The above-described methods have their specific areas of application in many indus-
tries and are the object of studies conducted by numerous research centers.
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Figure 1. Schematic idea of the shot-peening process (a) and residual stress visualization (b). 
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Figure 1. Schematic idea of the shot-peening process (a) and residual stress visualization (b).

The shot-peening process is usually used to ensure specific effects such as surface layer
hardening and the induction of favorable compressive residual stresses to improve fatigue
strength, welded joint strength [2], and wear and corrosion resistance. Another effect is to
reduce surface roughness or to create a specific system of surface micro-irregularities in
order to achieve the required functional properties, e.g., the formation of lubricating micro-
grooves on the mating surfaces under frictional conditions, e.g., in journals, bushings,
guides, cylinders, pistons, etc. Brushing is an unconventional machining method that
produces effects that are similar to those obtained with the shot-peening process. This
method combines the features of both machining (loss of processed material) and shot
peening (strengthened surface layer, increased microhardness, and induction of desirable
compressive residual stresses) [3–5].

The main effects of shot peening include improved fatigue strength due to the cre-
ation of compressive residual stresses and surface layer hardening. In addition to the
distribution of residual stresses and hardness, the factors affecting fatigue strength include
the mechanical properties of a material and the formation of a specific system of surface
micro-irregularities resulting from the mirroring of the shot-peening element on the surface
of the workpiece [6]. The effect of shot peening on the fatigue strength of aluminum alloys
was investigated in [7–11]. The authors of [7] compared the fatigue strength of 7050-T7451
alloy after polishing, machining, and shot peening. Four different combinations of media
and shot-peening intensity were studied. In compliance with the ASTM E466-07 standard,
cylindrical specimens were used for testing. Fatigue tests were conducted under high-
and low-cycle conditions. In addition, fatigue life dispersion was analyzed. It was shown
that there was a close relationship between shot size, surface roughness, and fatigue life.
The same authors analyzed the fatigue life of as-polished and shot-peened specimens
using a monotonic and cyclic damage model [8]. Predictions of the cyclic damage model
were globally closer to experimental fatigue lives than those obtained with the monotonic
damage model. In [9,10], the effect of shot-peening processing parameters on the fatigue
behavior and fatigue crack propagation of aluminum AA7475-T7351 alloy was investigated.
Surface roughness was found to be as important in influencing fatigue strength as residual
stress. The authors of [11] investigated the effect of severe shot peening with different inten-
sities on the fatigue life of AW 7075 aluminum alloy. Compared to mechanically polished
specimens, the fatigue life of specimens after severe shot-peening treatment increased by
9% depending on the applied conditions. A comparison of the effects of vibratory peening
and shot peening is presented in [12]. For Ti6Al4V titanium alloy, similar compressive
stress values were obtained with shot peening and vibratory peening. For E-16NiCrMo13
steel, however, the maximum compressive residual stresses were higher and deeper after
vibratory peening. The method named by the author as random controlled shot peening



Materials 2021, 14, 7620 3 of 22

ensures the control of dimples by means of precisely defined movements of the peening
elements, which enables the determination of impact density. The application of this
method makes it possible to obtain similar increases in fatigue life as those obtained with
the vibratory shot-peening process [13].

The impact of the peening element on the machined surface results in a changed
pattern of surface micro-irregularities and, consequently, in changed roughness parameters.
Surface roughness after shot peening primarily depends on the processing conditions,
process intensity, shape and size of peening elements, shot-peening method, or properties
of the machined material. Adequately selected shot-peening process conditions make it
possible to significantly reduce roughness parameters or to optimize the Abbott–Firestone
curve providing information about the wear rate of mating elements [12,14–17]. However,
when the force exerted by the peening element is too high, the process can cause high
plastic strains and thus increased roughness [18,19]. A combination of conventional shot
peening and ultrasonic shot-peening machining can lead to improved surface roughness
compared to the use of the shot-peening process only [19]. In terms of reducing roughness
parameters, very good effects can be obtained with the use of the ball-burnishing process.
In [20], the effects of burnishing speed, feed, and clamping force in ball burnishing of AISI
1045 steel were investigated. It was shown that there was a pressure burnishing force limit,
beyond which an increase in surface roughness was observed. Moreover, it was found
that burnishing speed only had a slight effect on surface roughness, which—in terms of
efficiency—can be regarded as a premise for the use of the maximum possible values (taking
into account machine tool kinematics). On the other hand, higher burnishing feed leads to
increased surface roughness, with the roughness parameters being strongly dependent on
the initial roughness. The stereometric state of a surface is strongly correlated with fatigue
strength due to the propagation of cracks that depend on surface development. In [21],
the authors studied the effect of laser peening and shot peening on surface roughness
after friction stir welding. Surface properties were analyzed for both the base material and
weld nugget. In the range of processing parameters applied, the highest roughness values
were obtained after shot peening, while the surface roughness changes in the weld-nugget
region were small for the laser- and shot-peened as well as unpeened specimens. A great
advantage of shot-peening and burnishing processes is that they make it possible to process
and improve the surface roughness of materials after heat treatment, as demonstrated
in [22,23]. As a result of surface burnishing after turning, hardened shafts show a significant
reduction in their surface roughness parameters [22]. The use of surface treatment methods
such as vibratory shot peening and anodizing with vibratory shot peening makes it possible
to increase the strength of titanium alloy adhesive joints [24].

Defects, damage, and burrs on the edges of elements may be corrosion centers. By sur-
face smoothing, work hardening, and thus the induction of compressive residual stresses,
shot peening may contribute to inhibiting the development of corrosion [25,26]. Aluminum
alloys exposed to pitting corrosion show a drastic decrease in their fatigue strength [27].
One way to improve the material’s resistance to corrosion fatigue is by using shot peening.
Shot peening can also be combined with other processes for improving corrosion resistance,
e.g., plasma electrolytic oxidation (PEO) [28].

Many research works undertake finite element method (FEM) analyses of the dis-
tribution of residual stresses remaining in the surface layer after shot peening [29–33].
Obtained FEM results are very often highly consistent with experimental findings [34,35].
The accuracy of shot-peening process modeling is affected by, among other things, the
ratio of side lengths of the finite elements used to discretize the object, the refinement of
the mesh, and the finite shape of the element [36]. To represent the behavior of a material
under dynamic conditions, the Johnson–Cook model is generally used for tested materials.
The constitutive J-C model reflects the behavior of many materials under dynamic loads
well. Despite its relatively simple form, the model considers the influence of the degree of
deformation, strain rate, and temperature on the flow stress behavior. In FEM simulations
of the vibratory shot-peening process, much attention is paid to correct description and
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modeling of the random shot-peening process wherein multiple peening elements hit the
workpiece. For this purpose, suitable Python or Matlab scripts are used [30,32,37,38].

In addition to the above, the shot-peening process can be used to improve the dimen-
sional and shape accuracy of manufactured elements. In some situations, the use of shot
peening makes it possible to use construction materials that have lower mechanical prop-
erties or were not heat-treated; this is possible because these properties can be improved
after the shot-peening process as a result of work hardening by shot peening.

Moreover, there are other innovative techniques, such as ultrasonic nanocrystal surface
modification [39,40]. This method implements ultrasonic shocks in the designed path to
induce surface hardening and reduce roughness. Similar effects are obtained after the
shot-peening process.

Shot peening usually leads to changes in surface roughness, wear resistance, corrosion
resistance, and fatigue strength, with the extent of these changes depending on the method
and process conditions applied.

2. Motivation

The shot-peening process can be performed in many ways: centrifugal (which can
produce significantly higher impact energy [41]), blasting, or vibratory shot peening.

Figure 2 shows a schematic representation of the vibratory shot-peening process. A
sample and balls are placed in a container that is made to vibrate with a specific amplitude.
The sample is attached to the bottom of the container. Under these conditions, the shot-
peening elements have different (unknown) speeds when they hit the machined surface;
therefore, their impact energies differ.
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Figure 2. Schematic representation of the vibratory shot-peening process.

As a result of the container’s vibration, the balls move chaotically when hitting the
surface of the sample. Given the fact that the balls collide both with one another and with
the walls of the container, which—consequently—changes the direction of their movement
and impact energy, it is impossible to determine the distribution of the location of dimples
on the machined surface. Visualizations of the effects of this process and the phases of
dimple formation in vibratory peening are given in Table 1. For better visualization, the
process of applying the 36 dimples was divided into 4 phases (one after the other). The
distribution of dimples is random, and the size of cavities made by the peening elements
varies due to the loss of energy that occurs when the balls collide either with one another
or against the walls of the container. The process is usually continued until the surface is
completely covered with the dimples formed due to the impact of the peening elements.
Since a mathematical description of this process type is very complex, when analyzing
the influence of input factors on treatment effects, only intermediate parameters, i.e., the
amplitude and frequency of device vibration, are given instead of impact speed and energy.
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Table 1. Methodology of exerting a random sequence of impacts in vibratory peening.
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ally set in motion by compressed air). 
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The semi-random-shot-peening (SRSP) method is an alternative to vibratory shot
peening and shot blasting. This method makes it possible to control impact energy, as
well as the distribution and sequence of dimples. Figure 3 shows the test stand developed
by the authors for SRSP and regular shot-peening (RSP) testing. The device is equipped
with exchangeable heads that enable changing the diameter of the ball-shaped peening
element. The use of a cam element and spring allows the impact energy to be varied. The
shot-peened sample is mounted on the CNC table, which moves according to the assumed
dimpling schedule.
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In the conventional impulse peening process, when the peening element hits the
surface, the dimples are formed in an orderly sequence with a regular distance between
them. This process is known as regular shot peening (RSP). Individual phases of dimple
formation are shown in Table 3.
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Figure 4 shows the visualization of dimples made with the two presented impulse-
peening methods (RSP and SRSP). Impact intensity (the number of impacts per unit area) 
was the same for both methods (with the same distance maintained between individual 
dimples, as determined in the process). Nevertheless, the results obtained after RSP and 
SRSP differ with respect to surface roughness and microhardness distribution, as well as 
to plastic strain depth. This is caused by, among other things, the phenomenon of ridge 
formation after impact. 
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Figure 4. Comparison of the dimple formation methods: (a) RSP, (b) SRSP. 

Figure 5 shows the dimple topography after a single impact (Figure 5a) and the cross-
section to illustrate the size of a formed ridge (Figure 5b). The RSP method ensures that 
the distribution of material hardening (caused by a previous impact) is similar throughout 
the material (compared to SRSP). 
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Figure 5. Dimple after impact: (a) dimple topography, (b) cross-section. 

As for the SRSP method, surface hardening caused by previous impacts differs de-
pending on the impact phase (Table 2), which may result in a different degree of surface 
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Figure 4 shows the visualization of dimples made with the two presented impulse-
peening methods (RSP and SRSP). Impact intensity (the number of impacts per unit area)
was the same for both methods (with the same distance maintained between individual
dimples, as determined in the process). Nevertheless, the results obtained after RSP and
SRSP differ with respect to surface roughness and microhardness distribution, as well as
to plastic strain depth. This is caused by, among other things, the phenomenon of ridge
formation after impact.
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Figure 5 shows the dimple topography after a single impact (Figure 5a) and the cross-
section to illustrate the size of a formed ridge (Figure 5b). The RSP method ensures that the
distribution of material hardening (caused by a previous impact) is similar throughout the
material (compared to SRSP).
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As for the SRSP method, surface hardening caused by previous impacts differs de-
pending on the impact phase (Table 2), which may result in a different degree of surface
layer hardening. The dimples produced in the first phase are spaced apart from one another,
and the ridge formed due to plastic deformation induced by the shot-peening element is
symmetrical and evenly distributed around the dimple. In the subsequent phases of the
process, the ratio of deformed to undeformed surface area differs, which affects surface
roughness and its topography.

The aim of this study is to evaluate the effect of RSP and SRSP, as well as technological
parameters of these shot-peening techniques (impact energy, ball diameter, and distance
between dimples) on selected properties of the surface layer.

3. Materials and Methods
3.1. General Methodology

A general methodology of the study is delineated in Figure 6. The object of the study
was two shot-peening techniques: Regular Shot Peening (RSP) and Semi-Random Shot
Peening (SRSP). Different ball diameters, impact energies, and distances between dimples
were used. The constant factors were: workpiece material, specimen shape, and test stand.
Testing was conducted on the original test stand shown in Figure 3. The effect of input
parameters on surface roughness, topography, and microhardness was investigated. A
FEM simulation was performed to determine residual stresses and their depth distribution.
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Figure 6. Diagram illustrating the methodology of the shot-peening process.

Surface roughness and topography were obtained from the T8000RC120-400 pro-
filographometer provided by Hommel–Etamic Jenooptik (Jena, Villingen-Schwenningen,
Germany). Surface microhardness was analyzed with the Leco LM700 device in compliance
with the EN-ISO 6507-1:2018 standard. A 50 g load was applied; the penetrator loading
time was 15 s.

3.2. Materials

Specimens of EN AW 7075 aluminum alloy were used in the experiment. Table 4
presents the chemical composition and physical properties of the tested material.

Due to its properties, this alloy is widely used in the aviation and automotive indus-
tries. Cuboid samples of the tested material, each having the dimensions of 100 × 15 × 4
mm, were used for testing.
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Table 4. Chemical composition and physical properties of EN AW 7075 aluminum alloy.

Chemical Composition, wt.% Physical Properties

Cu 1.59
Rm, MPa 572Mn 0.01

Mg 2.56
Cr 0.18

Rp0.2, MPa 503Zn 5.78
Si 0.07
Fe 0.13

HB 166Ti 0.05
Al Rest

3.3. Shot-Peening Parameters

Tests were performed using two methods: regular shot peening (RSP) and semi-
random shot peening (SRSP). The two dimple formation methods are described in Section 2
and shown in Tables 2 and 3. Individual phases illustrate the shot-peening process that
was carried out for the entire surface. In the experiment, impact energy, ball diameter,
and distances between dimples were analyzed. Table 5 lists the applied shot-peening
parameters.

Table 5. Shot-peening conditions.

No. Impact Energy
E (mJ)

Ball Diameter
D (mm)

Distance between
Dimples x (mm)

1 100 10 0.3
2 100 10 0.15
3 100 10 0.6
4 100 3 0.3
5 100 15 0.3
6 15 10 0.3
7 185 10 0.3

3.4. Numerical Simulations of the Shot-Peening Process

A numerical analysis of the shot-peening process was performed in the Explicit
module of the Abaqus CAE software, considering surface-to-surface contact. The Johnson–
Cook constitutive model was used with the following parameter A = 503 MPa, B = 678 MPa,
n = 0.71, C = 0.024, m = 1; the model considers the effect of strain hardening, strain rate,
and temperature on the stress−strain relation. Impact energy was introduced by taking
into account the mass and speed of the peening element. Numerical results (dimple
diameters) were then compared with experimental findings. For the numerical model of a
10 × 10 × 4 mm specimen, elements of type C3D8R were used. The element size of contact
area was reduced to 0.1 mm. The total number of elements in the mesh was 68,992, with the
amount equal to 74,727 nodes. The ball-shaped peening element was modeled as a rigid
body using two types of elements: R3D4 (476 elements) and R3D3 (2616 elements). The
mesh size was reduced in the workpiece contact area. The S11 stress state corresponding
to the residual stresses in the surface layer after the burnishing process and the PEEQ
equivalent plastic strain were analyzed. Figure 7a shows an example visualization of a
dimple together with a visible ridge on the cross-section.



Materials 2021, 14, 7620 11 of 22
Materials 2021, 14, x FOR PEER REVIEW 11 of 22 
 

 

  
(a) (b) 

Figure 7. FEM simulation of the shot-peening process: (a) view of a single dimple with a ridge, (b) visualization of 36 
impacts according to the applied methodology. 

Figure 7b shows a visualization of 36 impacts with an x distance between the dimples. 
To evaluate the influence of individual parameters, FEM simulations of 36 impacts were 
performed for the parameters listed in Table 5 for both SRSP (according to the methodol-
ogy described in Table 2) and RSP (according to the methodology described in Table 3). 
S11 stress plots from the FEM simulations were determined as the average value from 
three cross-section paths drawn perpendicular to the surface, as shown in Figure 8. 

 
Figure 8. Method of determination the averaged S11 stress distribution based on three paths. 

4. Results 
4.1. Surface Roughness and Topography after SRSP and RSP 

Figure 9 shows the effect of the distance between the dimples on the Ra roughness 
parameter. It can be observed that increasing the distance from 0.15 to 0.3 did not lead to 
any considerable increase in the roughness parameter; however, when the distance was 
increased from 0.3 to 0.6, it caused a significant increase in the Ra parameter. The use of 
larger distances between the dimples reduced the degree of dimple coverage. 

Figure 7. FEM simulation of the shot-peening process: (a) view of a single dimple with a ridge, (b) visualization of
36 impacts according to the applied methodology.

Figure 7b shows a visualization of 36 impacts with an x distance between the dimples.
To evaluate the influence of individual parameters, FEM simulations of 36 impacts were
performed for the parameters listed in Table 5 for both SRSP (according to the methodology
described in Table 2) and RSP (according to the methodology described in Table 3). S11
stress plots from the FEM simulations were determined as the average value from three
cross-section paths drawn perpendicular to the surface, as shown in Figure 8.
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4. Results
4.1. Surface Roughness and Topography after SRSP and RSP

Figure 9 shows the effect of the distance between the dimples on the Ra roughness
parameter. It can be observed that increasing the distance from 0.15 to 0.3 did not lead to
any considerable increase in the roughness parameter; however, when the distance was
increased from 0.3 to 0.6, it caused a significant increase in the Ra parameter. The use of
larger distances between the dimples reduced the degree of dimple coverage.
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Figure 9. Distance between dimples versus roughness parameter Ra (impact energy E = 100 mJ, ball
diameter D = 10 mm).

On the other hand, an increase in the diameter of the peening element led to reduced
roughness (Figure 10). For the peening element with a diameter of 3 mm, clearly higher
roughness values can be observed when compared to the elements with diameters of 10
and 15 mm. This results from the fact that the contact area for the 3 mm diameter peening
element is smaller, and thus the pressures increase (with the impact energy maintained
constant), which produces greater surface irregularities.
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Figure 10. Shot-peening element diameter versus roughness parameter Ra (impact energy E = 100mJ,
distance between dimples x = 0.3 mm).

With an increase in the impact energy, there is a slight increase in surface roughness,
as shown in Figure 11. It should be noted that in all cases under study, the achieved
roughness values are higher than the initial roughness (horizontal line in Figures 8–10)
obtained after grinding.

For the tested parameter ranges, the Ra parameter values are higher after SRSP than
after RSP.

Tables 6–8 show the effects of the distance between the dimples, ball diameter, and
impact energy on the Sa roughness parameter for RSP and SRSP, respectively. For the entire
range of the analyzed input factors, the values of the Sa parameter are higher for the SRSP
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process. It can be observed that surface roughness increases with increasing the distance
between the dimples (Table 6).
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Figure 11. Impact energy versus roughness parameter Ra (ball diameter D = 10 mm, distance between
dimples x = 0.3 mm).

The lowest values of the Sa parameter can be observed for the peening element with
the largest diameter (with the distance between the dimples maintained constant, Table 7).
On the other hand, an increase in the impact energy leads to a greater deformation of the
workpiece surface (Table 8).

Table 6. Effect of the distance between the dimples on the Sa roughness parameter and surface topography (impact energy
E = 100 mJ, ball diameter D = 10 mm).

Distance between Dimples x (mm)

0.15 0.3 0.6

R
SP
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Table 7. Effect of the shot-peening element diameter on the Sa roughness parameter and surface topography (impact energy
E = 100 mJ, distance between dimples x = 0.3 mm).

Ball Diameter (mm)

3 10 15

R
SP
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4.2. Microhardness after SRSP and RSP

Figures 12–14 show the effects of the distance between the dimples, ball diameter,
and impact energy on the surface layer microhardness for RSP and SRSP, respectively.
The horizontal line marks the microhardness value before the shot-peening process. A
decrease in the distance between impacts leads to increased microhardness (Figure 12).
On the other hand, when the diameter of the peening element is smaller, microhardness
increases (Figure 13). This is caused by increased pressures due to a smaller contact surface
between the peening element and the workpiece. With increasing the impact energy, the
microhardness of the surface increases, too (Figure 14).

For the entire range of the analyzed input factors, a higher value of microhardness can
be observed for the SRSP method than for the RSP method. This is caused, among other
things, by hitting the ridge that was formed as a result of an earlier impact. The surface
layer of the ridge area may be characterized by a greater degree of hardening.

In addition, greater surface irregularities (ridge shape) may lead to a reduction in the
real contact area between the burnishing element and the workpiece and, consequently, to
higher stresses, which—in turn—leads to increased microhardness.
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4.3. FEM Simulation of Shot Peening
4.3.1. Comparison of Real and FEM Dimple Diameters

To assess the correctness of the numerical simulations, a series of single dimples were
made experimentally for the applied experimental conditions (impact energy and peening
element diameter). For comparative purposes, a FEM numerical simulation was performed
for the same conditions, as illustrated by the example in Figure 15.
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Comparative results of the real dimples and those obtained by FEM numerical simula-
tion for the selected peening element diameters and impact energies are given in Figure 16.
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Figure 16. Comparison of the real and FEM numerical simulation dimple diameters as a function of: (a) impact energy,
(b) shot-peening element diameter.

The greatest difference between the experimental and FEM results of dimple diameters
can be observed for a ball diameter of D = 15 mm. For this largest tested diameter of the
peening element, the measurement error is the highest due to the smallest ratio of dimple
depth to diameter, which is confirmed by the highest values of the standard deviation for
the dimples obtained for the 15 mm diameter ball.

4.3.2. FEM Simulation of PEEQ Equivalent Plastic Strain and S11 Stress Distributions

Tables 9–11 show the visualization of PEEQ equivalent plastic strain after 36 impacts
of the peening element, respectively, for RSP and SRS. PEEQ is a scalar variable that is
used to represent the material’s inelastic deformation and to determine the percentage
(after multiplication ×100) of plastic strain in relation to the initial state (in the analyzed
area). To visualize strains on the surface as well as in the subsurface layers, a symmetrical
cross-section was made. The color maps below of PEEQ equivalent plastic strains reveal
that the largest plastic strains are located at some distance from the surface.

Table 9. Effect of the distance between the dimples on the value of PEEQ equivalent plastic strain after 36 impacts (impact
energy E = 100 mJ, ball diameter D = 10 mm).
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With decreasing the diameter of the peening element, the stresses in the surface layer
increase, which—in turn—leads to an increase in the PEEQ value. An increase in the impact
energy leads to an increase in the equivalent plastic strain. For all analyzed cases, higher
PEEQ values were obtained after SRSP than after RSP.

Table 10. Effect of the peening element diameter on the PEEQ equivalent plastic strain after 36 impacts (impact energy
E = 100 mJ, distance between dimples x = 0.3 mm).

Ball Diameter (mm)

3 10 15

R
SP
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As shown in Figure 19, when the impact energy increases, both the maximum com-
pressive stress and the depth of the stress increase.

5. Conclusions

In this paper, regular shot peening (RSP) and semi-random shot peening (SRSP) were
compared. A characteristic of the first method is that the peening elements hit the treated
surface in sequence and thus maintain a regular distance between the dimples formed.
The other method (SRSP) is a controlled modification of the shot-peening process, which
is random by nature. This study was conducted under variable process conditions. The



Materials 2021, 14, 7620 20 of 22

following summarizes the results of the study investigating the influence of shot peening
on the treatment effects:

• In the whole range of variability of the applied shot-peening parameters, higher values
of the Ra parameter were obtained for SRSP than for RSP: from 16% (for E = 100 mJ,
x = 0.3 mm, D = 10 mm) to 78% (for E = 15 mJ, x = 0.3 mm, D = 10 mm);

• The lowest value of the roughness parameter Ra, 0.5 µm, was obtained for RSP
conducted using E = 100 mJ, x = 0.3 mm, D = 15 mm;

• Higher values of the Sa parameter were obtained for SRSP than for RSP—the highest
difference (Sa = 1.88 µm for RSP and Sa = 4.47 µm for SRSP) was observed for the
following parameters: E = 100 mJ, x = 0.6 mm, D = 10 mm;

• Higher roughness parameters were observed after RSP and SRSP alike when compared
to the treatment before shot peening;

• Higher values of the surface layer microhardness were obtained after SRSP than after
RSP;

• After RSP, the microhardness of the surface increased about ∆HV0.05 = 6 ÷ 17, while
the surface microhardness increased;

• After, SRSP was ∆HV0.05 = 12 ÷ 25 compared to the surface prior to shot peening;
• Considering the entire range of parameter variation, the average microhardness of the

surface increased by 6% after RSP and by 10.5% after SRSP compared to the surface
microhardness before shot peening;

• Compressive residual stresses occur in the surface layer after the RSP and SRPS
processes. The maximum compressive residual stresses were higher after SRPS than
after RSP;

• Higher values of the PEEQ equivalent plastic strain were observed after SRSP than
after RSP;

• The highest PEEQ value was obtained for SRSP conducted with a 3 mm peening
element.
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