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In the present study, we generated and characterized a splice site-specific
monoclonal antibody that selectively detects the calcineurin-binding dynamin1 splice
variant dynamin1xb. Calcineurin is a Ca2+-regulated phosphatase that enhances
dynamin1 activity and is an important Ca2+-sensing mediator of homeostatic synaptic
plasticity in neurons. Using this dynamin1xb-specific antibody, we found dynamin1xb
highly enriched in synapses of all analyzed brain regions. In photoreceptor ribbon
synapses, dynamin1xb was enriched in close vicinity to the synaptic ribbon in a manner
indicative of a peri-active zone immunolabeling. Interestingly, in dark-adapted mice
we observed an enhanced and selective enrichment of dynamin1xb in both synaptic
layers of the retina in comparison to light-adapted mice. This could be due to an
illumination-dependent recruitment of dynamin1xb to retinal synapses and/or due to
a darkness-induced increase of dynamin1xb biosynthesis. These latter findings indicate
that dynamin1xb is part of a versatile and highly adjustable, activity-regulated endocytic
synaptic machinery.

Keywords: dynamin1xb, splice variant, synapse, retina, darkness-induced synaptic recruitment of dynamin1xb,
calcineurin

INTRODUCTION

Dynamins are large GTP-binding mechanoenzymes that are essential for various types of
membrane retrieval and vesicle fission at the plasma membrane (for review, see McMahon
and Boucrot, 2011; Schmid and Frolov, 2011; Ferguson and De Camilli, 2012; Kirchhausen
et al., 2014; Kononenko and Haucke, 2015; Soykan et al., 2016). In addition, dynamin is also
involved in membrane fission at distinct endomembrane systems, e.g., the Golgi apparatus and
endosomes (Cao et al., 1998; Jones et al., 1998; McNiven et al., 2000; Praefcke and McMahon,
2004; Schulze et al., 2013; Kononenko et al., 2014; Watanabe et al., 2014; Arlt et al., 2015; Soykan
et al., 2016). The trafficking processes in which dynamins are involved are functionally diverse
and not only include constitutive but also activity-regulated membrane trafficking pathways
(for review, see Ferguson and De Camilli, 2012; Watanabe and Boucrot, 2017). Dynamin also
interacts with components of the actin cytoskeleton (for review, see Ferguson and De Camilli, 2012;
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Sever et al., 2013; Wu L.-G. et al., 2014; Kononenko and
Haucke, 2015; Soykan et al., 2016). This interaction with the
actin cytoskeleton is important for endocytic membrane retrieval
and vesicle replenishment (e.g., Hayashida et al., 2015; Wen
et al., 2016; Wu et al., 2016; Soykan et al., 2017; for review, see
Rizzoli, 2014; Kononenko and Haucke, 2015; Soykan et al., 2016;
Herrero-Garcia and O’Bryan, 2017). Besides its well-known
essential role in vesicle fission, dynamin has been proposed to
be involved in certain aspects of membrane fusion, e.g., fusion
pore stabilization and expansion (Peters et al., 2004; Anantharam
et al., 2011, 2012; Samasilp et al., 2012, 2014; Alpadi et al., 2013;
González-Jamett et al., 2013; Kulkarni et al., 2014; Jackson et al.,
2015; Zhao et al., 2016; for review, see Antonny, 2004; Sever et al.,
2013; Quan and Robinson, 2014; Ren et al., 2016). In mammalian
cells, dynamin-dependent tasks have to be accomplished by the
gene products of three dynamin genes, dynamin1-3 (Cook et al.,
1996; Urrutia et al., 1997; for review, see Ferguson and De
Camilli, 2012). Dynamin-1 is brain-specific and expressed at high
levels in neurons whereas dynamin-2 is ubiquitously expressed.
Dynamin-3 is preferentially expressed in the brain (at much
lower amounts than dynamin-1) but is also present in testis and
lung (for review, see Ferguson and De Camilli, 2012).

Dynamin proteins possess a well-characterized protein
domain structure (Chappie et al., 2011; Faelber et al., 2011; for
review, see Schmid and Frolov, 2011; Ferguson and De Camilli,
2012). These domains include an aminoterminal GTPase domain
(G-domain), a central lipid-binding pleckstrin homology (PH)-
domain, a GTPase-effector domain (GED) that is part of the
bipartite stalk region of dynamin as well as a carboxyterminal
proline-rich domain (PRD). The PRD of dynamin mediates
binding of various SH3-domain-containing dynamin-interacting
proteins. The SH3-domains of different BAR domain-containing
proteins, e.g., syndapin, amphiphysin and endophilin, bind to the
PRD of dynamin at distinct but overlapping regions (Anggono
and Robinson, 2007; Clayton et al., 2009; Xue et al., 2011; Luo
et al., 2016; for review, see Cousin and Robinson, 2001; Clayton
and Cousin, 2009; Ferguson and De Camilli, 2012; Cousin,
2015).

Dynamin-1, a member of the dephosphin family of
proteins (Cousin and Robinson, 2001), is a phosphoprotein
with two major phosphorylation sites in the PRD (at
serine S774 and S778 in rat dynamin-1; Anggono et al.,
2006; Anggono and Robinson, 2007). At rest, these serines
are constitutively phosphorylated. Interaction between
dynamin-1 and syndapin requires dephosphorylation
of S774/S778 whereas interaction of dynamin-1 with
amphiphysin is not inhibited by phosphorylation of
these sites (Clayton et al., 2008, 2009, 2010; for review,
Clayton and Cousin, 2009). The phosphorylation-
dependent dynamin1-syndapin interaction is important
for enhancing activity-dependent endocytosis, e.g., via
bulk endocytosis (Clayton et al., 2008, 2009, 2010;
Clayton and Cousin, 2009) and also has been proposed
to be involved in the control of fusion pore expansion
(Anantharam et al., 2011, 2012; Samasilp et al., 2012,
2014; González-Jamett et al., 2013; Trouillon and Ewing,
2013; Jackson et al., 2015; Trexler et al., 2016; for review,

see Sever et al., 2013; Quan and Robinson, 2014; Ren et al.,
2016). De-phosphorylation of dynamin-1 is mediated by the
Ca2+/calmodulin-binding phosphatase calcineurin (Clayton
et al., 2008, 2009, 2010; Clayton and Cousin, 2009; Wu X.-S.
et al., 2014).

Various splice variants are produced from neuronal
dynamin-1 at different splice sites within the dynamin molecule
(Cao et al., 1998; McNiven et al., 2000; Ferguson and De Camilli,
2012). At the very carboxyterminus, two major splice sites
of dynamin1 are generated, i.e., a longer dynamin1xa splice
variant and a shorter dynamin1xb splice variant (Bodmer et al.,
2011; Xue et al., 2011). Dynamin1xb is a particularly interesting
dynamin-1 splice variant because it contains a docking site
for calcineurin (Bodmer et al., 2011; Xue et al., 2011). The
calcineurin docking site makes dynamin1xb very well suited to
mediate activity-dependent changes, e.g., in response to elevated
synaptic activity, that is associated with elevated cytosolic Ca2+

(e.g., Marks and McMahon, 1998; for review, see Kononenko
and Haucke, 2015). Furthermore, calcineurin is a central
mediator of homeostatic synaptic plasticity (Arendt et al., 2015).
Therefore, we studied the distribution of dynamin1xb in various
regions of the mouse brain by using a monoclonal antibody that
selectively detects the dynamin1xb splice variant of dynamin1.
For the morphological analyses, we selected brain regions with
a particularly clear and highly ordered cellular organization
like the retina and cerebellum in which synaptic layers with
well characterized synapses can be readily discriminated from
non-synaptic layers. We also included the retina in our analyses
because the retina allows high resolution analyses of synapses
and displays particularly prominent, activity-/illumination-
dependent changes of synaptic activity.

MATERIALS AND METHODS

Animals
Experiments were performed on the described tissues of C57Bl/6J
mice of both sexes. Animal care and all experimental procedures
were reviewed and approved by the animal welfare and ethics
committee of the Saarland University. Mice were kept under
standard light/dark cycle and supported with standard food and
water ad libitum.

Primary Antibodies
Anti-dynamin1xb
The monoclonal antibody against dynamin1xb was generated
against the carboxyterminal peptide stretch of dynamin1xb
that serves as a docking site for calcineurin (Bodmer et al.,
2011; Xue et al., 2011). Monoclonal antibody was raised
against the carboxyterminal 12 amino acids (aa; aa840-
851; PPGVPRITISDP) of rat dynamin1xb (NP_542420). An
additional cysteine at the N-terminus of the peptide served to
conjugate the peptide to bovine serum albumin (BSA) prior to
immunization. The last seven aa residues (RITISDP) are present
only in dynamin1xb but not in dynamin1xa and represent a
binding site for the catalytic domain of calcineurin (Bodmer et al.,
2011; Xue et al., 2011). Immunization of mice, fusion of spleen
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cells and selection of ELISA-positive hybridoma clones was
done by Absea Biotechnology (Beijing, China) using standard
procedures. The hybridoma cell culture supernatant 1E10 (IgG2b
immunoglobulin subtype) was used for immunofluorescence
(IF) microscopy in a 1:300 dilution (concentration of the primary
monoclonal antibody: ≈2.7 µg/ml), for western blotting in
a 1:1000 dilution concentration of the primary monoclonal
antibody:≈0.8 µg/ml.

Anti-RIBEYE
Polyclonal rabbit antibody (U2656) against RIBEYE(B)-domain
(Schmitz et al., 2000). The antibody was used for IF microscopy
in a 1:1000 dilution.

Anti-RIM1/2
Polyclonal rabbit antibody against RIM1/2 (Schoch et al., 2006;
Anjum et al., 2014). This antibody was used for IF microscopy in
a 1:250 dilution.

Anti-Synaptotagmin-1
Polyclonal rabbit antibody against synaptotagmin-1 (V216, Perin
et al., 1990; Pang et al., 2006; Bacaj et al., 2015). This antibody was
used for IF microscopy in a 1:250 dilution.

Anti-pan-SV2
Mouse monoclonal antibody against the synaptic vesicle protein
2 (SV2; Buckley and Kelly, 1985). Cell culture supernatant was
obtained from the Developmental Studies Hybridoma Bank
(DSHB), University of Iowa. The cell culture supernatant was
used at a 1:50 dilution for IF microscopy.

Anti-β-tubulin
Rabbit polyclonal antibody against aa210-aa444 of human
β-tubulin (Santa Cruz; #H-235, sc-9104); used for IF microscopy
in a 1:150 dilution.

Anti-Actin
Mouse monoclonal antibody against actin (clone C4, Millipore
MAB1501), used for western blotting in a 1:5000 dilution.

Secondary Antibodies
Secondary Antibodies for Immunofluorescence
Microscopy and Western Blotting
Goat anti-mouse immunoglobulins, conjugated to horseradish
peroxidase (Sigma, A3673); used for western blotting in a
1:10,000 dilution. Chicken anti-mouse immunoglobulins
conjugated to Alexa488 (Invitrogen; #A21200), used for
IF microscopy in a 1:10,000 dilution. Donkey anti-rabbit
immunoglobulins conjugated to Alexa568 (Invitrogen;
#A10042), used for IF microscopy in a 1:10,000 dilution.
Donkey anti-mouse immunoglobulins conjugated to
Alexa568 (Invitrogen; #A10037), used for IF microscopy in
a 1:10,000 dilution. Chicken anti-rabbit immunoglobulins
conjugated to Alexa488 (Invitrogen; #A21441), used for IF
microscopy in a 1:10,000 dilution. Monovalent Fab fragments
rabbit anti-mouse (unconjugated; Fab rabbit anti-mouse IgG

(H&L); Rockland Immunochemicals, #810-4102 via Biomol
GmbH, Hamburg, Germany), used for IF microscopy in a
1:50 dilution.

Synthetic Peptides for Dot Blot
Experiments
Peptides for dot blot experiments were synthesized from
Proteogenix (Illkirch, France) and Scilight Biotechnology LLC
(Beijing, China). The following peptides were synthesized:
(1) PPGVPRITISDP (12mer; ‘‘PP12’’ peptide); (2) PPGVP (5mer;
‘‘PP5’’ peptide); and (3) RITISDP (7mer; ‘‘RP7’’ peptide).

Embedding of Tissue for
Immunofluorescence Microscopy
Tissue embedding was done exactly as previously described
(Wahl et al., 2013, 2016; Dembla et al., 2014). For rapid freezing,
small tissue blocks (about 1 mm3) in volume were dissected and
plunge-frozen, as previously described (Wahl et al., 2013, 2016;
Dembla et al., 2014).

Immunolabeling on Semi-Thin Sections
Immunolabeling was performed on 0.5 µm-thin or 1.5 µm-thin
semi-thin sections, as indicated in the respective experiments,
after resin removal exactly as previously described (Wahl et al.,
2013, 2016; Dembla et al., 2014). From the immunolabeled
sections, images were acquired either with a Zeiss epifluorescence
microscope setup (Axiovert200M) equipped with the respective
filter blocks or with a Nikon A1R confocal microscope,
as indicated in the respective experiments. In most double
immunolabeling analyses, the two primary antibodies were
generated in different animal species (i.e., mouse and rabbit,
respectively). In these cases, the binding of the primary
antibodies could be readily visualized by using secondary
antibodies that are directed against the species-specific portion
of the respective primary antibodies, as previously described
(Wahl et al., 2013, 2016; Dembla et al., 2014). Incubation with
the two different primary antibodies as well as incubation with
the two different secondary antibodies was done simultaneously.
Controls were done by omitting the primary antibodies and
by using only the secondary antibodies or by using irrelevant
primary antibodies. In one set of double-immunolabeling
experiments (Figure 5C), the two primary antibodies were from
the same species, i.e., from mouse (double–immunolabeling
experiments with anti-panSV2 and anti-dynamin1xb). In order
to discriminate the binding of two different monoclonal primary
antibodies that were generated in the same species, the procedure
of Lewis-Carl et al. (1993) was employed for the immunolabeling
of the semi-thin sections. For this purpose, semi-thin sections
were first incubated with anti-dynamin1xb mouse monoclonal
antibody (overnight (ON), 4◦C). After several washes with PBS,
the binding of the primary antibody was detected with chicken
anti-mouse secondary antibody conjugated to Alex488 (1 h,
RT). Residual binding sites of tissue-bound mouse primary
antibody were blocked using rabbit polyclonal, monovalent Fab
fragments anti-mouse IgG (1:50 dilution; 3 h, RT). Then, after
several washes with PBS, the second mouse primary antibody
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FIGURE 1 | (A,B) Dot blot analyses of the indicated peptides for their reactivity with the dynamin1xb antibody. Three different dynamin1xb peptides with the
indicated amino acid (aa) sequence (“PP12”: PPGVPRITISDP, “PP5”: PPGVP, “RP7”: RITISDP) cross-linked to bovine serum albumin (BSA) were spotted on
nitrocellulose membrane. BSA only, i.e., BSA with no peptides cross-linked to it, served as a further control in (A). As expected, the dynamin1xb antibody strongly
reacted with the 12mer dynamin1xb peptide (“PP12”) that was used for immunization (spot #1). The antibody also strongly reacted with the dynamin1xb specific
carboxyterminal peptide “RP7” that is specific for dynamin1xb (spot #3) but not with the 5mer peptide “PP5” that is common to both dynamin1xa and dynamin1xb
(spot #2). The dynamin1xb antibody also did not react with BSA alone (spot #4). Fifty microgram of cross-linked peptide were spotted in (A). Despite the high
amount of the peptides spotted in (A), the dynamin 1xb selectively reacts with RP7 (spot #3), the dynamin1xb-specific peptide region but not with “PP5” (spot #2).
(B) Similar dot blot analyses as also shown in (A) but with less conjugated peptide spotted to the nitrocellulose membrane. The antibody against dynamin1xb
selectively detects the “RP7” peptide of dynamin1xb down to an amount of 7 ng. The sensitivity towards the “RP7” peptide appears to be even higher than the
sensitivity towards the “PP12” peptide as judged by the immunostaining intensity of the respective peptide spots with the dynamin1xb antibody.

(anti-panSV2) was added (1:50 dilution; ON, 4◦C). The binding
of this mouse primary antibody was subsequently detected by
donkey anti-mouse secondary antibody conjugated to Alexa568
(1:1000 dilution, 1 h, RT). Controls were done by performing
the described immunolabeling procedure but with one (of the
two) primary antibodies omitted to judge on the specificity of the
immunosignals and to check for possible cross-talks between the
two different immunosignals. No crosstalk signal was observed
in these control incubations (see also Figure 6).

Light- and Dark-Adaptation of Mice
For light- and dark-adaptation experiments, 10 weeks old
C57Bl/6J mice were used. Mice were placed either in light
(at ≥30 cd/m2) or complete darkness (<0.008 cd/m2) for 4.5 h.
Keeping the animals either in the dark or in the light was done
simultaneously, i.e., at the same time of the day, in order to
minimize a possible influence from circadian rhythms on the
experiments. The experiments were performed between noon
and 4:30 pm (exposure started at noon, ended at 4:30 pm). Light
intensity was measured with a X9-1 Optometer equipped with a
LDM-9901-04 luminance detector (Gigahertz-Optik; Germany).
Mice were euthanized by cervical dislocation after isoflurane
anesthesia. Isolation of the eyes from light-adapted mice was
done as previously described (Grabner et al., 2015). Removal of
the eyes from dark-adapted mice (including euthanization) was
done under infrared light in complete darkness. After removal,
eyes were immediately placed in physiological saline solution
with low Ca2+ concentration (‘‘LCS’’ solution, Wahl et al.,
2016) on a dissecting microscope stage equipped with infrared
illumination and an infrared detection system. For this purpose,
the standard binocular setup of the dissecting microscope (Wild

M3B, Heerbrugg, Switzerland) was replaced with an infrared
viewing system (FJW optical system, Cat. No. 84499A). An
infrared illuminator (Conrad Electronics, Model no. CCD-328H)
was placed close to the dissecting stage together with an infrared
flashlight (NITECORE, Chameleon series CI6, 850 nm infrared
light, 1500 mW) that was mounted to the dissecting stage to
provide a good infrared illumination. Using this setup to work
in complete darkness, the isolated eye was punctured with a
20G needle in the equatorial plane and the anterior part of eye
including the lens and the vitreous body were removed after
making a circular cut with dissecting scissors. Next, the posterior
eyecups with the attached retinas were cryo-preserved in liquid
nitrogen-cooled isopentane as previously described (Schmitz
et al., 2000; Wahl et al., 2013, 2016; Dembla et al., 2014) in
complete darkness with the help of the infrared illumination. The
further processing of the frozen samples for IF microscopy was
done as previously described (Wahl et al., 2013, 2016; Dembla
et al., 2014).

Quantification of Immunofluorescence
Signals
For quantitative analysis, images were acquired using NIS
elements software with an A1R Confocal microscope (Nikon),
identical conditions were maintained for light and dark
adapted retinal immunolabeling using the ‘‘re-use’’ settings
option. For quantification images were analyzed using Fiji
ImageJ 1.5h software (NIH) and the fluorescence intensity
was determined as integrated density. Values were normalized
and light values were set to 100%. All the analysis was
performed without manipulating any parameters in individual
channels as previously described (Wahl et al., 2016). Analyses
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FIGURE 2 | (A) The indicated mouse tissues were tested for the presence of dynamin1xb with the characterized monoclonal antibody 1E10 by western blot
analyses. We observed a single band at the expected running position of ≈100 kDa in neuronal tissues (cerebellum, retina, spinal cord, neocortex, lanes 3–6) but not
in extra-neuronal tissues (kidney, intestine; lanes 1,2). In (B) the same tissue extracts as in (A) were loaded and tested subsequently with the dynamin1xb antibody
and a monoclonal antibody against actin, that served as a loading control. Similar as in (A), dynamin1xb was only present in the neuronal tissues whereas the actin
immunosignal was present in all tissues at ≈43 kDa. (C) The specificity of the dynamin1xb immunolabeling was further corroborated by blocking experiments. The
≈100 kDa band disappeared if the dynamin1xb was pre-absorbed with the dynamin1xb “PP12” peptide (lanes 2,4,6,8) but was unaffected if the antibody was
pre-absorbed with an unrelated peptide (lanes 1,3,5,7). Immunodetection of actin at ≈43 kDa served as a loading control.

were done blindly. The areas of outer plexiform layer (OPL)
and inner plexiform layer (IPL) were selected by considering
dynamin1 labeling as reference because dynamin1 is already
known as peri-active zone marker (Wahl et al., 2013).
Integrated density was measured for these areas. Then the

identical region-of-interests (ROIs) were used to analyze
the integrated density for β-tubulin. Statistical analysis was
performed using Mann-Whitney rank sum test (as the data
were not normally distributed) with the help of Sigma plot
software.
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FIGURE 3 | Semi-thin (0.5 µm-thin) sections of the mouse retina immunolabeled with the monoclonal antibody against dynamin1xb. Very predominantly, the
synaptic layers of the retina, the OPL and the IPL were immunolabeled by the dynamin1xb antibody. The synaptic layers were visualized by double-immunolabeling
with rabbit polyclonal antibodies against RIBEYE (U2656; Schmitz et al., 2000), a major component of synaptic ribbons. In the synaptic layers, the dynamin1xb signal
was discrete and displayed a spot-like distribution at low magnification (A). High-resolution confocal microscopy (B) of the dynamin1xb immunosignals in the OPL
where photoreceptor ribbon synapses are located revealed that the dynamin1xb immunolabeling is highly enriched in close vicinity to the synaptic ribbon. The
labeling pattern is very similar to the previously observed immunolabeling pattern with a dynamin antibody that did not discriminate between distinct splice variants,
e.g., dynamin1xa and dynamin1xb (Wahl et al., 2013). Figure 3 was obtained by confocal microscopy. Abbreviations: ONL, outer nuclear layer; OPL, outer plexiform
layer; INL, inner nuclear layer; IPL, inner plexiform layer; GCL, ganglion cell layer. Scale bars: 20 µm (A); 1 µm (B).

Cross-Linking of Peptides to Bovine Serum
Albumin (BSA); Dot Blot Experiments
Equal amounts of the dynamin peptides were cross-linked to
BSA by incubation with glutaraldehyde (final concentration
1% in PBS) for 1 h on ice. Afterwards, NaBH4 was added

(0.1% f.c.) for 15 min at room temperature to block unreacted
aldehyde groups. Fifty microgram of cross-linked peptide
were spotted to nitrocellulose as indicated in Figure 1A.
An equal amount of unconjugated BSA served as negative
control to test for possible unspecific binding. Conjugated
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FIGURE 4 | Semi-thin (0.5 µm-thin) sections of the mouse retina immunolabeled with the monoclonal dynamin1xb antibody that was pre-absorbed either with a
control peptide (A) or with the dynamin1xb peptide “PP12” against which the monoclonal antibody was raised (B). The strong dynamin1xb immunosignal is
completely absent if the antibody against dynamin1xb is pre-absorbed with “PP12” whereas the synaptic immunolabel is completely unaffected if a control peptide
was used. The RIBEYE immunolabeling was unaffected by both of these treatments. Figure 4 was obtained by confocal microscopy. Abbreviations: ONL, outer
nuclear layer; OPL, outer plexiform layer; INL, inner nuclear layer; IPL, inner plexiform layer. Scale bars: 20 µm.

peptides were spotted on the nitrocellulose membrane in a
volume of 5 µl. Samples were allowed to dry for ≈15 min.
Afterwards, the nitrocellulose membrane was stained with
Ponceau-S and documented. After destaining in PBS, the

nitrocellulose membrane was treated with 5% skim milk
powder in PBS (blocking buffer) for 60 min at RT to
block unspecific protein binding sites of the nitrocellulose
membrane. Afterwards, the dot blots were incubated with the
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dynamin1xb antibody in a 1:1000 dilution in blocking solution
(ON, 4◦C). After several washes with PBS, binding of the
primary antibody was detected by goat anti-mouse secondary
antibody conjugated to peroxidase (1:10,000 dilution in blocking
buffer; 1 h, RT) and analyzed by enhanced chemiluminescence
as previously described (Wahl et al., 2013, 2016; Dembla
et al., 2014). In Figure 1B, the peptide was cross-linked
with sulfosuccinimidyl 4-[N-maleimidomethyl]cyclohexane-1-
carboxylate (Sulfo-SMCC;Thermo Scientific; CAS#: 92921-24-9)
in amine-free 5 mM Tris-(2-carboxyethyl)-phosphine buffer
(TCEP; Thermo Scientific; product number: 77720), according
to the manufacturer’s instructions.

Miscellaneous Methods
SDS-PAGE and western blotting experiments were performed as
previously described (Schmitz et al., 2000;Wahl et al., 2013, 2016;
Dembla et al., 2014).

RESULTS

The monoclonal antibody used in the present study
was generated against the 12 carboxyterminal aa of
dynamin1xb (PPGVPRITISDP; aa840-aa851 of rat dynamin1;
‘‘PP12’’ peptide). From this stretch of 12mer peptide, the
carboxyterminal 7mer peptide (RITISDP; ‘‘RP7’’ peptide) is
specific to dynamin1xb while the aminoterminal 5mer peptide
(PPGVP; ‘‘PP5’’) is also contained in dynamin1xa (Bodmer
et al., 2011; Xue et al., 2011). In order to determine which
region of the 12mer peptide the dynamin1xb monoclonal
antibody (clone 1E10) detects, we performed dot blot
experiments with the indicated peptides ‘‘PP12’’, ‘‘RP7’’
and ‘‘PP5’’. In the dot blot experiments, all peptides (‘‘PP5’’,
‘‘RP7’’ and ‘‘PP12’’) were conjugated to BSA and tested for
their reactivity with the generated monoclonal antibody.
These dot blot analyses demonstrated that the antibody
clone 1E10 only detected PP12 and RP7 but not PP5 even
at very high concentrations (Figure 1A). Therefore, the
monoclonal antibody from the hybridoma clone 1E10 is
specific for the last carboxyterminal aa (RP7) and thus
specific for the dynamin1 splice variant dynamin1xb. The
monoclonal antibody secreted by the hybridoma clone 1E10 is
denoted as dynamin1xb antibody in the following text. The
dynamin1xb antigen was detected by the monoclonal antibody
in a sensitive manner. Small amounts of ‘‘RP7’’ peptide as low
as 7 ng were specifically detected by the monoclonal antibody
(Figure 1B).

In western blot analyses, the antibody against dynamin1xb
detected a single band at the expected running position for
dynamin1 at ≈100 kDa in the neuronal tissues tested (retina,
cerebellum, spinal cord, neocortex). The protein was absent
in non-neuronal tissue, i.e., kidney and intestine (Figure 2A).
Immunolabeling of the western blots with anti-actin served as
loading control (Figure 2B). The specificity of the 100 kDa
dynamin band detected by the dynamin1xb antibody was further
confirmed by pre-absorption experiments. Pre-absorption of
the monoclonal dynamin1xb antibody with the specific peptide
antigen ‘‘PP12’’ completely blocked immunolabeling of the

FIGURE 5 | Semi-thin (0.5 µm-thin) sections of the mouse cerebellum
double-immunolabeled with the monoclonal dynamin1xb antibody and the
indicated other primary antibodies. The other primary antibodies against
synaptotagmin1 (A,B), synaptic vesicle protein 2 (SV2; C) and RIM1/2 (D)
were applied to label the synapses in order to better relate the dynamin1xb
immunosignals to the synaptic regions. We observed a strong dynamin1xb
immunosignal in the cerebellar cortex whereas the cerebellar medulla (white
matter) that contains predominantly fiber tracts (but no synapses) was not
immunolabeled. In the cerebellar cortex, dynamin1xb was highly enriched in
the synaptic regions, i.e., the molecular layer (mol) of the cerebellar cortex and
the giant synapses in the granule cell layer (arrows) of the cerebellar cortex. No
significant dynamin1xb immunosignal was observed in the medulla of the
cerebellum that predominantly contains axonal fiber tracts. (A,B,D) was
obtained by epifluorescence microscopy; (C) was obtained by confocal
microscopy. Abbreviations: mol, molecular layer; Pu, Purkinje cell layer; gr,
granule cell layer. Scale bars: 50 µm (A–D).

100 kDa band while pre-absorption with an unrelated peptide
had no effect (Figure 2C).

We used the monoclonal antibody specific for dynamin1xb
to analyze the distribution of this dynamin1 splice variant in
different parts of the central nervous system. In the retina, we
found dynamin1xb highly enriched in the synaptic layers, the
OPL and the IPL (Figures 3, 4). In the OPL, photoreceptor
ribbon synapses are located that possess a single large active
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zone with particularly large synaptic ribbons. Therefore, the
OPL is very well suitable for high resolution immunolabeling
analyses (Wahl et al., 2013, 2016; Dembla et al., 2014). Higher
resolution confocal immunolabeling analyses of the distribution
of dynamin1xb in the OPL revealed that dynamin1xb is localized
in a ring-like manner in close vicinity to the synaptic ribbon
(Figure 3). This immunolabeling is very reminiscent to the
general dynamin1 immunolabeling that was previously shown
to originate predominantly from the peri-active zone at the
ultrastructural level. Unfortunately, the dynamin1xb antibody
did not work at the ultrastructural level both with pre- and
postembedding techniques so that the precise ultrastructural
distribution could not be determined. The observed dynamin1xb
immunosignal in the synaptic layers of the retina is specific
because it could be blocked by pre-absorption of the antibody
with the specific dynamin peptide (Figure 4B) but not by
pre-absorption with an unrelated control peptide (Figure 4A).
The immunolabeling of another protein, i.e., RIBEYE, the main
component of synaptic ribbons (Schmitz et al., 2000; Maxeiner
et al., 2016), remained unchanged under both of these conditions
emphasizing the specificity of the pre-absorption experiments.

Similarly, also in the cerebellum we observed a synaptic
enrichment of dynamin1xb as judged by immunolabeling
with the monoclonal antibody. The dynamin1xb antibody
strongly immunolabeled the molecular layer of the cerebellum
in which parallel fibers of granule cells form synaptic contacts
onto the dendrites of Purkinje cells (Figure 5). Additionally,
the giant synapses in the granule layer of the cerebellum
displayed a strong immunoreactivity (Figure 5). Again,
pre-absorption experiments further documented the specificity
of the immunolabeling results (Figure 6). Pre-absorption of
the antibody with the dynamin1xb ‘‘PP12’’ peptide abolished
dynamin1xb immunolabeling (Figure 6B1) while control
immunolabelings (anti-panSV2; Figure 6B2) were unaffected
(Figure 6B). In contrast, pre-absorption of the antibody with
an unrelated peptide had no influence on the dynamin1xb
immunosignal (Figure 6A1).

Also in the spinal cord, dynamin1xb was predominantly
found in the gray matter that contains the bulk of synapses
and to a much lesser amount in the white matter where
fiber tracts predominate (Figures 7A,C). High resolution
immunolabeling analyses revealed that dynamin1xb was
enriched in presynaptic terminals in the gray matter of the
spinal cord that were immunolabeled with anti-synaptotagmin1
(Figure 7B). Similarly, dynamin1xb immunolabeling of the
visual cortex was also compatible with a synaptic distribution
of dynamin1xb in that brain region (Figure 7D). Also in these
experiments, the specificity of the immunolabeling results was
further corroborated by pre-absorption experiments with the
indicated peptides (Figure 8).

Since dynamin1xb is a Ca2+-regulated dynamin1 splice
variant, we tested whether dynamin1xb is differentially
distributed in synapses of light and dark-adapted retinas.
Photoreceptor synapses in the outer retina are tonically active
ribbon synapses with a particularly high basal synaptic vesicle
turnover in the dark (Jackman et al., 2009). Therefore, we stained
sections of light- and dark-adapted retinas with antibodies

against dynamin1xb. Co-immunolabeling experiments of the
same sections with antibodies against tubulin served as control
incubations, e.g., to control differences in immunosignals due
to possible minor differences in section thickness. The β-tubulin
immunolabeling (reference immunostaining) shown in Figure 9
is very similar to previously published observations on the
distribution of tubulin in the retina (e.g., Grayson et al., 2002).
Identical conditions were applied for the experiments and for
the subsequent analysis of the immunolabeled sections. The
analyses were done blindly, i.e., without knowing whether
the retina was from a light- or dark-adapted animal. In the
dark-adapted samples, we observed an increased dynamin1xb
immunolabeling particularly in the OPL. To a slightly
lesser extent, also the IPL showed a stronger dynamin1xb
immunolabel in the dark-adapted retinas in comparison to
the light-adapted retinas. The β-tubulin immunosignal in the
synaptic layers of the retina was indistinguishable between
light- and dark-adapted retinas indicating that the differences
in the synaptic immunolabeling intensity of dynamin1xb
is not due to variations in section thickness or due to a
global protein redistribution to synapses in the dark-adapted
retinas.

DISCUSSION

In the present study, we analyzed the distribution of the activity-
regulated dynamin1 splice variant dynamin1xb. Dynamin1xb
is a unique splice variant because it contains a docking site
for the Ca2+-/calmodulin-regulated phosphatase calcineurin
that can switch-on the phosphorylation-dependent activities
of dynamin1xb (Bodmer et al., 2011; Xue et al., 2011). In
order to analyze the distribution of dynamin1xb, we used
a splice-site selective monoclonal antibody that specifically
detects a seven aa residues long peptide that is present only
in dynamin1xb but not in dynamin1xa. Using this splice-site
specific antibody against dynamin1xb, we found dynamin1xb
enriched in synaptic regions in all brain regions that we analyzed.
Therefore, dynamin1xb appears to fulfill a synaptic function
that is needed in all types of synapses. High resolution analyses
of retinal photoreceptor synapses demonstrated the enrichment
of dynamin1xb in presynaptic terminals. Presynaptic terminals
of brain synapses possess an intense vesicle traffic that is
essential for synaptic communication (Südhof, 2004; Fernández-
Alfonso and Ryan, 2006; Schweizer and Ryan, 2006; Soykan
et al., 2016). Not only exocytotic but also endocytic pathways
contribute to this process (Südhof, 2004; Schweizer and Ryan,
2006; LoGiudice and Matthews, 2007; Wu L.-G. et al., 2007;
Dittman and Ryan, 2009; Yamashita, 2012; Rizzoli, 2014; Wu
X.-S. et al., 2014; Kononenko and Haucke, 2015; Soykan et al.,
2016; Watanabe and Boucrot, 2017. In presynaptic terminals,
main function of endocytosis is the clearance of the active
zone and the replenishment of synaptic vesicles (Hua et al.,
2013; Rajappa et al., 2016; for review, see Yamashita, 2012;
Kononenko and Haucke, 2015; Soykan et al., 2016; Watanabe
and Boucrot, 2017). Dynamin1 is essential for synaptic vesicle
endocytosis (Ferguson et al., 2007; for review, see Ferguson
and De Camilli, 2012; Wu L.-G. et al., 2014; Cousin, 2015;
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FIGURE 6 | Semi-thin (0.5 µm-thin) sections of the mouse cerebellum immunolabeled with the monoclonal dynamin1xb antibody that was pre-absorbed either with
a control peptide (A) or with the dynamin1xb peptide “PP12” against which the monoclonal antibody was raised (B). The strong dynamin1xb immunosignal in the
synaptic regions of the cerebellar cortex was completely absent if the antibody against dynamin1xb was pre-absorbed with “PP12” whereas the synaptic
dynamin1xb immunolabel is completely unaffected if a control peptide was used. The SV2 control immunolabeling was completely unaffected by both of these
treatments. Figure 6 was obtained by confocal microscopy. Abbreviations: mol, molecular layer; Pu, Purkinje cell layer; gr, granule cell layer. Scale bars: 30 µm.

Kononenko and Haucke, 2015; Soykan et al., 2016). Various
types of endocytosis exist in presynaptic terminals that differ
in functional properties, including speed/kinetics of membrane
internalization/vesicle recycling, site of vesicle retrieval, timing
and size of Ca2+ signals, temperature dependance, synaptic
maturation, type of triggering and the underlying molecular
mechanisms (Renden and von Gersdorff, 2007; Watanabe et al.,
2013a,b; Midorikawa et al., 2014; Delvendahl et al., 2016; Soykan
et al., 2017; for review, see Ferguson and De Camilli, 2012;
Wu L.-G. et al., 2007, 2014; Yamashita, 2012; Cousin, 2015;
Kononenko and Haucke, 2015; Gross and von Gersdorff, 2016;
Soykan et al., 2016; Watanabe and Boucrot, 2017). Most of these
different types of endocytosis, including the recently discovered
ultrafast endocytosis (UFE; Watanabe et al., 2013a,b; Delvendahl
et al., 2016; Soykan et al., 2017) and fast endophilin-mediated
endocytosis (FEME; Boucrot et al., 2015; Renard et al., 2015),
depend on dynamin1 (Ferguson et al., 2007; Pelassa et al., 2014;
Wu X.-S. et al., 2014; Cousin, 2015; Soykan et al., 2016;Watanabe
and Boucrot, 2017). In the presynaptic terminals, endocytosis
is stimulated by synaptic activity (Ferguson et al., 2007; Hosoi
et al., 2009; Wu et al., 2009; Wu X.-S. et al., 2014; Wu and Wu,
2014). The role of Ca2+ in different types of endocytosis is not
completely understood and is partly controversially discussed

(Wu et al., 2009; Yao et al., 2012; Wu X.-S. et al., 2014; but see
von Gersdorff and Matthews, 1994; Leitz and Kavalali, 2011; for
review, see Hosoi et al., 2009; Yamashita, 2012; Wu and Wu,
2014; Kononenko and Haucke, 2015; Gross and von Gersdorff,
2016). Particularly fast endocytosis appears to be stimulated
by (transient) activity-dependent increases in Ca2+ (e.g., Neves
et al., 2001; for review, see Hosoi et al., 2009; Wu et al., 2009;
Yamashita, 2012; Wu L.-G. et al., 2014; Kononenko and Haucke,
2015).

Dynamin1xb could be particularly relevant for activity-
regulated processes that depend on its interaction with syndapin.
As outlined above, the dynamin1/syndapin interaction is
phosphorylation-sensitive and inhibited by phosphorylation
of distinct serine residues in the PRD of dynamin1 (Bodmer
et al., 2011; Xue et al., 2011; Luo et al., 2016; for review, see
Cousin, 2015). These serines are de-phosphorylated by the
Ca2+-/calmodulin-stimulated phosphatase calcineurin thus
promoting interaction between dynamin1 and syndapin
(Anggono et al., 2006; for review, see Cousin, 2015).
Remarkably, dephosphorylation of these serines in the PRD
of dynamin1 leads to an activity-dependent acceleration of
endocytosis in hippocampal neurons (Armbruster et al., 2013).
Phospho-sensitive dynamin1–syndapin interaction is important
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FIGURE 7 | Semi-thin (0.5 µm-thin) sections of the mouse spinal cord (A–C) and the mouse visual cortex (D) double-immunolabeled with the monoclonal antibody
against dynamin1xb and the indicated other primary antibodies. The rabbit polyclonal antibodies against synaptotagmin1 (B,D) and RIM1/2 (A) were applied to label
the synapses in the spinal cord. Immunolabeling with rabbit polyclonal antibodies against β-tubulin was used to also visualize the neuronal axons in the white matter
of the spinal cord (C). We observed a strong dynamin1xb immunosignal in the gray matter of the spinal cord whereas the white matter that contains many axons (but
virtually no synapses) was largely unlabeled by the dynamin1xb antibody. High-resolution confocal analyses revealed the presence of dynamin1xb in synatotagmin1-
labeled presynaptic terminals that contact the cell bodies of motor neurons in the gray matter of the spinal cord (B). Similarly, also in the visual cortex (D), we
observed a dynamin1xb immunolabeling signal that largely overlapped with synapses as judged by anti-synaptotagmin1 immunolabeling. Arrow in (C) points to an
exemplary axon in the white matter of the spinal cord that was immunolabeled with anti-β-tubulin antibodies. (A,C) were obtained by epifluorescence microscopy;
(B,D) by confocal microscopy. Abbreviations: n, nucleus of a motor neuron in the anterior horn of the spinal cord; mol, molecular layer; e-gran, external granule cell
layer. Scale bars: 50 µm (A,C); 10 µm (B); 30 µm (D).
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FIGURE 8 | Semi-thin (0.5 µm-thin) sections of the mouse spinal cord (A,B) or mouse visual cortex (C,D) immunolabeled with the monoclonal antibody against
dynamin1xb that was pre-absorbed either with a control peptide (A,C) or with the dynamin1xb peptide “PP12” against which the monoclonal antibody was raised
(B,D). The strong dynamin1xb imunosignal in the synaptic layers of the spinal cord and the visual cortex was completely abolished if the antibody against
dynamin1xb was pre-absorbed with the “PP12” peptide (B,D) whereas the synaptic immunolabel of dynamin1xb was completely unaffected if a control peptide was
used (A,C). Anti-β-tubulin immunolabeling in (A,B) and anti-RIM immunolabeling in (C,D) was completely unaffected by both of these treatments. Figure 8 was
obtained by confocal microscopy. Abbreviations: mol, molecular layer; e-gran, external granule cell layer. Scale bars: 10 µm.
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FIGURE 9 | Semi-thin (1.5 µm-thin) sections of light- (A) and dark- (B) adapted retinas double-immunolabeled with antibodies against dynamin1xb (A1,3; B1,3) and
β-tubulin (A2,3; B2,3). As shown above (Figures 3, 4), the dynamin1xb immunosignal was enriched in the synaptic layers of the retina, the OPL and IPL. In the
dark-adapted condition, we observed an enhanced dynamin1xb immunosignal in the synaptic layers of the OPL and IPL, while the β-tubulin immunosignal in the
synaptic layers was unchanged. The boxed regions (white boxes) indicate the regions of interest, i.e., OPL and IPL, used for the quantification of
immunofluorescence (IF) signals. (A,B) were obtained by confocal microscopy. (C) Quantification of the immunosignals in the OPL and IPL for dynamin1xb and
β-tubulin (normalized data). Quantification of IF signals (detemined as integrated density) was done as previously described (Wahl et al., 2016). N = 3 embeddings for
light- and dark-adapted retinas; n = 97 images analyzed for both light-and dark-adapted retinas. Error bars are SEM. Abbreviations: A.U, arbitrary units; OPL, outer
plexiform layer; INL, inner nuclear layer; IPL, inner plexiform layer; GCL, ganglion cell layer. ∗∗∗p < 0.001; n.s., non significant. Scale bars: 20 µm.
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for activity-dependent endocytosis that may occur as bulk
endocytosis or other types of activity-dependent endocytosis
(Anggono et al., 2006; Clayton et al., 2008, 2009, 2010; Wu X.-S.
et al., 2014; for review, see Clayton and Cousin, 2009; Wu L.-G.
et al., 2014; Cousin, 2015; Watanabe and Boucrot, 2017).

In neuroendocrine cells, dynamin1, Ca2+ as well as the Ca2+-
regulated dynamin1-syndapin interaction have been reported
to be essential for fusion pore expansion and in shifting
the equilibrium between ‘‘kiss and run’’ exocytosis and ‘‘full-
collapse’’ fusion (Elhamdani et al., 2001, 2006; Artalejo et al.,
2002; Graham et al., 2002; Holroyd et al., 2002; Anantharam et al.,
2011, 2012; Samasilp et al., 2012, 2014; Mattila et al., 2015; Zhao
et al., 2016). Possibly, a similar function could apply for similar
events in synapses of the central nervous system (Klingauf et al.,
1998; Harata et al., 2006) andmight be mediated by dynamin1xb.

We also found dynamin1xb enriched in the synaptic layers
of the retina, the OPL and IPL, respectively. The OPL contains
the tonically active photoreceptor ribbon synapses (Matthews
and Fuchs, 2010). Photoreceptor synapses of the retina are
large synapses with a single large active zone and therefore
very suitable for high resolution immunohistochemical analyses
(Wahl et al., 2013, 2016; Dembla et al., 2014). High resolution
confocal microscopy revealed that dynamin1xb is localized
close to the active zone in rod photoreceptor synapses. The
dynamin1xb labeling pattern was similar to the previously
described immunolabeling of the peri-active zone with a
non-selective dynamin1 antibody (Wahl et al., 2013). In this
study, dynamin1 was shown to be highly enriched at the
peri-active zone, i.e., immediately lateral to the active zone,
using immunogold electron microscopy (Wahl et al., 2013).
Due to the close vicinity to the synaptic ribbon and the active
zone (demonstrated in this study for photoreceptor ribbon
synapses), dynamin1xb is a particularly promising candidate that
could help to couple fast and transient increases of presynaptic
Ca2+ into an activity-regulated endocytic membrane uptake. As
mentioned above, dynamin1xb contains a unique docking site
for the Ca2+-regulated phosphatase calcineurin (Bodmer et al.,
2011; Xue et al., 2011). Calcineurin is highly enriched in the
presynaptic terminals of photoreceptor synapses close to the
synaptic ribbon (Wahl et al., 2013). Thus, calcineurin is available
to dock onto dynamin1xb in the peri-active zone. If Ca2+ enters
the presynaptic terminal e.g., via depolarization-induced opening
of Cav-channels, dynamin1xb can be expected to be activated
by Ca2+-regulated de-phosporylation of calcineurin and thus
leading to compensatory endocytosis.

Interestingly, we observed an increased dynamin1xb
immunosignal in the synaptic layers of dark-adapted retinas (in
comparison to light-adapted retinas). The immunosignals for
β-tubulin, that served as reference protein, were unchanged
under these conditions. This light/dark difference was
particularly strong in the OPL in which photoreceptor synapses
are located. In this layer, photoreceptor synapses transmit
the light stimuli for further processing to the inner retina. In
darkness, photoreceptors possess a particularly active synaptic
vesicle cycle (Jackman et al., 2009) with a high need for
activity-dependent membrane retrieval. Therefore, the increased
immunosignal in the OPL could indicate an activity-dependent

recruitment and enrichment of dynamin1xb at the peri-active
zone of photoreceptor presynaptic terminals in dark-adapted
retinas.

Surprisingly, the IPL of dark-adapted retinas also showed
a strongly increased dynamin1xb immunosignal. This increase
of dynamin1xb in the IPL was highly significant and specific;
the reference protein (β-tubulin) did not show a quantitative
difference in immunolabeling intensity in the synaptic layers
between light- and dark-adapted retinas. The IPL contains a
mixed population of synapses that are either activated by light
(‘‘ON’’ synapses) or inactivated by light (‘‘OFF’’ synapses) with
different signaling properties (Tian, 2004; Lukasiewicz, 2005;
Odermatt et al., 2012; Baden et al., 2014; Euler et al., 2014;
Behrens et al., 2016; Franke et al., 2017; Real et al., 2017).
If activity regulates synaptic recruitment of dynamin1xb also
in the IPL, the darkness-induced increase of dynamin1xb in
the IPL might be due to a particularly strong recruitment of
dynamin1xb to OFF bipolar cell terminals (in comparison to
ON bipolar terminals) and to other synapses in the IPL that
are particularly active in the dark. Alternatively, the increased
dynamin1xb immunosignal in the OPL and IPL of dark-adapted
retinas could also result—at least in part—from an increased
protein biosynthesis of dynamin1xb during the ≈4.5 h of
dark adaptation. Previous studies did not observe an obvious
difference in global protein synthesis in light- and dark-adapted
retinas (Ames et al., 1980; Hollyfield and Anderson, 1982).
But in some cases, an illumination-dependent enrichment of
distinct proteins in retinal sub-compartments was observed
that was either due to illumination-dependent protein synthesis
(Iuvone and Beshearse, 1983; Hiragaki et al., 2014; Hughes
et al., 2015; Wolloschek et al., 2015; Vancura et al., 2016) or
based on an endogenous circadian rhythm (Tosini and Menaker,
1996; Tosini et al., 2007; Wolloschek et al., 2015; Vancura
et al., 2016). Furthermore, light-dependent translocation might
play a role. Light-dependent subcellular translocation is well
known for proteins of the visual transduction cascade in
photoreceptors, e.g., transducin, arrestin, unc119a (Whelan and
McGinnis, 1988; Artemyev, 2008; Kerov and Artemyev, 2011;
Majumder et al., 2013; Sinha et al., 2013). It is unlikely that the
circadian rhythm plays a major role for the observed changes
in dynamin1xb accumulation in the synaptic layers because
light- and dark-adaptation were done simultaneously, i.e., at
the same time in the afternoon. But clearly, future analyses
are required to further discriminate between these possibilities.
For these experiments and the further characterization of
dynamin1 splice variants, the dynamin1xb-specific monoclonal
antibody will be a useful tool. Calcineurin, the interaction partner
of dynamin1xb, could be an important mediator of the activity-
regulated adaptation of the endocytic machinery in retinal
synapses. Calcineurin dephosphorylates NFAT proteins that in
turn translocate to the nucleus to regulate gene transcription
in various systems (for review, see Crabtree and Olson, 2002;
Wu H. et al., 2007). Similar mechanisms might contribute to
the observed synaptic changes of dynamin1xb in dark-adapted
retinal synapses. Recently, calcineurin was shown to be an
essential mediator of homeostatic synaptic plasticity that serves
to adjust synapses and neuronal circuits to different levels
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of network activity (Arendt et al., 2015). Such a regulatory
homeostatic regulation is particularly needed in the retina
because the retina efficiently operates at very different levels
of environmental light intensities (for review, see Dunn and
Rieke, 2006; Rieke and Rudd, 2009; Gollisch and Meister, 2010;
Lagnado and Schmitz, 2015). Our observations demonstrate
an illumination-dependent remodeling of dynamin1xb at the
mouse photoreceptor ribbon synapse that most likely affects
endocytic vesicle trafficking in the peri-active zone. Interestingly,
in drosophila, an illumination-dependent reorganization also of
the active zone of photoreceptor synapses was described (Böhme
and Sigrist, 2015; Sugie et al., 2015). The detailed molecular
mechanisms of these adaptative processes in retinal synapses
have to be addressed by future investigations.
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