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Are instrumented animals representative of the population, given the potential
bias caused by selective sampling and the influence of capture, handling and
wearing bio-loggers? The answer is elusive owing to the challenges of obtain-
ing comparable data from individuals with and without bio-loggers. Using
non-invasive genetic data of a large carnivore, the wolverine (Gulo gulo) in
Scandinavia, and an open-population spatial capture–recapture model, we
found a 16 (credible interval: 4–30) percentage points lower mortality prob-
ability for GPS-collared individuals compared with individuals without GPS
collars. While the risk of dying from legal culling was comparable for collared
and non-collared wolverines, the former experienced lower probability of mor-
tality due to causes other than legal culling. The aforementioned effect was
pronounced despite a potentially lower age—and therefore likely higher natu-
ral mortality—of collared individuals. Reports of positive effects of bio-loggers
on the survival of individuals are uncommon and we argue that GPS collars
could shield animals from poaching. Our results highlight the challenges of
drawing population-level inferences for populations subjected to poaching
when using data from instrumented individuals.
1. Introduction
Telemetry andbio-logging systemshave been crucial in expanding our understand-
ing of the ecology and cryptic behaviour of wildlife. Data from instrumented
animals are often the only available information from which to draw population-
level inferences, forcing ecologists to make the assumption that instrumented
animals are representative of the population as a whole [1]. There are two main
reasons why this assumption may not hold: (a) instrumented animals are sampled
non-randomly from the population, and (b) bio-logging and tracking themselves
alter the biology of instrumented animals.

(a) Non-random sampling
The selection of individuals in telemetry studies is rarely random [1]. For
example, variation in the vulnerability to physical capture linked to biological
attributes (e.g. behaviour) is bound to lead to biased conclusions if estimates
are extrapolated to the population level.

(b) Tag-effect
The methods that impact the study species will inadvertently introduce bias as
the study system will be altered through the process of observation [2,3]. First,
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capturing and handling are both stressful for animals [4,5].
Second, although benign in most cases [6], attaching
bio-logger devices can influence the behaviour or even have
long-term detrimental effects on individuals [6,7]. Bio-
logging can also have indirect consequences as bio-loggers
can interact with management decisions and illegal actions
[8], and lead to or prevent lethal events using the information
from the logger [8,9]. This may be particularly acute for
controversial species such as large carnivores.

Here, we used long-term non-invasive genetic sampling
(NGS) data of a large carnivore, the wolverine (Gulo gulo) in
Scandinavia, and compared survival probabilities of individ-
uals with and without GPS collars using an open-population
capture–recapture model (OPSCR). This unique dataset
contained data from individuals without capturing them, as
both instrumented and non-instrumented individuals were
sampled during NGS.
:20210128
2. Material and methods
(a) GPS-collared individuals
Between 2010 and 2015, 43 (♀21; ♂22) wolverines were captured
from helicopter [10] and equipped with GPS collars in the central
and northern parts of Norway (electronic supplementary
material, figure S1). The collars were fitted with a release mech-
anism that usually breaks apart after 0.5–2 years. After winter
2016/2017, no wolverine wore a GPS collar (see electronic
supplementary material, appendix S1 for further details).

(b) Non-invasive genetic sampling
The Scandinavian wolverine population is monitored annually by
Norwegian and Swedish authorities using NGS from scats, urine
and shed hairs [11]. NGS targets all individuals more than or
equal to 1 yearold, includingGPS-collared individuals. Genetic ana-
lyses of hair or blood samples from collared individuals allowed us
to match them with the NGS dataset. As we aimed to compare the
survival of wolverines with and without GPS collars using NGS,
we only retained NGS data collected within 70 km (greater than
7σ, see definition below) of all collected samples from collared indi-
viduals to ensure that we also obtained detections from individuals
with home ranges in the vicinity of the collared individuals. This
resulted in 4989 (♀2446; ♂2543) non-invasive genetically identified
samples from1036 (♀555;♂481) individuals collected over eight con-
secutive monitoring seasons (December–June) between 2009/2010
and 2016/2017 in two non-adjacent regions (central and northern
Norway; electronic supplementary material, figure S1 and table
S1). In addition, we obtained recovery locations and genetic identi-
fication data from all 424 (♀219; ♂205) legally culled individuals
(authorized by management authorities, and motivated by sheep
and semi-domestic reindeer depredation, electronic supplementary
material, appendix S1), and 11 (♀6; ♂5) individuals dead owing to
other reasons (i.e. 4, unknown; 2, verified poaching; 4, car collision;
1, disease).

(c) Open-population capture–recapture model
To estimate survival probabilities of wolverines from NGS, we
built a Bayesian hierarchical state-space OPSCR model composed
of three submodels for (i) population dynamics, (ii) density and
movements, and (iii) detection during DNA searches [11–15].

(i) The population dynamics model
We used a multistate formulation [15,16] where each individual
life history was represented by a succession of four discrete
states zi,t: (i) ‘unborn’ if the individual has not been recruited
in the population; (ii) ‘alive’; (iii) ‘dead legal’ if it has died
from legal culling between the start of the previous and current
monitoring seasons; or (iv) ‘dead’ if it has died from any other
cause between the start of the previous and current monitoring
seasons, or died earlier, regardless of the cause. We used
data augmentation, whereby additional, undetected individuals
are available for inclusion in the population at each time
step [17,18].

During the first year, individuals are designated as ‘unborn’
or ‘alive’ so that zi,1∼ dcat(1� c, c, 0, 0), where c represents the
probability to be part of the population at t = 1.

For t≥ 2, zi,t is conditional on the state of individual i at t − 1:

— If zi,t−1 = 1, individual i can be recruited (transition to state 2)
with probability gt , so zi,t∼ dcat(1� gt, gt, 0, 0Þ.

— If zi,t−1 = 2, individual i can survive and remain zi,t= 2 with
probability Φt, die from culling and transition to zi,t= 3
with probability ht, or die from other causes and transition
to zi,t = 4 with probability wt, so that zi,t∼ dcat(0, Φt, ht, wt),
where Φt = 1− ht−wt. All legal culling mortality events
were reported, but most other mortality remains cryptic.
Imperfect detection of non-culling mortality prevents further
breakdown of estimates by cause-specific mortality, such as
natural, traffic and poaching deaths.

— All individuals in dead states (zi,t−1 = 3 or 4) transition to
zi,t−1 = 4, the absorbing state, with probability 1.

We created a binary covariate (GPSi,t) with value 1 if the individ-
ual i was wearing a GPS collar at any time during the monitoring
season t, and 0 otherwise. To quantify differences in culling
ðbhGPSÞ and other ðbwGPSÞ mortality probabilities between
collared and non-collared individuals, we expressed mortality
probabilities as

logitðwi,tÞ ¼ w0t þ bwGPS � GPSi,t
logitðhi,tÞ ¼ h0t þ bhGPS � GPSi,t

�
, ð2:1Þ

where w0t and h0t are the year-specific mortality probabilities of
non-collared individuals.
(ii) The movement model
We used an inhomogeneous point process to model the distri-
bution of individual activity centres (ACs) with a spatial
intensity lðsÞ (where s is a vector of spatial coordinates of
ACs) [19]. We discretized the habitat into a grid of 20 × 20 km
habitat cells to allow the placement of individual AC si,t as a
function of a spatial covariate (X ). The initial individual AC
locations si,1 were conditional on X:

lðsi,1Þ ¼ eBDensXðsi,1Þ, ð2:2Þ
where Xðsi,1Þ is the value of the spatial covariate at si,1 and BDens

the slope parameter describing the relationship between the
habitat covariate and density. We defined X as the average
number of known wolverine dens as a proxy for wolverine den-
sity (electronic supplementary material, figure S8; [11]). For t > 1,
the probability density of si,t was conditional on the spatial
covariate X and the Euclidean distance to si,t�1:

lðsi,tjsi,t�1, tÞ/ e
�
jjsi,t � s2i,t�1jj

2t2 � eBDensXðsi,tÞ, ð2:3Þ
where τ is the standard deviation of a bivariate normal distri-
bution centred on si,t�1. Under this specification, movement is
described as an isotropic Gaussian random walk weighted by
the spatial covariate X [11,13,19], and τ regulates the distance
that individuals are likely to move between years. Such a move-
ment feature can help distinguish between mortality and
emigration [13,20].
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(iii) The observation model
We used the half-normal function to model detection probability,
whereby the probability p of detecting individual i at detector j
and time t decreases with distance (Di,j,t) between the detector
and the AC (si,t):

pi,j,t ¼ p0i,j,texp
�D2

i,j,t

2s2

 !
, ð2:4Þ

where p0 is the baseline detection probability, and σ the scale
parameter.

To account for individual, spatial and temporal heterogeneity
in detection probability, we included several linear effects on a
logistic scale on the baseline detection probability (p0) to account
for search effort (length of GPS search tracks, βTracks), accessibility
(distance from the nearest road, βRoads), snow cover (βSnow), pre-
vious detections of individuals (βPrevDetections), and whether the
individual was wearing a GPS collar (βGPS) or not. Because NGS
can be country- and county-specific, we also estimated yearly
baseline detection probabilities (p0Intercept) for each county (see
further details in electronic supplementary material, appendix S1).

To decrease the number of detectors involved in the
calculation of pi,j,t and, therefore, the computation burden, we
assigned the location of detections to the closest detector defined
as the cell centre of a 10 × 10 km detector grid. The detector grid
cells were further subdivided into 25 subdetectors (2 km resol-
ution) [21], and each detection was assigned to the closest
subgrid. We then modelled the frequency of subdetectors with
greater than or equal to 1 detection yi,j,t as a binomial response
with sample size Kj, the number of subdetectors in grid cell j
that overlapped with the habitat [21]:

yi,j,t � Binomialðpi,j,t � Iðzi,t ¼ 2Þ, KjÞ, ð2:5Þ
where Iðzi,t ¼ 2Þ is an indicator function used to condition detection
on the individual being alive. This design allowed us to reduce the
number of detectors j involved in the calculation of pi,j,t while retain-
ing as many binary detections as possible [21]. In addition, we
added a 60 km buffer (greater than 6s, [22]) around the detector
grid to allow the placement of AC, and, therefore, the movement
of individuals in and out of the trapping grid [11,12].
(d) Parameter estimation
To account for confounding factors, all model parameters were
region- and sex-specific, except for the effects of the collar
ðbwGPS,bhGPS and bGPSÞ which were assumed identical for both
regions and sexes (owing to sample size limitations). Because
age was not known for individuals detected with NGS, we
could not account for its potential effect on parameters in the
OPSCR model. We fitted the Bayesian OPSCR model using
Markov chain Monte Carlo (MCMC) simulation with NIMBLE
[23,24] in R v. 3.3.3 [25]. We used the local evaluation approach
[26] to increase MCMC efficiency (nimbleSCR [27,28]). We ran
four chains, each with 42 500 iterations including a 12 500-iter-
ation burn-in. We considered the model as converged when the
Gelman–Rubin diagnostic (Rhat, [29]) was less than 1.1 for all
parameters and by visually inspecting the trace plots. In addition
to providing estimates of the coefficients bwGPS and bhGPS, we
also calculated the median expected mortality probabilities for
individuals with and without GPS collars and computed the per-
centage point difference and its associated 95% credible interval
(CrI) using the posterior distribution.
3. Results
GPS-collared wolverines had a 16 percentage points (95%
CrI: (4; 30 percentage points)) lower overall mortality
probability (median = 19%; (7%; 43%)), compared with non-
collared individuals (median = 35%; (13%; 66%); e.g. males
in the northern area, figure 1). This difference was attribu-
table mainly to lower probability of mortality due to causes
other than legal culling (bwGPS =−1.08 (−1.86; −0.46)), and
to a lesser extent to a lower probability of mortality due to
legal culling (bhGPS =−0.37 (−1.09; 0.25); figure 1). Collared
individuals had a 13 percentage points (2; 26 percentage
points) lower probability to die from causes other than
legal culling (12% (2%; 29%)), compared with individuals
without a GPS collar (25% (4%; 48%)). Collared individuals
had a 3 percentage points (−2; 11 percentage points) lower
probability to die as a result of legal culling (7% (2%;
27%)), compared with individuals without a GPS collar
(10% (2%; 33%)). Additional results and sex- and region-
specific estimates are presented in electronic supplementary
material, appendix S2 and figures S2–S7.
4. Discussion
We found that GPS-collared wolverines had a lower mor-
tality probability than individuals without a collar, mainly
due to causes other than legal culling. There are three main,
non-mutually exclusive, explanations for this result: (i) mor-
tality probability of wolverines selected for GPS collaring
differed from the population average (non-random sample),
(ii) instrumentation altered wolverine mortality (tag-effect),
and (iii) the NGS and OPSCR approach inadvertently intro-
duced a bias (analytical artefact). Being observational in
nature, our study does not allow us to isolate an explanation
unequivocally. However, we argue that the tag-effect could
be the primary cause for the observed difference in mortality
between instrumented and non-instrumented animals.

(a) Non-random sampling
NGS and the collaring of wolverines targeted all segments of
the population (except cubs of the year). Captures from heli-
copter did not target specific individuals by following any
fresh wolverine tracks encountered in snow but may have
been unintentionally biased towards individuals more vul-
nerable to capture once detected (e.g. subadult individuals).
The OPSCR model did not include age as it was not available
for individuals detected solely with NGS. This means that we
were unable to distinguish between adult and subadult mor-
tality (the latter being usually higher). This could explain the
relatively high observed mortality estimates compared with
those reported previously [30]. However, the proportion of
1-year-olds among collared individuals (41%) was higher
than their expected prevalence in the population (29%;
[31]). Given that younger wolverines typically have a lower
survival [30], we would expect higher mortality estimates
for collared animals than the population average. Yet, we
detected the opposite effect,which suggests that the explanation
for the mortality difference lies elsewhere.

(b) Tag-effect
Wearing a GPS collar itself impacts the mortality of instrumen-
ted wolverines. Other causes of mortality include natural (e.g.
age, diseases, starvation, intra- and interspecific killing), traffic
and illegal killing, which we cannot differentiate. The literature
generally reports negative or neutral effect of wearing
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Figure 1. Posterior distributions of mortality probabilities for male wolverines with and without a GPS collar in the northern study area between 2010/2011 and
2011/2012. Estimates were obtained using a Bayesian open-population spatial capture–recapture model and NGS data. Expected percentage point difference (and
associated 95% credible interval) in mortality probabilities between individuals with and without collars are shown above the arrows indicating the direction of
reduction in risk. This example only displays estimates for male wolverines from the northern study area; differences in mortality probabilities depended on the
baseline probabilities (h0, w0) and varied with year, sex and regions because the effect of GPS collars on mortality rates (bwGPS, bhGPS) was quantified on the logit
scale (equation (2.1)).
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bio-loggers on the survival of individuals [6,32], and we are
not aware of any mechanism that could give a competitive
advantage to GPS-collared wolverines that would decrease
other causes of mortality. While punishments for illegal killing
can be severe (e.g. in Norway [33]), poaching accounts for
a large portion of carnivore mortality in Scandinavia
[30,34–37]. A plausible explanation for the observed result is
that GPS collars shield individuals against illegal killing.
First, the collars themselves can act as a deterrent as the
chance of detecting poaching events increases. Second, col-
lared wolverines were captured as part of a wildlife–human
conflict project studying predation on semi-domestic reindeer
and sheep (e.g. [38]). In Norway, compensation for livestock
losses to carnivores is estimated based on the number of
detected domestic prey that can be documented as killed by
a carnivore. As information provided by GPS collars was
partly used to conduct predation studies, it generally resulted
in a higher number of documented kills, which could give an
incentive to keep GPS-collared individuals alive [37].
(c) Analytical artefact
We cannot exclude the presence of analytical artefact,
especially since robust goodness of fit tests for Bayesian
OPSCR models are not yet available ([39]; electronic sup-
plementary material, appendix S1). However, to avoid
comparing different parts of the population, we ensured
overlapping spatial (electronic supplementary material,
appendix S2, and figure S1) and temporal extents between
collared and non-collared individuals, while estimating sex-
and region-specific parameters (electronic supplementary
material, appendix S2 and figures S4–S7). The OPSCR
model also accounted for important sources of individual
(sex, previous detections), temporal (year) and spatial hetero-
geneity (snow cover, accessibility, search effort) in
detectability (p0; electronic supplementary material, appen-
dix S2 and figures S4–S7), including differences in
detectability between GPS-collared and non-collared individ-
uals (βGPS, electronic supplementary material, figure S7). The
lower detectability of GPS-collared individuals (βGPS,
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electronic supplementary material, figure S7) could be due to
the relatively higher proportion of young individuals among
GPS-collared individuals compared with individuals detected
with NGS, which usually have a lower detectability than adult
territorial individuals [40].

It has previously been suggested that instrumented and
non-instrumented individuals have different survival prob-
abilities in other large carnivore populations [41–43], but to
our knowledge, this is the first study to compare survival
probabilities of carnivores with and without GPS collars,
using an independent source of data collected at the individ-
ual level. Our finding that bio-loggers have a positive effect
on survival is rarely reported and has important implication
for management and conservation. This is especially so if the
positive effect is caused by collared animals being shielded
from poaching. Indeed, many studies use data from instru-
mented individuals to draw inferences about populations
subjected to poaching [34,35,37].
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