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Abstract. We have studied the role of the cyclin-depen-
dent kinase (Cdk) inhibitor p27%iP! in postnatal mammary
gland morphogenesis. Based on its ability to negatively
regulate cyclin/Cdk function, loss of p27 may result in un-
restrained cellular proliferation. However, recent evidence
about the stabilizing effect of p27 on cyclin D1-Cdk4 com-
plexes suggests that p27 deficiency might recapitulate the
hypoplastic mammary phenotype of cyclin D1-deficient
animals. These hypotheses were investigated in postnatal
p27-deficient (p27~'~), hemizygous (p27*/7), or wild-
type (p27**) mammary glands. Mammary glands from
p27*'~ mice displayed increased ductal branching and
proliferation with delayed postlactational involution.
In contrast, p27~/~ mammary glands or wild-type
mammary fat pads reconstituted with p27~/~ epithelium

produced the opposite phenotype: hypoplasia, low pro-
liferation, decreased ductal branching, impaired lobu-
loalveolar differentiation, and inability to lactate. The as-
sociation of cyclin D1 with Cdk4, the kinase activity of
Cdk4 against pRb in vitro, the nuclear localization of cy-
clin D1, and the stability of cyclin D1 were all severely
impaired in p27~~ mammary epithelial cells compared
with p27*/* and p27*/~ mammary epithelial cells. There-
fore, p27 is required for mammary gland development in
a dose-dependent fashion and positively regulates cyclin
D-Cdk4 function in the mammary gland.
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Introduction

Initiation of cell division involves the integration of sev-
eral growth signals, both stimulatory and inhibitory, that
converge on the cell cycle machinery. The cell cycle is pro-
moted by a family of cyclin-dependent kinases (Cdks),!
and Cdk activity is negatively regulated by Cdk inhibitors
(CKIs). Thus, CKIs lie at a critical point in this integrated
network, serving as checkpoint controls for cell cycle pro-
gression (Sherr and Roberts, 1999). The CKIs can be sub-
divided into two categories, the Ink4 proteins, which are
inhibitors of cyclin D-Cdk2/4 complexes, and the Cip/Kip
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proteins, which inhibit all cyclin—~Cdk complexes. The Cip/
Kip family includes p27KiPl p21CiPVWafl © ang p57Kie2,
p27%iPl originally identified as a Cdk inhibitory activity
induced by antimitogenic signals (Polyak et al., 1994;
Toyoshima and Hunter, 1994), is known to bind to cyclin
D-Cdk4, cyclin E-Cdk2, and cyclin A-Cdk2 complexes
(Soos et al., 1996).

Stimulation of cyclin D—cdk4 activity in early G, and cy-
clin E-cdk2 activity in mid-G; results in the sequential
phosphorylation of their mutual target, the retinoblastoma
gene product, pRb. Cdk-mediated hyperphosphorylation
of pRb causes release of pRb-mediated inhibition of E2Fs
and other factors that drive the cell cycle forward by trans-
activating genes required for S phase entry (Nevins, 1992;
Kato et al., 1993; Johnson et al., 1993; Duronio and O’Far-
rell, 1995). Overexpression of p27 reversibly arrests cells
in Gy, suggesting that p27 can limit the G; to S transition.
Inhibition of G; progression by p27 requires the inhibition
of Cdk activity, including cyclin D-Cdk4 and cyclin
E—cdk2 complexes (Sherr, 1996). A direct physical associ-
ation of p27 with cyclin—Cdk complexes can restrain Cdk
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activity and maintain Rb in a hypophosphorylated state
that sequesters E2F (Soos et al., 1996). By this mechanism,
p27 inhibits progression into S phase (Weintraub et al.,
1992, 1995). Consistent with these observations, cell cul-
ture studies have shown that expression of p27 is elevated
in quiescent cells but declines as cells actively undergo
DNA synthesis (Nourse et al., 1994).

Genetic evidence also suggests that p27 is a critical regu-
lator of cellular proliferation in vivo. Mice with homozy-
gous disruption of the p27 gene (p27~'7) are 15-30%
larger than their wild-type (p27'") or hemizygous (p27+/7)
littermates due to hyperplasia in several organs, including
spleen, thymus, pituitary, ovaries, and testes (Fero et al.,
1996; Kiyokawa et al., 1996; Nakayama et al., 1996). Tu-
mors of the intermediate lobe of the pituitary were ob-
served in p27~/~mice by 6 mo of age, and both p27*/* and
p27~'~ mice were more susceptible to radiation- or chemi-
cally induced lung and colon tumors (Fero et al., 1998).
Therefore, p27 acts as a tumor suppressor in many tissues,
perhaps through its ability to inhibit cell cycle progression.
Although homozygous gene inactivation has not yet been
reported in any human tumors, hemizygous deletions have
been detected (Pietenpol et al., 1995; Spirin et al., 1996;
Takeuchi et al., 1998). Multiple human tumors exhibit ab-
normally low levels of p27 protein, including tumors of the
breast (Clurman and Porter, 1998; Loda et al., 1997). De-
creased p27 levels in breast tumors correlate with a poor
patient prognosis, implying a regulatory role of p27 in cell
cycle control in transformed mammary epithelium (Porter
et al., 1997; Tan et al., 1997).

High cyclin D1 protein levels have been observed in a
large percentage of breast tumors (Gillett et al., 1996; Fre-
dersdorf et al., 1997; Robker and Richards, 1998; Medina,
1996). In addition, transgenic mice overexpressing cyclin
D1 in the mammary glands develop ductal hyperplasias
and tumors (Wang et al., 1994), suggesting that increased
cyclin D1-Cdk4 activity may lead to uncontrolled growth
of the mammary epithelium. Conversely, cyclin D1-defi-
cient (cy/”") mouse mammary glands display develop-
mental abnormalities associated with a defect in cell cycle
progression, including decreased proliferation, reduced
lateral branching, and impaired differentiation (Fantl et
al., 1995; Sicinski et al., 1995). Normally, the rudimentary
ductal network of quiescent epithelial cells in the imma-
ture mouse mammary gland rapidly proliferates in re-
sponse to increased production of pubertal hormones,
such as estrogen, while undergoing extensive lateral epi-
thelial branching. Pregnancy induces a second round of
proliferation followed by differentiation to form the secre-
tory epithelium responsible for milk production. The ces-
sation of nursing induces involution, a process that elimi-
nates the majority of the mammary epithelium through
apoptosis within the time span of several days (for review
see Medina, 1996). When stressed with the enormous pro-
liferative pressure associated with pregnancy, cyl ™~ mam-
mary glands display delayed proliferation, decreased lat-
eral branching, and incomplete differentiation; thus, cy/ ™'~
mammary glands cannot support lactation (Fantl et al.,
1994; Sicinski et al., 1995). These observations suggest that
cyclin D1 is critical for mammary gland morphogenesis
and function. Given the opposing nature of p27 to cyclin
D1 activity, it might be expected that mammary glands
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from p27-deficient mice would display a hyperprolifera-
tive phenotype, in direct contrast with the decreased
growth of the cyclin D1-deficient mammary gland.

Although several studies have shown that high levels of
p27 inhibit both Cdk2 and Cdk4 activities, the activity of
cyclin E-Cdk2 complexes appears to be more potently an-
tagonized by p27 than any other Cdk-containing complex.
Furthermore, there is increasing evidence to suggest that
p27 may, in fact, promote the activity of Cdk4-containing
complexes in primary mouse embryonic fibroblasts. As-
sembly, stability, and function of cyclin D1-Cdk4 com-
plexes are greatly impaired in the absence of p27 in this
cell culture system (Cheng et al., 1999). However, p27-defi-
cient mouse fibroblasts did not exhibit overall cell cycle de-
fects. This observation might be explained by the potential
presence of other signaling pathways that allow for cell cy-
cle progression in the absence of pRb phosphorylation,
and these cells therefore may not be completely dependent
on cyclin D1-cdk4 activity for cell cycle control. On the
other hand, a cell type that displays growth defects in the
absence of cyclin D1, such as the mammary epithelium,
would provide an elegant model system in which to test
this hypothesis. If p27 is required for the assembly and
function of cyclin D1-cdk4 complexes, then loss of p27 in
the mammary epithelium would result in a phenotype that
mimics the hypoplastic phenotype of the cyclin D1-defi-
cient mammary epithelium.

We investigated these hypotheses in p27*/~and p27~7/~
mouse mammary glands at several stages of postnatal
mammary gland morphogenesis. Transplantation of p27~/~
epithelium into precleared mammary fat pads of wild-type
mice allowed us to analyze the mammary glands at unique
physiological stages, including pregnancy, lactation, and
involution, thus circumventing the inability to observe
p27~/~ mammary gland differentiation due to the infertil-
ity of p27~/~ females. We report that p27*/~ mammary
glands displayed increased proliferation and delayed invo-
lution. Intriguingly, p27~'~ mammary glands displayed a
decrease in epithelial proliferation with a marked delay in
differentiation, similar to the phenotype of the cyl/™~
glands. Cyclin D1-cdk4 assembly and activity, nuclear lo-
calization of cyclin D1, and the stability of cyclin D1 were
all markedly reduced in p27~/~ mammary glands. These
results suggest that the absence of p27 results in a block in
cell cycle progression in mammary epithelial cells, proba-
bly a result of the loss of cyclin D1-cdk4 activity.

Materials and Methods

Mouse Strains and Mammary Gland Transplantations

All mice were derived from p27*~ P1 on a mixed C57BI/6-129/SvJ back-
ground strain, a gift from Dr. Andrew Koff (Memorial Sloan-Kettering
Cancer Center, New York, NY) (Kiyokawa et al., 1996). All mice were
housed in the Animal Care Facilities at Vanderbilt University School of
Medicine in accordance with Association of Assessment and Accredita-
tion of Laboratory Animal Care guidelines. Mice were genotyped by PCR
analysis of genomic DNA using the following primers from the endoge-
nous p27 allele to generate a 206-bp product: primer 1, 5'-TCA AAC
GTG AGA GTG TCT AAC GG-3'; and primer 2, 5'-AGG GGC TTA
TGA TTC TGA AAG TCG-3'. The following primer from the neo cas-
sette disrupting the p27 gene (5’-ATA TTG CTG AAG AGC TTG GCG
G-3') was used to generate a 298-bp product with primer 1.
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Mammary glands from virgin mice were collected in the diestrus phase
of the estrous cycle as determined by cytological smear of vaginal cells. Be-
fore 6 wk of age, mice were not analyzed for phase of estrous. Mammary
gland transplantations were performed as described (Edwards et al., 1996).
In brief, the right and left no. 4 inguinal mammary glands of 21-d-old p27+/*
recipient females were cleared of endogenous epithelium by surgically re-
moving the mammary fat pad from the nipple to the lymph node. The no. 4
mammary glands of 6-wk-old p27*/*or p27~/~ female donors were har-
vested, and a 2-mm?’ segment was used for transplantation into the center
of the remaining p27*/* recipient fat pad. Mammary glands were analyzed
6-12 wk after transplantation. Female mice were mated after 8 wk of age
or 8 wk after transplantation. Mammary glands from pregnant mice were
harvested at 16.5 days postcoitum (dpc). After 10 d of lactation, pups were
withdrawn from p27*/* or p27*/~ mothers, and glands were harvested at 1,
3,5, and 21 days postforced wean [dpfw]). For reconstituted glands, pups
were immediately withdrawn within 2—4 h of birth to analyze the “lacta-
tional” phenotype of the reconstituted mammary glands. (This was done
to prevent precocious involution of the reconstituted mammary gland;
during the transplant procedure, the primary epithelial duct was severed
from the nipple. At lactation, the sealed primary duct becomes distended
with milk, a condition which induces involution within 24 h.) As indicated,
some mice of each genotype were given a 90-d release estrogen (0.1 mg)/
progesterone (10 mg) pellets (Innovative Research of America), im-
planted subcutaneously between the scapulae. Mammary glands were har-
vested after 60 d of estrogen/progesterone exposure.

Western Blot Analyses

Mammary glands were harvested and homogenized immediately as de-
scribed previously (Lenferink et al., 2000). Total protein (20 pg) was sepa-
rated by SDS-PAGE and transferred to nitrocellulose membranes. West-
ern blot analyses were performed as described previously (Brantley et al.,
2000) using the following antibodies: p27 (Transduction Laboratories);
pRb and cyclin D1 (BD PharMingen); cyclin E, Cdk2, and Cdk4 (Santa
Cruz Biotechnology, Inc.); a-lactalbumin and B-casein (Neomarkers);
keratin-14 (Amersham Pharmacia Biotech); and signal transducer and ac-
tivator of transcription (Stat)Sa and phospho-Stat5 (Santa Cruz Biotech-
nology, Inc.).

Histological Analyses

Mammary glands were harvested and immediately fixed in 10% formalin
(VWR Scientific). Hematoxylin-stained whole mount preparations of no.
4 mammary glands were prepared as described previously and photodocu-
mented (Lenferink et al., 2000). Paraffin-embedded mammary glands
were sectioned (5 pm), rehydrated, and stained with Mayer’s hematoxylin
and eosin B—phloxine (Sigma-Aldrich). For immunohistochemistry, sec-
tions were treated as described previously (Brantley et al., 2000) using
rabbit polyclonal p27 antibody (Santa Cruz Biotechnology, Inc.) or cyclin
D1 antibody (Upstate Biotechnology).

BrdU and TUNEL Analyses

A sterile solution of BrdU (10 mg/ml; Sigma-Aldrich) in PBS (pH 7.4) was
administered to mice by intraperitoneal injection (0.1 mg/kg). Mammary
glands were harvested after 3 h, paraffin-embedded, and sectioned. Immu-
nohistochemical detection of BrdU incorporation was performed using a
mouse monoclonal anti-BrdU antibody (Zymed Laboratories) according
to the manufacturer’s instructions. Detection of apoptosis in paraffin sec-
tions by terminal deoxynucleatidyl transferase-mediated dUTP-biotin
nick end labeling (TUNEL) analysis was performed using terminal deoxy-
nucleotidyl transferase (Intergen Co.) to label the ends of fragmented
DNA with digoxigenin, which was immunohistochemically localized using
a mouse monoclonal antidigoxigenin antibody (Intergen Co.) according to
the manufacturer’s instructions.

Isolation and Culture of Primary Mammary Epithelial Cells

10 inguinal mammary glands per genotype were harvested from 21-d-old
siblings and digested at 37°C for 4 h in 100 U/ml hyaluronidase and 3 mg/
ml collagenase A (Sigma-Aldrich) in PBS (pH 7.4). The resulting cell sus-
pension was washed five times in PBS plus 10% FCS, plated on dishes
coated with growth factor—reduced Matrigel (Becton Dickinson) in pri-
mary mammary epithelial cell (PMEC) medium (serum-free DME:F12
[50:50; GIBCO BRL], 5 ng/ml EGF [Clonetics], 5 ng/ml 17-8 estradiol
[Sigma-Aldrich], 5 ng/ml progesterone [Sigma-Aldrich], and 50 ng/ml in-
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sulin [Clonetics]), and cultured at 37°C, 5% CO,. In some cases, monolay-
ers were treated with cycloheximide (1 pg/ml; Sigma-Aldrich) for 0-90
min, washed with PBS, and lysed in 1% Nonidet P-40 (vol/vol). Extracts
were collected as described above. Cyclin D1 protein was detected by
Western blot analysis of equal amounts of protein (20 pg). For three-
dimensional cultures, PMECs were plated within a thick layer of growth
factor-reduced Matrigel. PMEC medium was layered on top of the poly-
merized Matrigel. Cultures were photodocumented using the Olympus DP-
10 digital camera adapted to an Olympus CK-2 phase—contrast microscope.

FACS® Analysis

Proliferating unsynchronized PMECs were harvested by trypsinization,
fixed in ice-cold methanol, and labeled with 50 wg/ml of propidium iodide
(Sigma-Aldrich) as described previously (Lenferink et al., 2000). A total
of 10,000 stained nuclei per sample was analyzed in a FACSCalibur™ flow
cytometer (Becton Dickinson). DNA histograms were modeled using
Modfit-LT Software (Verity).

Immunoprecipitation and Kinase Assays

Mammary gland extracts were prepared as described above. 500 pg of to-
tal protein was used for immunoprecipitation (IP) as described previously
(Lenferink et al., 2000) using polyclonal antibodies against cyclin D1,
Cdk2, and Cdk4 (Santa Cruz Biotechnology, Inc.). The precipitates were
either used for in vitro kinase assays or resolved by SDS-PAGE followed
by Western blot analysis. For kinase assays, IP products were washed in
ice-cold PBS, then equilibrated to ice-cold kinase buffer (50 mM Hepes,
pH 7.5, 10 mM MgCl,, 2.5 mM EGTA, 1 mM DTT, 0.1 mM NaF, 0.1 mM
Na;VO,, 1 mM ATP) for 20 min and resuspended in 20 pl of kinase buffer.
Cdk2 IPs were assayed for kinase activity against 0.1 pg histone H1 (HH1;
Roche Molecular Biochemicals), whereas Cdk4 IPs were assayed against
0.1 g of a 46-kD fragment of pRb (Santa Cruz Biotechnology, Inc.). Ki-
nase reactions were performed in a final volume of 30 .l in the presence of
5 wCi [y-**P]ATP (specific activity 3,000 Ci/mmol; Amersham Pharmacia
Biotech) for 45 min at 30°C. The entire reaction volume was electropho-
resed on an 8% polyacrylamide gel at 60 mA for 3 h at 4°C. Gels were
dried at 80°C and exposed to autoradiographic film (16 h at —80°C).

Whole Organ Culture of Mammary Glands

Inguinal (no. 4) mammary glands were harvested from 5-wk-old mice un-
der sterile conditions. Only the portion of the mammary gland between the
nipple and the lymph node was used for culture. The mammary glands were
cultured at the air-liquid interface on Costar 8-p nitrocellulose filters in a
chemically defined medium consisting of DME/F12 supplemented with 5
ng/ml 17-B estradiol, 5 ng/ml progesterone, 50 ng/ml recombinant human
insulin, 5 pg/ml prolactin (Sigma-Aldrich), and 5 ng/ml EGF. Whole mam-
mary glands were cultured in this manner for 0-10 d at which point whole
mount hematoxylin staining was used to visualize the epithelium.

Results

P27 Expression Is Detected at All Stages of Postnatal
Mammary Gland Morphogenesis

The steady state protein levels of p27 were measured at
various stages of mammary gland development in wild-
type C57B1/6X129Sv/J female mice (Fig. 1 A). Similar lev-
els of p27 protein expression were detected at all stages
examined by Western blot analysis, including virgin, mid-
pregnancy, lactation, and involution. Immunohistochemi-
cal detection of p27 in wild-type virgin mammary gland
sections revealed intense staining for p27 within the epi-
thelium with lower staining throughout the stroma (Fig. 1,
B and E). Stromal staining was not due to background
trapping of secondary antibody, since sections of wild-type
mammary glands that were incubated in the presence of
secondary antibody alone did not produce any stromal
staining (data not shown). Staining for epithelial p27 pro-
tein was seen in the cytoplasm and nuclei of wild-type
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Figure 1. p27 is expressed in the mammary epithelium at all stages of
postnatal morphogenesis. (A) Western blot analysis detecting p27 protein
in p27*/* mammary glands harvested at the indicated stages of mammary
gland development: pregnancy at 16.5 dpc; lactation at postnatal day 10; in-
volution at 3 dpfw. Molecular weights (in kD) are indicated at left. (B-G)
Immunohistochemical analysis of p27 expression in no. 4 intact virgin
mammary glands harvested from 6-wk-old females or wild-type mammary
fat pads reconstituted with tissue of the indicated genotype at 5 wk after
transplantation. Arrowhead indicates nuclear localization of p27. Arrow in
G indicates host vessel stained positive for p27. Panels shown are represen-
tative of results obtained for n = 3 per genotype, including reconstitutions.
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mammary glands, but was primarily localized to the nuclei
of both intact p27*/~ glands (Fig. 1 C) and wild-type fat
pads reconstituted with p27*/~ epithelium (Fig. 1 F). Al-
though intermediate p27 staining was detected in p27*/~
glands compared with wild-type glands, detection of p27
expression was absent in intact p27 '~ mammary glands
(Fig. 1 D) and in the epithelium of wild-type mammary fat
pads transplanted with p27~'~ cells (Fig. 1 G). Blood ves-
sels from wild-type fat pads transplanted with p27~/~ tis-
sue stained positive for p27 (Fig. 1 G, arrow), since the
vasculature was derived from the wild-type host (for re-
view see Young, 2000). These results confirm the loss of
p27 gene expression in p27 '~ mice and demonstrate epi-
thelial expression of p27 at various stages of postnatal
mammary gland morphogenesis.

Loss of One p27 Allele Causes Increased Mammary
Epithelial Growth, Whereas Loss of Both p27
Alleles Results in Decreased Growth

To determine the consequences of a reduction or loss in
p27 expression on mammary gland morphogenesis, whole
mount preparations and histological sections of virgin
p27+*, p27+/~, and p27~'~ mammary glands were exam-
ined (Fig. 2). At 21 d of age, mammary glands from p27+/~
mice demonstrated a consistent increase in the size of ter-
minal end buds (TEBs) compared with age-matched wild-
type controls (Fig. 2 A). TEBs are thought to represent
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the most highly proliferative region of the progressing
mammary epithelium (for review see Medina, 1996). Fur-
thermore, p27*/~ mammary epithelium consistently pene-
trated a greater area of the mammary fat pad (compare
the relative location of the TEBs to the centrally located
lymph node [see asterisk] of the no. 4 mammary gland),
suggesting an increased rate of ductal growth (Fig. 2 A).
Mammary epithelium in p27~'~ mice displayed the oppo-
site phenotype, characterized by a decrease in the size and
number of TEBs and a reduced penetrance through the fat
pad (Fig. 2 A). These differences persisted through 35
(Fig.2,B and C) and 70 d (Fig. 2, D and G). At 35d, TEBs
were present in wild-type glands and penetrated to the dis-
tal edge of the lymph node. The strikingly prominent
TEBs of the p27"'~ mammary glands progressed well past
the lymph node, whereas the leading edge of the p277/~
mammary epithelium lacked obvious TEBs. It was also ap-
parent that the primary ducts of the p27~/~ mammary
glands had a substantial decrease in secondary branches
compared with wild-type or p27+/~ mammary glands.

At 70 d, TEBs regressed from wild-type glands, but re-
mained apparent in age-matched p27*'~ mice at identical
phases of estrous (Fig. 2, D and E). Mammary glands from
p27~'~ mice did not display TEBs. The decreased epithe-
lial stromal ratio in the p27 '~ mammary glands was ap-
parent in histologic sections, and the diameter of the duc-
tal lumena appeared to be decreased in size at this stage

920



when the mammary glands were fully matured (Fig. 2, F
and G). The number of TEBs per no. 4 mammary gland at
35 d (Fig. 2 B) and the number of epithelial structures visi-
ble per 100X field in sections taken from mammary glands
at 70 d (Fig. 2 F) were counted for all three genotypes and
are shown in Fig. 2 I.

Although p27~'~ mice are known to have altered ova-
rian function, it is thought that basal levels of the ovarian
hormones that regulate virgin mammary gland morpho-
genesis are present in relatively equal concentrations in
wild-type versus p27-deficient mice (Tong et al., 1998).
However, ovarian production of nidatory estrogen re-
quired for embryonic implantation is reduced in p27-defi-
cient animals. Based on this, we wanted to determine if in-
creased concentrations of ovarian hormones could rescue
the hypoplastic phenotype of p27-deficient mammary
glands. Slow release (90-d) estrogen/progesterone pellets
were implanted under the dorsal skin of 180-d-old virgin
mice. After 60 d, the mammary glands were harvested for
analysis. Mammary epithelium from all three genotypes
displayed lobular bud formation (Fig. 2 H). The epithe-
lium of p27*/~ mice was more abundant than that seen in
wild-type glands and displayed areas which may represent
focal hyperplasias (Fig. 2 H, arrowhead). Mammary epi-
thelium in p27~/~ glands still exhibited reduced secondary
branching compared with controls. These results demon-
strate that in the absence of p27, mammary epithelium has
fewer TEBs during early development and persistently re-
duced secondary branching. In contrast, p27*/~ mammary
glands display an increased rate of ductal development
with increased numbers of TEBs.

Altered Cell Growth of the Mammary Epithelium Due to
Loss of p27 Is an Epithelial Cell Autonomous Phenotype

To determine whether the p27~'~ phenotype was intrinsic
to the mammary epithelium and not secondary to stromal
or hormonal influences, p27 '~ mammary tissue was trans-
planted into wild-type mammary fat pads cleared of en-
dogenous breast epithelium. This technique has been used
to reconstitute mammary fat pads with donor mammary
epithelium, which will permeate the fat pad and differenti-
ate in a manner consistent with the native gland. p27 pro-
tein expression was detected in mammary glands reconsti-
tuted with p27*/* or p27*/~ epithelium (see Fig. 1, E and
F) but not in mammary glands reconstituted with p277/~
cells (Fig. 1 G). After 6 wk, mammary glands reconstituted
with p27*/*, and p27%/~ epithelium exhibited extensive
ductal branching with prominent TEBs (Fig. 3, A and B,
arrows). In contrast, p27~'~ epithelium displayed de-
creased lateral branching. There was a marked reduction
of TEBs in the mammary glands reconstituted with p27~/~
tissue, similar to what is seen in intact mammary glands
from p27~'~ animals (see Fig. 2, C, E, and G). These char-
acteristics persisted for >12 wk after transplantation (data
not shown). These results suggest that the hypoplastic phe-
notype of p27~/~ mammary glands is independent from
hormonal or stromal factors.

PMECs harvested from p27+/*, p27*'~, and p27~'~ mice
were cultured in a three-dimensional extracellular matrix
in the presence of mitogenic hormones to further investi-
gate the epithelial autonomy of the p27~'~ and p27*/~ phe-
notypes (Fig. 3, C and D). Tubulogenesis in p27*/* and
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p27*'~ PMECs occurred within 5 d of culture (21.4 = 7.3
and 32.1 = 5.3 branches per 400X field in p27*/* and p27*/~
PMECs, respectively). p27~'~ PMECs failed to induce
tubular structures within this time frame (0 branches per
400X field). After 15 d in culture, p27~'~ PMECs began to
organize into rudimentary tubules (data not shown), sug-
gesting that p27~/~ mammary epithelial cells are capable
of growth and tubulogenesis but in a delayed fashion com-
pared with cells containing p27. In contrast, complex
branch formations occurred at a more rapid rate in p27+/~
PMECs compared with wild-type cells.

Loss of One p27 Allele Causes Increased Proliferation
of the Mammary Epithelium; Loss of Both p27
Alleles Causes Decreased Proliferation

We next measured mammary epithelial proliferation by
labeling virgin 5-wk-old mice with BrdU and assessing
BrdU incorporation into chromosomal DNA (Fig. 4,
A-C). When TEBs were examined, a 2.6-fold increase in
BrdU incorporation into p27*/~ compared with p27+/*
mammary epithelial cells was observed (Fig. 4, A and E;
P <0.001, n = 6). Although TEBs are rare in p27 7~ mam-
mary glands, the structures which most closely resembled
TEBs were analyzed for BrdU incorporation and dis-
played a 2.6-fold decrease compared with wild-type TEBs
(Fig. 4, A and E; P < 0.006, n = 6). BrdU incorporation
into ductal epithelium was also examined (Fig. 4 B). As
expected, the overall rate of BrdU labeling was decreased
in ductal epithelium compared with that in TEBs for each
genotype analyzed. However, quantification of BrdU-
labeled cells demonstrated that p27*/~ ducts contained
1.8-fold more BrdU-positive nuclei than wild-type ducts,
whereas p27~/~ glands displayed a 2-fold decrease in BrdU
incorporation compared with wild-type ducts (3.1 =
0.36%, 5.58 = 0.49% [P < 0.04], and 1.38 = 0.12% [P <
0.02] for p27*'*, p27*/~, and p27~'~, respectively). The al-
tered epithelial proliferation correlated with increased ep-
ithelial content in p27*/~ glands and decreased epithelial
content in p27~'~ glands (in 10 randomly chosen 400X
fields, p27*/* equals 7,832 cells, p27*'~ equals 10,490 epi-
thelial cells, and p27~'~ equals 5,502 epithelial cells).
Proliferation in wild-type mouse fat pads that had been
transplanted with p27*/*, p27*/~ or p27~'~ mammary
epithelium was examined at 5 wk after transplantation
(Fig. 4 C). Again, BrdU incorporation in p27*/~ mammary
epithelium (31.2 = 4.6%) was elevated compared with
wild-type mammary epithelium (17.1 = 4.4%), whereas
BrdU labeling was decreased in p27~'~ epithelium (6.7 *
3.0%). Labeling of purified PMECs in culture demon-
strated that a monolayer of p27*/~ PMECs had a higher
rate of BrdU incorporation compared with wild-type
PMECs (Fig. 4, D and E), whereas p27~'~ PMECs had a
decreased rate of BrdU labeling. Flow cytometric analysis
of PMEC nuclei stained with propidium iodide demon-
strated a larger G, with a smaller S phase fraction in p27~/~
cells compared with wild-type cells (Fig. 4 F, P < 0.045, S
phase comparison, Student’s ¢ test). In contrast, p27/~
cells displayed an increase in the percentage of cells in S
phase (P < 0.02, Student’s ¢ test) with a lower proportion
of cells in G; compared with wild-type cells, consistent
with an accelerated G; to S transition. These results sug-
gest that p27 function is critical for the growth of the mam-
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mary gland. Whereas loss of one p27 allele results in mark-
edly increased epithelial cell proliferation, loss of both p27
alleles reduces breast epithelial proliferation.

Total Loss of p27 Affects the Formation and Function of
Cyclin D1-Cdk4 Complexes in Mammary Epithelial Cells

To elucidate the mechanism by which proliferation is in-
creased in p27%'~ and decreased in p27~/~ mammary
glands, the abundance of cyclin D1, cyclin E, Cdk2, and
Cdk4 proteins was examined. Western blot analyses of vir-
gin mammary extracts revealed that levels of Cdk2, Cdk4,
and cyclin E were not affected significantly by the relative
amount of p27 protein, whereas cyclin D1 levels were sig-
nificantly lower in p27~'~ glands (Fig. 5 A). Phosphory-
lated pRb was detected in lysates from all three genotypes,
as shown by the slowly migrating immunoreactive species.
However, hyperphosphorylation of ppRb was greater in
p27**and p27*/~ lysates compared with p27~/~ lysates.
Cyclin D1 from p27™'* and p27*'~ mammary glands co-
precipitated similar levels of p27 and Cdk4, even though
there was significantly less total p27 available in p27*/~
glands compared with p27*/* glands (Fig. 5 B). In contrast,
experiments performed with Cdk2 antibodies showed a
relative decrease in the amount of Cdk2-associated p27 in
p27"~ mammary extracts but increased levels of Cdk2-

number of structures

End Epithelial

buds/whole structures/
mount 100X field

Figure 2. Altered ductal growth and branching in p27*/~ and
p27~'~ mammary glands. (A-E) Whole mounts of virgin no. 4
mammary glands at 21, 35, and 70 d. Asterisk denotes lymph
nodes. All samples were photographed at the same magnification.
Boxed areas (B and D) are shown enlarged directly below each
panel (C and E) to show detail. Arrows indicate TEBs. (F-G)
Hematoxylin and eosin—stained sections of mammary glands
from virgin mice of each genotype at 70 d are shown. (H) Whole
mount staining of virgin mammary glands from 240-d-old mice
treated for 60 d with slow release estrogen—progesterone pellets.
Arrowhead denotes area of focal hyperplasia. Panels shown are
representative of results obtained for n = 3 per genotype. (1)
Quantification of the number of TEBs per mammary gland at 35 d
of age (n = 10 per genotype, see Fig. 2 B) and the number of epi-
thelial structures per 100X field of hematoxylin and eosin-stained
section of mammary gland from mice at 70 d of age (n = 10 fields
per each of 6 glands per genotype, see Fig. 2 F). Numbers are pre-
sented as the average plus or minus the SEM; *P < 0.003, **P <
0.0001, *P < 0.03, ©P < 0.01, Student’s ¢ test. Bars: (A, B, D, and
H) 400 pm; (C, E, and F) 100 pm; (G) 25 pm.
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associated cyclin E. As expected, cyclin D1 antibodies
were unable to precipitate p27 in p27~'~ glands. However,
most strikingly coprecipitation of Cdk4 with cyclin D1 was
eliminated in the absence of p27, even though both pro-
teins were present in the p27~/~ extracts. Antibodies di-
rected against Cdk2 were able to coprecipitate cyclin E in
the absence of p27. These data suggest that the gene dos-
age of p27 influences the association between cyclin D1
and Cdk4 but not of cyclin E with Cdk2.

The kinase activities of immunoprecipitated Cdk4 com-
plexes were measured in p277'*, p277/~, and p277/~
mammary gland extracts using a 46-kD COOH-terminal
fragment of Rb as a substrate (Fig. 5 C). Cdk4 immuno-
precipitates from p27+/~ extracts were able to phosphory-
late p46-Rb at a level similar to that observed with p27+/*
extracts. Cdk4 activity against p46-Rb was barely detect-
able in lysates from p27~/~ glands. Phosphorylation of
HH1 by Cdk2 immunoprecipitates was comparable in ex-
tracts from each genotype tested. These results suggest
that the loss of p27 does not affect the kinase activity of
Cdk2, whereas Cdk4 relies on the presence of p27 in mam-
mary epithelium for its interaction with cyclin D1 and
maximal kinase activity against Rb.

To examine cyclin D1 stability in the absence of p27,
PMECs were treated with cycloheximide, and their con-
tent of cyclin D1 protein was followed over time (Fig. 5
D). The level of cyclin D1 in p27*/* and p27~'~ PMECs
decreased as a function of exposure to cycloheximide.
However, cyclin D1 levels decreased at a faster rate in
p277'~ PMECs (t;, < 15 min) compared with wild-type
PMEC:s (t,, ~30-45 min). This is consistent with previous
cell culture studies in which cyclin D1 displayed a reduced
stability in the absence of p27 (Cheng et al., 1999).

Nuclear Localization of Cyclin D1 Is Impaired
in p27-'~ Mammary Glands

The subcellular localization of cyclin D1 in the mammary
epithelium was examined by immunohistochemistry (Fig.
6). Cyclin D1 staining was observed in glands from each
genotype, but it was markedly reduced in p27~/~ mam-
mary glands, consistent with its rapid turnover (see Fig. 5
D). Cyclin D1 staining was observed in both the cytoplas-
mic compartment and nuclei of virgin p27*/*, with the ma-
jority of nuclei being completely devoid of cyclin D1 (Fig.
6). Cyclin D1 was evident in 17.8% of p27*/~ nuclei, a 1.8-
fold increase in the frequency of cyclin D1 nuclear local-
ization over wild-type mammary epithelial cells (P <
0.045). In contrast, p27~/~ epithelium displayed almost no
nuclear cyclin D1 (0.0625%; P < 0.001). These results sug-
gest that in the absence of p27, nuclear localization of cy-
clin D1 is severely impaired.

Complete Absence of p27 Impairs Growth and
Differentiation of the Mammary Epithelium
during Pregnancy and Lactation

Comparison of mammary glands from pregnant (16.5 dpc)
p27** and p27*'~ mice revealed no morphological differ-
ences (Fig. 7, A and B). Lobuloalveolar development ap-
peared to occur normally in p27*/~ glands (Fig. 7, E and
F). Because p27~'~ females are infertile, the effect of p27
deficiency on the mammary epithelium during pregnancy
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was investigated in wild-type mammary glands reconsti-
tuted with either p27~'~ or wild-type tissue (Fig. 7, C and
D). Contralateral control mammary glands reconstituted
with wild-type epithelium appeared histologically indistin-
guishable from intact wild-type glands at 16.5 dpc (Fig. 7,
C and G compared with A and E). However, severely im-
paired growth of the p27-deficient epithelium was ap-
parent (Fig. 7, D and H), whereas the native mammary
gland from the same animal displayed the morphological
changes associated with pregnancy (data not shown). This
suggests that p27 is required in the mammary epithelium
for proper morphogenesis during pregnancy.

No morphological differences were observed between
p27** and p27*/~ lactating mammary glands (Fig. 8, A, B,
E, and F). Indeed, p27*'~ lactating alveoli were filled with
lipid-containing secretions, and p27*'~ mothers were able
to successfully nurse litters from sequential pregnancies,
suggesting that p27*'~ mammary glands are able to differ-
entiate (Fig. 8, B and F). Examination of mammary glands
reconstituted with p27*/* epithelium showed histological
evidence of lactation, including distended alveoli filled
with lipid-containing secretions and a marked increase in
the ratio of epithelial to stromal cells (Fig. 8, C and G). In
contrast, mammary glands reconstituted with p27~/~ tis-
sue (n = 12) showed minimal increase in epithelial tissue
with an abundance of visible stroma throughout the
gland (Fig. 8, D and H). Although p27~/~ ducts became
distended with eosinophilic secretions, distention of the
alveoli was never observed, suggesting an inability to
form lobuloalveolar structures and achieve functional
differentiation.
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’ Figure 3. The morphologi-

N cal effects of p27 haploinsuf-

ficiency and of p27 deficiency

are epithelial autonomous.

(A and B) Whole mounts of

wild-type mammary glands

reconstituted with p27*/*,

p27%'~, or p277'~ tissue 5 wk

after transplantation. Boxed

areas are enlarged to show

detail. ~ Arrows indicate

TEBs. (C and D) Primary

mammary epithelial cells

from virgin p27*/*, p27/~, or

L3 p277'~ females (n = 3 mice

. per genotype) cultured in

_ Matrigel. Representative

A% photomicrographs shown

: 2 were captured at 400X mag-

" m&:‘"‘tﬁ; o nification (C) or at 100X (D)

4 after 5 d; n > 20 colonies/

genotype. Bars: (A) 400 pm;
(B) 100 pm.

To visualize the development and differentiation of the
p27~'~ epithelium in the context of its native mesenchyme,
whole organ culture of mammary glands was used (Fig. 8, I
and J). Glands were cultured for 1-10 d in a chemically de-
fined medium containing estrogen, progesterone, prolac-
tin, EGF, and insulin, a combination of factors that have
been used to mimic pregnancy and induce differentiation
of whole mammary glands in culture. Glands harvested
from 4-wk-old wild-type or p27-deficient mice and cul-
tured for 1 d both displayed the characteristic phenotypes
of their respective genotypes (Fig. 8 I). Note the thin ducts
of the p27~/~ glands and the apparent lack of TEBs. After
10 d in culture, wild-type mammary glands responded to
the lactogenic hormones by producing abundant lobuloal-
veolar clusters with an increase in the total epithelial con-
tent of the cultured gland (Fig. 8 J). In contrast, p27~/~
glands did not demonstrate lobuloalveolar differentiation,
nor did they display the increase in epithelia observed in
the wild-type organ cultures. These results confirm the in
vivo data obtained with mammary gland transplants and
extend this observation to include the development of
p27~'~ epithelium in the context of its native mesenchyme.

To further determine the extent to which p27~/~ epithe-
lium was able to differentiate on a molecular level, the ex-
pression of milk proteins was examined. A low level of
B-casein was detected in lactating glands reconstituted
with p27~'~ epithelium at 16.5 dpc, whereas it was strongly
expressed in lactating wild-type glands and glands recon-
stituted with wild-type mammary tissue (Fig. 8 K, left). The
expression of a-lactalbumin was not detected in glands re-
constituted with p27~'~ epithelium. This decreased expres-
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Figure 4. Proliferation is increased in
P27~ but decreased in p27~'~ mammary
epithelium. (A and B) Immunohistochem-
ical detection of BrdU incorporation in
mammary glands of 5-wk-old virgin mice
(n = 6 per genotype). TEBs and ducts
are shown. Genotypes are indicated. (C)
BrdU incorporation into nuclei of wild-
type mammary glands transplanted with
p27t*, p27%/~, or p27~'~ mammary tis-
sue. (D) BrdU incorporation into puri-
fied PMECs harvested from virgin mice
of the indicated genotypes (n = 3 per
genotype). (E) Quantification of BrdU
incorporation in TEBs and in PMECs.

The average number of BrdU-positive epithelial cells per single randomly chosen 400 X field was determined. The proliferative index was
calculated as follows: ([number of BrdU-labeled cells]/[total number of cells]) X 100. Each value represents the average of 10 fields from
each of 6 individually analyzed mammary glands per genotype. (F) Flow cytometric analysis of propidium iodide-stained PMEC nuclei from
virgin p27*/*, p27+/~ or p27~'~ mice. Results are shown as the mean SEM of six mice per genotype. Bars, 25 pm.
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sion of lactational proteins was not due to a decrease in
p27~'~ epithelial content relative to wild-type glands,
since data were normalized to the content of keratin-14, a
marker of epithelial cells. The expression and phosphory-
lation status of Stat5a were also examined, since this tran-
scription factor is known to be required to initiate the
transcription of several milk protein genes (Henning-

p27

|| .Cyclin D1

Figure 5. Loss of cyclin D1-Cdk4 activity and de-
creased cyclin D1 stability in p27~'~ mammary
glands. (A) Western blot analysis of whole mam-
mary gland extracts from virgin mice of each geno-
type was used to examine the content of p27, cyclin
D1, cyclin E, Cdk2, Cdk4, and Rb. (B) IP using
Cdk2 or cyclin D1 antibodies was performed on
mammary gland extracts from mice of each geno-
type. Immunoprecipitates were subjected to West-
ern blot using antibodies against p27, cyclin E, cyclin
D1, Cdk2, or Cdk4 as indicated. (C) Kinase activity
of Cdk4 and Cdk?2 precipitates pRb (46 kD) or HH1
as indicated in Materials and Methods. (D) p27*/*
or p27~'~ PMECs were cultured for 0-90 min in the
presence of cycloheximide (5 pg/ml). Whole cell ex-
tracts were analyzed for the presence of cyclin D1
by Western blot analysis.

hausen et al., 1997). Although the levels of Stat5a were
equal regardless of the genotype examined, it was ob-
served that phosphorylation of Stat5a was decreased at
16.5 dpc in wild-type mammary fat pads reconstituted
with p27~/~ epithelium but not in fat pads reconstituted
with wild-type epithelium (Fig. 8 K, right). These results
further support that p27~/~ mammary epithelial cells are
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Figure 6. Impaired nuclear localization of

cyclin D1 in the absence of p27. (A) Immuno-
histochemical detection of cyclin D1 protein

% cyclin D1- Total cells Total # cyclin D1-
positive nuclei counted positive nuclei
p27+/+ 9.99% 2010 200
p27+/- 17.8% 650 116
27-/- 0.0625% 1050 1

in 6-wk-old virgin p27*/*, p27*/~, or p277'~
glands. (B) Quantification of the total num-
ber of cyclin D1-positive nuclei.
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Figure 7. Mammary glands reconstituted with p27 '~ epithelium display impaired morphogenesis during pregnancy. (A-D) Hematox-
ylin and eosin staining of mammary glands from mice of the indicated genotypes at d 16.5 of pregnancy. Analysis of glands reconstituted
with wild-type (p27/*R) and p27~'~ (p27*/*R) tissue was performed. Panels are shown at lower magnification to show the extent of ep-
ithelial development and at higher magnification (E-H) to show the detail of lobuloalveolar development. Results are representative of

12 independent analyses. Bars: (A-D) 100 pm; (E-H) 25 pm.

unable to differentiate in response to pregnancy and lacta-
tion.

Loss of One p27 Allele Decreases Apoptosis and Delays
Involution of the Mammary Gland

Involution of p27*/~ and p27*/* mammary epithelium was
examined at 1, 3, 5, and 21 dpfw (Fig. 9, A-H). By 3 dpfw,
delayed involution was apparent in p27*'~ glands with an
excess of epithelium and a reduced level of visible adipo-
cytes compared with p27*/* glands (Fig. 9, B compared
with F). At 21 dpfw, the wild-type mammary gland re-
sembled the relatively quiescent ductal network of a vir-
gin gland, whereas abundant epithelium remained in
p27*/~ mammary glands, including persistent lobuloalveo-
lar structures and ducts distended with lipid-containing se-
cretions (Fig. 9, D compared with H). These changes per-
sisted as long as 40 dpfw (data not shown).

TUNEL analysis was performed to detect cells under-
going apoptosis during involution (Fig. 9, I-L). Approxi-
mately 64% of the total number of p27*'* epithelial nu-
clei stained TUNEL positive at 3 dpfw (Fig. 9, I and M),
consistent with previous reports (Strange et al., 1992).
However, only 29.9% of p27*/~ nuclei were TUNEL pos-
itive at this stage (Fig. 9, K and M; P < 0.007). The peak
of apoptosis in wild-type involuting mammary glands oc-
curred at 3 dpfw. In contrast, apoptosis in p27™'~ mam-
mary glands did not peak until 5 dpfw (43.6%), after
which the rate of apoptosis declined. These results sug-
gest that p27*'~ glands undergo reduced and delayed
apoptosis, resulting in a persistence of breast epithelium
after cessation of lactation. Involution in p27~/~ mam-
mary epithelium is not reported herein, since differentia-
tion and growth did not occur in a manner that would
make results interpretable.

Muraoka et a. p27-deficient Mouse Mammary Glands Are Hypomor phic

Discussion

We report the first in vivo evidence that the absence of
p27 within the mammary gland impairs cell cycle progres-
sion, whereas loss of only a single p27 allele has an oppo-
site effect, an acceleration of G, to S progression. In this
manner, stoichiometric levels of p27, ranging from no p27
(by homozygous-targeted disruption of the p27 gene) to
abnormally high levels of p27 (by gene overexpression or
increased protein stability) may determine the growth po-
tential of the mammary epithelium. We demonstrate that
haploid gene inactivation of p27 causes a decrease in p27
levels within the mammary epithelium, correlating with in-
creased proliferation, increased lateral branching, ele-
vated lobuloalveolar development, and delayed involu-
tion. These observations are consistent with previous
studies demonstrating that antisense-mediated inactiva-
tion of p27 results in increased cell proliferation (Coates et
al., 1996) and the low levels of p27 protein reported in sev-
eral human tumors (Clurman and Porter, 1998), further
supporting its role as a tumor suppressor.

However, intriguingly p27~/~ mammary glands showed
decreased proliferation. This defect appears to be intrinsic
to the epithelium, since p27~'~ epithelium transplanted
into wild-type females also exhibited decreased prolifera-
tion. This confirms that the hormonal environment of
p27-'~ females is not the ultimate determinant of this hy-
poproliferative phenotype. Epithelial-stromal interactions
are known to influence mammary gland morphogenesis.
Since a small amount of p27 '~ stromal tissue is trans-
planted along with the p27~/~ epithelium, one concern was
that the p27~/~ stroma may have caused the retarded pro-
liferation of the mammary epithelium. This possibility was
addressed by purifying primary mammary epithelial cells
from p27~/~ mice (Fig. 3). Under these ex vivo conditions,
p277'~ cells recapitulated the decreased branching and
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Figure 8. Mammary glands reconstituted with p27 '~ epithelium display impaired function during lactation. (A-D) Hematoxylin and
eosin staining of glands taken postpartum at 10 d (for intact glands) or 2 h (for reconstituted glands). Upper row shows low magnifica-
tion (A-D); bottom row shows high magnification (E-H). (I and J) Whole mammary glands from p27*'* and p27~'~ mice were cultured
for 10 d in the presence of mammogenic hormones (described in Materials and Methods) to determine the ability of p27~/~ glands to dif-
ferentiate within the context of p27 '~ stroma. Whole mounts are shown at 1 and 10 d of culture. Representative panels are shown; n = 10
per genotype. (K) Western blot analyses were used to examine the content of B-casein (B-cas), a-lactalbumin (a-LA), keratin-14 (K14),
Stat5a, and phospho-Stat5 proteins in virgin p27*/* and lactating p27*/* glands or lactating wild-type glands reconstituted with p27~'~
or p27*/* epithelium at 2 h postpartum. Results are representative of three independent analyses. Bars, 25 um.

proliferation observed in vivo. Our results confirm that
p27 is required in the mammary epithelium for prolifera-
tion and morphogenesis to proceed at a normal rate.
Because proliferation occurs in p27~/~ glands, albeit de-
layed, it is likely that there are other mechanisms in place
that incompletely circumvent the loss of p27 with the sub-
sequent loss of cyclin D1-Cdk4 activity. Many signals are
responsible for regulating proliferation within the mam-
mary epithelium, including estrogen, growth hormone,
prolactin, progesterone, adrenal steroids, and various
growth factors (Medina, 1996). These pathways may be
able to partially compensate for the loss of p27 and the
loss of cyclin D1-Cdk4 activity. Interestingly, previous re-
ports suggest a possible role for cyclin D1 in directly bind-

The Journal of Cell Biology, Volume 153, 2001

ing ER and potentiating ER-mediated transactivation of
ER-responsive genes (Zwijsen et al., 1997). The ability of
cyclin D1 to interact with ER is independent of its interac-
tion with Cdks and therefore may not require the presence
of p27. Other studies have shown that cyclin E-cdk2 com-
plexes have additional functions, downstream of the Rb
pathway, that drive the cell cycle into S phase (Lukas et
al., 1997). It is possible that this or another signaling path-
way may allow a low level of proliferation to occur, inde-
pendent of the level of Rb phosphorylation. Indeed, the
level of Rb phosphorylation is reduced in p27~'~ mam-
mary glands, consistent with the delay in G, progression,
but Rb phosphorylation is not completely eliminated by
the loss of p27 (Fig. 5). It is possible that low levels of Rb
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Figure 9. Postlactational involution is delayed in p27*/~ mammary glands. (A-H) Hematoxylin and eosin staining of mammary gland
sections taken from mice at 1, 3, 5, and 21 dpfw. Inset displays a low magnification of each of the indicated mammary glands shown. (I-L)
The level of apoptosis was measured in involuting mammary glands using TUNEL analysis. (M) Quantification of TUNEL-positive nu-
clei per total number of nuclei in 10 randomly chosen 400 X fields per each of six mice per genotype. Quantification of TUNEL-positive
nuclei was performed as described in Materials and Methods at 1, 3, 5, and 7 dpfw. Bars, 25 pm.

phosphorylation by cyclin E-Cdk?2 are sufficient to initiate
a reduced rate of G; progression. Alternatively, other cy-
clin D isoforms (such as cyclin D2 and cyclin D3) may be
able to interact with Cdks to initiate Rb phosphorylation
in p27~'~ mammary glands. Many cell types express com-
binations of D-type cyclins, such as D1-D2 or D2-D3
(Tam et al., 1994). However, we did not detect cyclin D2 in
virgin glands from all three mouse genotypes (data not
shown). This is consistent with previous studies demon-
strating that cyclin D1 is the predominant D-type cyclin
within the mammary gland. During periods of increased
proliferation such as pregnancy, cyclin D2 and cyclin D3
mRNAs were not detected by in situ hybridization in the
mouse mammary gland, whereas levels of cyclin DI
mRNA were dramatically elevated (Sicinski and Wien-
berg, 1997). This observation highlights the dependence of
the mammary epithelium on cyclin D1 to undergo rapid
proliferation and suggests that Rb phosphorylation by cy-

Muraoka et a. p27-deficient Mouse Mammary Glands Are Hypomor phic

clin D2- or D3-containing complexes in the mammary
gland is unlikely. However, these possibilities would re-
quire further investigation.

The effects of p27 deficiency became most pronounced
during pregnancy. Cyclin D1-deficient mammary glands
also suffer from proliferative defects that are most pro-
nounced during pregnancy (Sicinski and Weinberg, 1997).
Like cyclin D1 deficiency, loss of p27 results in impaired
lobuloalveolar development and production of lactational
proteins, suggesting that p27~'~ mammary glands would be
unable to support lactation. Strikingly similar defects were
observed in mice that are deficient for the genes encoding
the prolactin receptor or STATSa (Henninghausen et al.,
1997; Ormandy et al., 1997). It is interesting to speculate
that the prolactin receptor, which operates through the
JAK/STAT signaling pathway, may ultimately increase ex-
pression of cyclin D1 to initiate rapid proliferation and dif-
ferentiation of the mammary epithelium during preg-
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nancy. If cyclin D1, prolactin receptor, and StatSa are
involved in this linear pathway that controls growth and
differentiation, then dependence of cyclin D1 on p27
would explain the similarity of the p27~'~ mammary gland
to those that are devoid of either cyclin D1, prolactin re-
ceptor, or STAT5a.

Although we present evidence that the mammary glands
of p27-deficient mice are severely hypoplastic, many other
organs of p27-deficient mice are hyperplastic, containing
an increased number of cells. These include liver, retina,
gonads, and pituitary (Fero et al., 1996; Kiyokawa et al.,
1996; Nakayama et al., 1996). This observation suggests
that different organs respond to the loss of p27 in different
manners. This speculation is supported by a recent report
of p27*'~ and p27~'~ mice exhibiting increased susceptibil-
ity to chemical- or radiation-induced tumor formation in
lungs, stomach, and colon, whereas mammary tumors were
not reported in p27~'~ mice (Fero et al., 1998). The obser-
vations presented herein that p27 deficiency in the mam-
mary epithelium results in the same phenotype as the cy-
clin D1-deficient mammary epithelium is in direct contrast
to a recent report in which p27 deficiency can actually cor-
rect the retinal hypoplasia of cyclin D1-deficient animals
(Tong and Pollard, 2001). The correction of the cyl™'~ reti-
nal phenotype by loss of p27 suggests that p27 may func-
tion antagonistically to cyclin D1-cdk activity within the
retina. These data taken with our observations presented
herein demonstrate the tissue specificity of p27 function
and confirm that p27 can indeed perform dual roles. Mam-
mary hypoplasia due to p27 deficiency may be related to
the unique dependence of the mammary epithelium on cy-
clin D1 to initiate rapid proliferation, such as during pu-
berty and pregnancy. Since p27 is required for cyclin D1-
Cdk4 complex formation and function, the mammary
gland may also have a specific requirement for p27,
whereas other epithelia may be able to compensate for the
loss of p27 and/or the loss of cyclin D1-Cdk4 function.

The inability of p27~/~ mammary epithelial cells to form
lobuloalveolar structures and lactate (Figs. 8 and 9) sug-
gests that p27 plays a direct role in differentiation of the
mammary gland. There is precedent evidence regarding
the role of p27 in differentiation; for example, the com-
plete loss of p27 prevents terminal differentiation of the
ovarian corpus luteum, oligodendrocytes, and skin kerati-
nocytes (Robker and Richards, 1998; Tong et al., 1998).
On the other hand, this impaired differentiation may be
secondary to the proliferative defect due to loss of p27. For
example, a critical level of mammary epithelial cells may
be required to allow terminal differentiation to proceed, or
perhaps any given mammary cell must divide a minimum
number of times before the onset of differentiation. These
speculative hypotheses require further investigation.

The data presented herein support the notion that p27
levels regulate proliferation within the mammary epithe-
lium to the extent that a reduction of p27 produces the op-
posite effect on proliferation compared with the complete
loss of p27. This apparently paradoxical observation is per-
haps expected given the recently identified role of p27 in
cyclin D1-Cdk4 stabilization and function (Cheng et al.,
1999). These mechanisms by which p27 regulates prolifer-
ation, differentiation, and function of the mammary epi-
thelium are proposed as follows. p27 protein encoded by
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two functional p27 alleles (p27+/*) allows for stabilization
of cyclin D1-Cdk4 complexes with abundant p27 remain-
ing for association with and inhibition of cyclin E-Cdk2
complexes for the normal control of G; progression. Het-
erozygous inactivation of a single p27 allele (p27*/") re-
duces the level of p27. Upon mitogenic signaling, cyclin
D1-Cdk4 complexes sequester p27, resulting in a rela-
tively greater reduction of free p27 in p27*/~ than in p27*/*
cells. Under these conditions, cyclin E-Cdk2 complexes
bind in stoichiometric excess with the reduced levels of
free p27, a situation in which Cdk?2 can phosphorylate p27
and target it for ubiquitin-mediated degradation (Pagano
et al., 1995; Sheaff et al., 1997). In this manner, a reduction
of p27 (as it occurs in p27*/~ cells) is permissive for cyclin
E-Cdk2 function, Rb phosphorylation, and an accelerated
G, to S transition. The delayed postlactational involution
noticed in p27*'~ glands (and its potential implications for
epithelial transformation) remain unexplained. However,
the excessive proliferation may indirectly abrogate this
process if in fact exit from the cell cycle is required for the
epithelium to undergo postlactational apoptosis. In the ab-
sence of p27 (p27~'7), stable association of cyclin D1 and
Cdk4 does not occur, resulting in reduced Rb phosphory-
lation and cell cycle arrest in early G;. Whether this de-
layed proliferation indirectly accounts for the impaired
lactational differentiation of these glands will require fur-
ther research. Nonetheless, a direct requirement of both
p27 alleles for the formation of TEBs and lactation cannot
be ruled out at this time. The data presented herein sup-
port a model for the role of p27 in both activation and in-
hibition of cell cycle progression and demonstrate a criti-
cal role for p27 in regulation of mammary epithelial
proliferation, morphogenesis, and function.
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