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Abstract: Endocrine disruptors such as polychlorinated biphenyls (PCBs), diethylstilbestrol (DES)
and dichlorodiphenyltrichloroethane (DDT) are agents that interfere with the endocrine system and
cause adverse health effects. Huge public health concern about endocrine disruptors has arisen.
One of the mechanisms of endocrine disruption is through binding of endocrine disruptors with
the hormone receptors in the target cells. Entrance of endocrine disruptors into target cells is the
precondition of endocrine disruption. The binding capability of a chemical with proteins in the blood
affects its entrance into the target cells and, thus, is very informative for the assessment of potential
endocrine disruption of chemicals. α-fetoprotein is one of the major serum proteins that binds to
a variety of chemicals such as estrogens. To better facilitate assessment of endocrine disruption of
environmental chemicals, we developed a model for α-fetoprotein binding activity prediction using
the novel pattern recognition method (Decision Forest) and the molecular descriptors calculated
from two-dimensional structures by Mold2 software. The predictive capability of the model has been
evaluated through internal validation using 125 training chemicals (average balanced accuracy of
69%) and external validations using 22 chemicals (balanced accuracy of 71%). Prediction confidence
analysis revealed the model performed much better at high prediction confidence. Our results
indicate that the model is useful (when predictions are in high confidence) in endocrine disruption
risk assessment of environmental chemicals though improvement by increasing number of training
chemicals is needed.
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1. Introduction

Endocrine disruptors (EDs) are exogenous compounds that affect the endocrine system of humans
and other vertebrates. Endocrine activity of environmental or foreign chemicals has the potential
to cause numerous adverse outcomes, including disrupting the physiologic function of endogenous
hormones and altering homeostasis. The known EDs include polychlorinated biphenyls (PCBs),
the synthetic estrogen diethylstilbestrol (DES), dichlorodiphenyltrichloroethane (DDT) and other
pesticides. For example, DES was approved the Food and Drug Administration (FDA) for treatment of
menopausal symptoms, gonorrheal vaginitis, atrophic vaginitis, postpartum lactation suppression,
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and prostate cancer [1,2]. DES was shown to disrupt the endocrine system causing vaginal tumors
in girls and women and other adverse medical complications [3] and thus was withdrawn from
the market by the FDA. Concern about EDs has invigorated intense discussion and debate over the
past two decades in the scientific community [4,5] and promoted the legislation for regulation of
environmental chemicals mandated by the Environmental Protection Agency (EPA) and development
of the Endocrine Disruptor Screening Program (EDSP) to screen potential EDs in the environment [6].

EDs can disrupt the endocrine system through different mechanisms [7–12]. One of the
well-known mechanisms is mediated by the hormone receptors such estrogen receptor (ER) and
androgen receptor (AR), in which EDs exhibit their estrogenic and androgenic effects through binding
to the ER and AR in the target cells [13–16]. Therefore, a huge amount of estrogenic and androgenic
activity data of structurally diverse chemicals have been generated and organized in sophisticated
databases such as the FDA’s Endocrine Disruptors Knowledge Base (EDKB) [17] and Estrogenic
Activity Database (EADB) [18]. These databases have been used for the development of a diverse set
of quantitative structure-activity relationship (QSAR) models for predicting estrogenic and androgenic
activity and to assist evaluation of endocrine disruption potential of environmental chemicals [19–29].

ED binding to hormone receptors in target cells is the key mechanism to display endocrine
disruption. However, the affinity of binding to ER is not the sole criterion to determine EDs’ potential
to disrupt the endocrine system. For example, EDs cannot bind to ER or AR in the target cells if they
cannot pass the cell membrane. Therefore, in vitro ER and AR binding data of chemicals may not
reflect well their in vivo endocrine activity, even for chemicals with high in vitro binding affinity. To
accurately estimate the endocrine disruption potential of environmental chemicals, it is necessary
to have both their binding activities to hormone receptors and to competing serum proteins such as
alpha-fetoprotein (AFP) [30,31] and human sex hormone-binding globulin (SHBG) [32].

There are different transporter proteins in serum, including albumin, globulin, fibrinogen, and
others. The transporter proteins can transport hormones, vitamins and other chemicals within and
between cells and organs. SHBG is one of the major transporter proteins that bind to hormones and
other chemicals in human serum [33]. AFP is a major transport protein in rat and was first discovered
approximately 60 years ago [34]. It is a serum biomarker of Down’s syndrome and neural tube defects
in the clinical practice and alters the growth of fetal and cancer cells [35,36]. Entrance of AFP into
cells through receptor-mediated endocytosis was observed in fetal cells of different species including
rat [37], mouse [38], human [39] chicken [40] and baboon [41]. Elevated AFP level was observed
in maternal circulation through transplacental passage from the fetal circulation and amniotic fluid
by the placental or allantois [42–45]. This protein competes with ER to bind estrogens in the blood
and thus inhibits EDs access to the target cells [46,47]. It has been found that diverse chemicals bind
AFP [30,48–52].

A huge amount of in vitro binding assays data have been generated for the targets such as ER and
AR involved in the endocrine system. However, available in vivo bioactivity data related to endocrine
disruption potential are relatively less than the in vitro data. Moreover, most of the in vivo data are
obtained using rats uterotrophic assays [17,18,53]. To better assess endocrine disruption potential
of environmental chemicals, we measured rat AFP binding affinity for 125 chemicals with diverse
structures using a competitive binding assay according to the methods published in our previous
study [30]. Our rat AFP binding data represent the largest such data set to date. Compared with
the experimental data on the hormone receptors such as ER and AR, there are fewer chemicals with
experimental AFP binding data, hindering the risk assessment of environmental chemicals in terms
of endocrine disruption potential. Therefore, for an enhanced risk assessment it was necessary to
obtain AFP binding data for those environmental chemicals lacking AFP binding data. To this end, we
developed an in silico model for prediction of AFP binding activity of environmental chemicals using
our previously reported data [30]. The performance of the model was internally evaluated through
cross validations and permutation tests. It was also validated externally using the AFP binding activity
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data curated from the literature. We demonstrated that the model has suitable predictive power and is
expected to better assist endocrine disruption assessment of environmental chemicals.

2. Materials and Methods

2.1. Study Design

The study design is depicted in Figure 1 and the detail explanation for each step is described in
the following sections. Briefly, the 125 chemicals and their rat AFP finding activity (53 binders and
72 non-binders) from our previous study [30] were used as the training data set. First, 5-fold cross
validations were conducted to evaluate the performance of Decision Forest (DF) model as illustrated
in the bottom left part of Figure 1. More specifically, the training data set were randomly divided
into five equal portions of chemicals. Four portions were used for training the DF model and the
remaining portion was used for testing the DF model. The process was repeated five times so that
each of the five portions was used as test data set to challenge the models that were constructed from
the other four portions. The prediction results from the five DF models were averaged to estimate the
models’ performance. To reach a statistically robust estimation of the DF models’ performance, the
5-fold cross validation process was iterated 1000 times. The resultant data from the 1000 iterations of
5-fold cross validation were used for prediction confidence analysis and identification of informative
molecular descriptors that are important for AFP binding. Then, permutation tests were conducted to
affirm that the prediction accuracy observed in the 5-fold cross validations was not achieved by chance,
as illustrated in the top part of Figure 1. In brief, the binding activity data (binder or non-binder) of
the 125 chemicals in the training data set were permutated first and a 5-fold cross validation was
carried on the resultant permutated data set. The permutation test was repeated 1000 times to make
sure that the permutation tests result is statistically robust. Finally, the whole training data set was
used to train a DF model that was validated using an external data set. The external validation data
set was curated from the literature [48–50].
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2.2. Data Sets

The 125 structurally diverse chemicals with rat AFP competitive binding assay results published
earlier [30] were used as the training data set. Of the 125 chemicals, 53 chemicals displayed binding
affinities to rat AFP. The IC50 values of the 53 chemicals are in the range of 0.0065 to 590 nM. All of
the 53 chemicals were defined as AFP binders in this study. The rest 72 chemicals did not show binding
affinity to rat AFP and were determined to be AFP non-binders. In this study, binders were represented
by “1” and non-binders by “0” in the model constructions and predictions. The two-dimensional (2D)
structures of the 125 chemicals were generated according to our previous study using Marvin Sketch
(http://www.chemaxon.com/) and saved in a single 2D SDF (structure-data file) format file [30].

For validation of AFP binding activity prediction model, we curated an external data set through
literature search for AFP binding activity. First, the chemicals with AFP binding activity data were
collected from the literature. After removing the chemicals that were presented in the training data
set, 22 chemicals with known AFP binding activity data from other studies [48–50] were used as the
external validation set. The structures of the 22 chemicals were drawn according to the literature using
Marvin Sketch and saved in a single 2D SDF format file.

2.3. Molecular Descriptors

QSAR models are developed based on different types of molecular descriptors. The molecular
descriptors of the chemicals in both training and external validation data sets were generated using
Mold2 [54,55]. Mold2 is a free software which calculates molecular descriptors from 2D chemical
structures. This software is very fast because it adopts the extremely rapid algorithm for cyclic structure
recognition [56] and uses the efficient chemical structure representation system [57,58] that has shown
high efficiency in the system for chemicals structure elucidation based on infrared [59] and nuclear
magnetic resonance (NMR) spectra [60–62]. Mold2 has been demonstrated to be reliable for developing
QSAR models [63,64]. In brief, 777 Mold2 descriptors were first calculated for each of the chemicals
in the training and external validation data sets. Then, the descriptors were cleaned up by removing
those with constant values across all the chemicals in the data sets. Finally, the remaining 512 Mold2

descriptors were scaled to the values between 0 and 1.

2.4. Prediction Model

Prediction models can be developed using different QSAR methods such as pharmacophore
modeling [65–68], molecular docking [69,70] and machine learning methods [71–73]. In this study,
the prediction models were built using the Mold2 descriptors and the pattern recognition algorithm
DF that was developed previously by our group [74,75]. DF is a free software for public use [76] that
employs a consensus modeling technique by combining multiple decision tree models. It uses a unique
procedure to construct different decision tree models to ensure heterogeneous models when combined.
Besides, variable selection process is wrapped in the model construction process, which simplifies the
model development. In addition to QSAR, the DF algorithm were applied for the development of
predictive models based on the genomics data [77,78] and proteomics data [79]. The DF models in this
study were constructed using the following algorithmic parameters: the number of trees is set to 5;
the minimum size of node to be split is 10; the maximum levels to be pruned to is 3; and the method
for node splitting is Gini’s diversity index. The tree building and pruning processes were guided by
achieving the minimum number of misclassified compounds.

2.5. Cross Validations

To assess the performance of the DF model, 5-fold cross validations were conducted as illustrated
in Figure 1. In one 5-fold cross validation, the 125 chemicals of the training data set were randomly
divided into five equal portions. Four of the five portions were used to construct a DF model, which
was then used to predict AFP binding activity for the chemicals in the remaining one portion. This
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process was repeated sequentially so that each of the five portions was left out once and only once
as the testing set. The prediction results from the five testing sets were then averaged as an estimate
of the DF model performance using accuracy, sensitivity, specificity, Matthews correlation coefficient
(MCC) and balanced accuracy. These performance metrics were calculated using Equations (1)–(5)
through comparison of the predictions with the actual AFP binding activity data:

Accuracy “
TP` TN

TP` TN ` FP` FN
(1)

Sensitivity “
TP

TP` FN
(2)

Speci f icity “
TN

TN ` FP
(3)

MCC “
TPˆ TN ´ FPˆ FN

a

pTP` FPqpTP` FNqpTN ` FPqpTN ` FNq
(4)

Balanced ¨ Accuracy “
TPpTN ` FPq ` TNpTP` FNq

2pTP` FNqpTN ` FPq
(5)

In Equations (1)–(5), true positive (TP) is the number of AFP binders that were predicted as
binders by the DF models, true negative (TN) is the number of AFP non-binders that were predicted
as non-binders, false negative (FN) is the number of AFP binders that were predicted as non-binders,
and false positive (FP) is the number of AFP non-binders that were predicted as binders.

2.6. Permutation Tests

Permutation analysis is a common approach to determine whether the model performance
estimated from cross validations is due to chance correlations. As shown in Figure 1, in one permutation
test, the qualitative AFP binding activity data (1 for binder and 0 for non-binder) of the 125 chemicals
in the training data set were randomly shuffled while the Mold2 descriptors values (the independent
variables) remained unchanged to generate a permutated data set. A 5-fold cross validation described
above was then conducted on the permutated data set and the cross validation results were compared
with the results from the cross validations on the real training data set. The permutation test was
repeated 1000 times by using different randomly shuffled AFP binding activity data to reach a
statistically significant robust comparison with the 1000 times of 5-fold cross validations using the real
training data set.

2.7. Prediction Confidence Analysis

In the cross validations, the AFP binding activity prediction from a DF model for a chemical is
a continuous value, p, that is used to forecast the qualitative AFP binding activity of the chemical as
AFP binder (p ě 0.5) or non-binder (p < 0.5). This value indicates the likelihood of the chemical to be a
AFP binder or AFP non-binder and represents the confidence for the prediction. A good prediction
model is expected not only to show accuracy but also to predict most unknown chemicals with high
confidence level. Furthermore, the predictions with a higher prediction confidence level should be
more accurate than the predictions at a lower prediction confidence level. We analyzed the relationship
between the prediction confidence and the corresponding prediction accuracy of the DF models in the
1000 iterations of 5-fold cross validations using the training data set. The prediction confidence was
calculated for each of the predictions from the 1000 times of 5-fold cross validations using Equation (6).

Con f idence “
|p´ 0.5|

0.5
(6)
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The calculated prediction confidence is a value between 0 and 1. The larger the value, the more
reliable is the prediction. The predictions of the 5-fold cross validations were placed into 20 groups
with even confidence bins. For each of the 20 groups of predictions, prediction performance metrics
such as sensitivity, specificity and accuracy were calculated by comparing the predictions with the
actual AFP binding activity data. At last, the performance of the DF models at difference confidence
levels was analyzed.

2.8. Informative Molecular Descriptors Identification

Generally, QSAR models are built for one or both of the purpose of prediction and/or to gain
mechanistic understanding of biochemical phenomena [80]. Mechanistic understanding is derived
from the ability to interpret the physicochemical meaning of molecular descriptors used in QSAR
models. To better understand the chemical aspects that play important roles in the binding interactions
with AFP, the molecular descriptors used in the DF models were examined to identify the Mold2

descriptors that are informative to the DF models. First, the frequency values of the Mold2 descriptors
that were used in the DF models in the 1000 permutation tests were calculated to establish a statistical
background. The DF models were constructed from the random data sets obtained by permutation
and, thus, the top 5% frequency can be used as the frequency criterion to identify the informative
descriptors with a 5% probability for the descriptors being selected due to the random noises, that is at
a p-value = 0.05. Then, the frequency values of the Mold2 descriptors that were used in the DF models
in the 5-fold cross validations were computed and compared with the frequency of 0.05 (p-value) that
was determined from the permutation tests. The Mold2 descriptors that had higher frequency values
than the frequency of 0.05 (p-value) were identified as the informative descriptors for AFP binding
activity prediction.

2.9. External Validation

QSAR models usually perform better on the dataset that was used to construct the models in
cross validations than on new data. Validation using external data sets is important and necessary to
assess the performance of a predictive model. In this study, 22 chemicals with known AFP binding
activity data from the literature were assembled for external validation. The predictive DF model was
built on the entire training data set of 125 chemicals and then used to predict the AFP binding activity
of these 22 chemicals in the external validation set.

3. Results

3.1. Cross Validations

We conducted 1000 5-fold cross validation cycles using the training data set as shown in Figure 1.
The prediction results from the DF models were compared with the actual AFP binding activity data
to calculate the metrics for evaluation of the performance of the models. The 5-fold cross validation
results were plotted in the boxplots of Figure 2 and are summarized in Table 1. The average values of
accuracy, sensitivity, specificity, MCC and balance accuracy are 68.9%, 67.5%, 70.0%, 57.0% and 68.8%
respectively. All performance metrics indicate a moderate prediction power of the DF models. The
small standard deviation values obtained demonstrated that the DF models are statistically robust.
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Figure 2. Boxplots for the predictions from the DF models in the 5-fold cross validations. Performance
were measured by metrics as indicated on the x-axis.

Table 1. Summary of cross validations, permutation tests, and external validation.

Parameter
Cross Validations Permutation Tests

External Validation
Mean STD Mean STD

Accuracy 0.689 ˘0.034 0.498 ˘0.049 0.546
Sensitivity 0.675 ˘0.054 0.427 ˘0.067 0.412
Specificity 0.700 ˘0.046 0.558 ˘0.061 1.000

MCC 0.570 ˘0.026 0.497 ˘0.009 0.371
Balanced accuracy 0.688 ˘0.034 0.492 ˘0.050 0.706

STD: standard deviation.

3.2. Permutation Tests

Permutation tests were conducted to affirm that the prediction power observed for the DF models
in the 5-fold cross validations was not due to chance correlation in the training data set. The prediction
results from the DF models that were constructed using the 1000 permutated datasets and were
plotted for the distribution of prediction accuracy values as the red line in Figure 3. For comparison,
the distribution of the prediction accuracy values from the 1000 times of 5-fold cross validations is
represented as the blue line in Figure 3. Obviously, the predictions from the cross validations were
significantly more accurate than the predictions from the permutation tests, with a p-value < 0.0001.
The same difference were observed for other metrics: the differences between the average values of
the cross validations and the permutation tests were 19.0%, 24.7%, 14.2%, 7.3% and 19.5% in overall
accuracy, sensitivity, specificity, MCC and balanced accuracy respectively. Therefore, the permutation
tests demonstrated that the AFP binding activity predictions of the DF models in the cross validations
were not obtained by probability success.
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3.3. Prediction Confidence Analysis

We analyzed the prediction confidence using the 1000 times of 5-fold cross validations.
The confidence levels of the predictions from the DF models in the 1000 iterations of 5-fold cross
validations were calculated and used to place the predictions into 20 groups with even confidence bins.
Correct and incorrect predictions were then counted for each of the 20 groups by comparison with the
actual AFP binding activity data.

Prediction accuracy was calculated for the predictions in each of the 20 groups. The numbers of
predictions, correct predictions and incorrect predictions for the 20 groups were shown as blue, red
and green distribution curves respectively in Figure 4.

Int. J. Environ. Res. Public Health 2016, 13, 372 8 of 18 

 

bins. Correct and incorrect predictions were then counted for each of the 20 groups by comparison 
with the actual AFP binding activity data. 

 
Figure 3. Distributions of the 1000 prediction accuracy values calculated from the DF models in 
permuation tests (red line) and yielded from the DF models in the cross validations (blue line). 

Prediction accuracy was calculated for the predictions in each of the 20 groups. The numbers of 
predictions, correct predictions and incorrect predictions for the 20 groups were shown as blue, red 
and green distribution curves respectively in Figure 4.  

 

Figure 4. Predictions and accuracy at different confidence levels. The distributions of predictions 
were given by the left y-axis and the prediction accuracy is indicated by the right y-axis. Prediction 
confidence was given at the x-axis. Predictions are plotted in green line, correct predictions in blue 
line, incorrect predictions in red line, and prediction accuracy in black line.  

Figure 4. Predictions and accuracy at different confidence levels. The distributions of predictions
were given by the left y-axis and the prediction accuracy is indicated by the right y-axis. Prediction
confidence was given at the x-axis. Predictions are plotted in green line, correct predictions in blue line,
incorrect predictions in red line, and prediction accuracy in black line.
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The corresponding prediction accuracy values for the 20 groups were plotted as a black
distribution line in Figure 4. As the confidence level increased, the correct predictions increased
(blue line) while the incorrect predictions reduced (red line). More importantly, it was found that
higher the prediction confidence, the more accurate are the predictions (black line). Moreover, most
predictions from the DF models were at high confidence (green line). The prediction confidence
analysis demonstrated that the DF models not only had a reasonable prediction power but also gave
prediction confidence values that could be utilized to better assist evaluation AFP binding activity
of chemicals.

3.4. Identification of Informative Descriptors

The more frequently a descriptor is used in QSAR models, the more informative it is to the QSAR
models. The informative molecular descriptors are important for interpretation of QSAR models. To
identify the informative descriptors to the DF models in the 5-fold cross validations, we first extracted
the Mold2 descriptors that were actually used in the models. Then, the frequency of each of the
512 Mold2 descriptors used by the 5000 DF models was calculated. The results were plotted as the
solid blue line in Figure 5. Similarly, the frequency of each Mold2 descriptor used in the 5000 DF
models in the permutation tests was calculated. The results were displayed as the solid red line in
Figure 5. The top 5% descriptors in the permutation tests were separated by the dotted black line
at a frequency of 1680 models in Figure 5. Therefore, the Mold2 descriptors that were used in more
than 1680 DF models in the 5-fold cross validations should be informative to the DF models at the
5% significance level in a statistical view. Using this cut-off, 16 Mold2 descriptors that were used by
more than 1680 DF models were identified as the informative descriptors. Table 2 lists these 16 Mold2

descriptors, the numbers of DF models, and the descriptor definitions.
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The identified informative descriptors are the indices that are related to molecular shape,
electronegativity and polarizability of the chemicals. Therefore, the molecular shape of a chemical
and its hydrophilic interactions with the ligand binding pocket of AFP are the key structural features
that determines if a chemical can bind to AFP. This finding is consistent with our previous structural
analysis of AFP ligand binding pocket [32].
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Table 2. Informative descriptors identified from the cross validations.

ID Models Descriptor Definition

D282 4429 complementary information content (neighborhood symmetry of 2-order)
D281 4099 structural information content (neighborhood symmetry of 2-order)
D450 4075 Geary autocorrelation-lag 4/weighted by atomic masses

D432 3916 Broto-Moreau autocorrelation of a topological structure-lag 2/weighted by atomic
Sanderson electronegativity

D458 3770 Geary autocorrelation-lag 4/weighted by atomic van der Waals volumes
D361 3391 ratio of multiple path counts to path counts
D213 3233 valence connectivity index chi-1
D467 3225 Geary autocorrelation-lag 5/weighted by atomic Sanderson electronegativity
D491 3091 Moran autocorrelation-lag 5/weighted by atomic van der Waals volumes
D259 3084 mean information content on the distance degree equality
D496 2272 Moran autocorrelation-lag 2/weighted by atomic Sanderson electronegativity
D478 2238 Geary autocorrelation-lag 8/weighted by atomic polarizabilities
D463 2024 Geary autocorrelation-lag 1/weighted by atomic Sanderson electronegativity
D246 1995 Maximum of the differences between vertex distance and unipolarity
D473 1799 Geary autocorrelation-lag 3/weighted by atomic polarizabilities
D595 1698 highest eigenvalue n. 8 of Burden matrix/weighted by atomic polarizabilities

3.5. Prediction Model and External Validation

The AFP binding activity prediction DF model was constructed using the 125 chemicals of
the training data set. The DF model consisted of five decision trees that are illustrated in Figure 6.
The trees had eight to ten terminal nodes. The DF model was used to predict AFP binding activity
for the 22 chemicals from the external data set. The 22 chemicals, including their names used in the
literature, experimental AFP binding data, DF model prediction results and the references are given
in Table 3.
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Figure 6. Decision trees of the AFP binding activity prediction DF model. The descriptors and their
criteria that were used to split the intermediate nodes are given under the nodes. The left nodes are
the sets of chemicals that meet the criteria for splitting their parent nodes; the right nodes represent
the sets of chemicals that do not meet the criteria. The root node (whole training data set) and the
intermediate nodes are presented in empty/white circles. Letter Y in a circle indicates the chemicals in
the node meet the splitting criterion, whereas the letter N means the chemicals do not meet the splitting
criterion. The terminal nodes are the leaves of the trees where the AFP binding activity predictions
were determined and are shown in grey circles. Number 1 in a circle indicates that the chemicals in the
node are predicted as AFP binders while number 0 marks the node where chemicals are predicted as
AFP non-binders.

Table 3. The experimental and predicted AFP binding activity of the external data set.

Chemical Name Experiment Prediction Reference

17-α-Ethynylestradiol 1 1 [49]
11-β-Ethyloxyestradiol 1 0 [48]
11-β-Methoxyestradiol 1 1 [48]

Compound 7b 1 0 [49]
16-α-Fluoroestradiol (FES) 1 1 [48]

Compound 8b 1 0 [49]
Compound 8c 1 1 [49]
Compound 3 1 1 [48]
Compound 1 1 0 [48]
Compound 2 1 0 [48]
Compound 7c 1 1 [49]

11-β-Ethyl-17-α-ethynylestradiol 1 0 [49]
11-β-Ethylestradiol 1 0 [49]

Compound 8a 1 0 [49]
17-α-Ethynyl-11-β-Methoxyestradiol 1 0 [49]

Compound 7a 1 0 [49]
4-Nonylphenoxyacetic acid (NP1EC) 1 1 [50]

4-tert-Butylphenol (BP) 0 0 [50]
Igepal 0 0 [50]

2,4’DDT 0 0 [50]
2,4’-DDE 0 0 [50]
Kepone 0 0 [50]

AFP binding data: 1 represents binder and 0 indicates non-binder.

The predictive performance of the DF model on the external validation set was measured using
five different metrics: overall prediction accuracy, sensitivity, specificity, MCC and balanced accuracy.
The calculated performance metrics for the external validation are listed Table 1. Slightly lower
performance was observed for the external validation compared to the performance of the 5-fold
cross validations.
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4. Discussion

AFP is a protein in the plasma that binds to estrogens with high affinity. It can sequester EDs in the
plasma and thereby reduces the concentration of EDs that can enter into the target cells. Thus, AFP can
protect EDs in maternal circulation. Hence, AFP binding activity of chemicals is important information
for assessment of endocrine disruption potential. If a chemical does not bind to AFP but binds to
hormone receptors such as AR and ER, it can bypass AFP protection and has the potential to disrupt
the endocrine system. In contrast, if a chemical binds to AFP, AFP could protect against endocrine
disruption even if it has the potential to bind AR or ER. However, a very limited number of chemicals
have been experimentally assayed for their AFP binding activity. Thus, we previously measured AFP
binding activity for 125 structurally diverse chemicals using the competitive assay developed from
rat amniotic fluid [30]. The number of chemicals with AFP binding activity data is still much smaller
than the chemicals having ER and AR binding activity, hampering comprehensive assessment of
endocrine disruption potential for environmental chemicals. Therefore, in this study, we developed and
extensively validated AFP binding activity prediction models using the data published in the literature
including our in-house data set. Our model showed a reasonable predictive power and robustness and
could be expected to help assess endocrine disruption potential of environmental chemicals.

The DF prediction model was constructed using rat AFP binding data. It could be used for
prediction of rat AFP binding activity for the environmental chemicals that have no experimental data.
However, the limitation of current model should be noticed when applying the model in applications
of human risk assessment of environmental chemicals because the human AFP is not completely
homologous to the rat AFP.

Prediction confidence analysis showed that the DF models predicted AFP binding activity
very accurately for some chemicals but not so well for other chemicals. The higher the prediction
confidence, more likely the prediction is accurate as demonstrated in Figure 4. Therefore, we
suggest that the AFP binding activity prediction (binder or non-binder) should be combined with the
prediction confidence to better apply the DF model in assessment of endocrine disruption potential of
environmental chemicals.

Though AFP was identified long time ago and has been extensively studied, no three-dimensional
structure (3D) of AFP or complexes of AFP bound to ligands has been determined by X-ray
crystallization. The structural features of this protein, especially in its ligand binding domain, were
understood based only on the experimental binding activity data. Therefore, a homology model
of rat AFP was constructed and the ligand binding interactions of this protein were elucidated
using molecular docking and molecular dynamics simulations in our previous study [31]. The
computationally constructed 3D structure of rat AFP and the in silico elucidated ligand binding
interactions are expected to help the estimated AFP binding activity of environmental chemicals. Our
previous study identified two different binding pockets in rat AFP, consistent with the two putative
estrogen binding sites in AFP [81]. The ligand binding interactions of rat AFP contribute from residues
Glu206, Glu209, Gly210, Leu213, Lys236, His260, Try306 and His310 in the first binding site and from
residues Leu233, Gln239 and Glu312 in the second binding site [31]. Most of these amino acids have
charged or have polar residues. Thus, hydrophilic and electrostatic interactions are important for
a chemical to bind to AFP. Furthermore, the binding pockets were found to be different in size and
shape. In this study, 16 Mold2 descriptors (Table 2) were identified as the informative descriptors to
the DF prediction models. Therefore, these molecular descriptors represent the important structural
features that are determinant to AFP binding activity of chemicals. The 16 Mold2 descriptors are the
structural features of the chemicals interacting with AFP related to molecular shape, electronegativity,
and polarizability of chemicals indicating molecular shape, hydrophilic and electrostatic interaction
capability. These molecular characteristics are used to differentiate AFP binders from non-binders. The
informative descriptors identified in this study confirmed the reliability of our previously constructed
3D structure of rat AFP and the elucidated ligand binding interactions.
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Recently EPA considered utilization of high throughput screening assays and computational
models in the endocrine disruptor screening program [82]. EPA led CERAPP project to develop QSAR
models for prediction of estrogenic activity and the models were used for prioritize environmental
chemicals for Tier-2 testing [83]. With binding data of transporter proteins obtained from experiments
or in silico predictions, it is speculated that better priority setting the environmental chemicals for
testing would be yielded.

The DF prediction models showed lower prediction accuracy than the DF model we previously
developed for prediction of ER binding activity [20]. The less predictive power of the AFP binding
activity prediction models may be partially due to the relatively small sample size. We expected more
accurate DF prediction models would be constructed when AFP binding activity is experimentally
measured for more chemicals that can be used as training samples. Another speculation on the cause
of the relatively low prediction accuracy is the multiple binding sites in AFP. The 125 chemicals
bind AFP in different interaction regions. The first ligand binding site in rat AFP lies in the region
of amino acids 419–433 and the second ligand binding site consists of amino acids 450–464. The
chemicals that displayed rat AFP binding activity in our previous study are structurally diverse [30].
The existence of two distinct ligand binding sites in AFP indicates that prediction of binding activity
of a chemical depends on the AFP site where the chemical binds [84,85]. Therefore, we assume
separate prediction models should be developed, each for one of the two ligand binding sites, to
improve the performance of AFP binding activity prediction model. Our previous study demonstrated
competitive modeling based on molecular docking may perform better than the DF modeling for AFP
binding prediction. Lack of knowledge on the binding sites for chemicals and the limited number
of experimental binding data available is a major impediment in the development of such separate
prediction models. Our results indicated that simple predictive models such as the DF models in this
study sometimes yield inaccurate predictions, especially when the system in modeling is not simple.
Even though a moderate prediction power has been shown for the AFP binding activity prediction
DF model, caution is warranted in application of the DF model in assessment of endocrine disruption
potential of environment chemicals, especially when a prediction has a low prediction confidence.
Nonetheless, the rat AFP binding activity predictions of high confidence from the DF models should
be useful for assistance in estimation of rat AFP binding activity of environmental chemicals.

5. Conclusions

Using a set of structurally diverse chemicals whose rat AFP binding activity data were measured
in our previous study, a DF model for prediction of the AFP binding activity was developed in this
study. Internal cross validations and external validations were conducted to demonstrate the accuracy
and robustness of the models. Our results showed a moderate prediction performance of the models.
More importantly, the DF model provides prediction confidence that is very useful when applying the
model in assessment of endocrine disruption potential of environment chemicals.
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Abbreviations

The following abbreviations are used in this manuscript:

2D Two-Dimensional
3D Three-Dimensional
AFP Alpha-Fetoprotein
AR Androgen Receptor
EADB Estrogenic Activity Database
ED Endocrine Disruptor
EDKB Endocrine Disruptors Knowledge Base
EDSP Endocrine Disruptor Screening Program
EPA Environmental Protection Agency
DF Decision Forest
ER Estrogen Receptor
FDA Food and Drug Administration
FN False Negative
FP False Positive
MCC Matthews Correlation Coefficient
NMR Nuclear Magnetic Resonance
QSAR Quantitative Structure-Activity Relationship
SDF Structure-Data File
SHBG Sex Hormone-Binding Globulin
STD Standard Deviation
TN True Negative
TP True Positive
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