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Background: A definitive diagnosis of prostate cancer requires a biopsy to obtain tissue for pathologic analysis, but this is
an invasive procedure and is associated with complications.
Purpose: To develop an artificial intelligence (AI)-based model (named AI-biopsy) for the early diagnosis of prostate cancer
using magnetic resonance (MR) images labeled with histopathology information.
Study Type: Retrospective.
Population: Magnetic resonance imaging (MRI) data sets from 400 patients with suspected prostate cancer and with histo-
logical data (228 acquired in-house and 172 from external publicly available databases).
Field Strength/Sequence: 1.5 to 3.0 Tesla, T2-weighted image pulse sequences.
Assessment: MR images reviewed and selected by two radiologists (with 6 and 17 years of experience). The patient
images were labeled with prostate biopsy including Gleason Score (6 to 10) or Grade Group (1 to 5) and reviewed by one
pathologist (with 15 years of experience). Deep learning models were developed to distinguish 1) benign from cancerous
tumor and 2) high-risk tumor from low-risk tumor.
Statistical Tests: To evaluate our models, we calculated negative predictive value, positive predictive value, specificity, sensitiv-
ity, and accuracy. We also calculated areas under the receiver operating characteristic (ROC) curves (AUCs) and Cohen’s kappa.
Results: Our computational method (https://github.com/ih-lab/AI-biopsy) achieved AUCs of 0.89 (95% confidence interval [CI]:
[0.86–0.92]) and 0.78 (95% CI: [0.74–0.82]) to classify cancer vs. benign and high- vs. low-risk of prostate disease, respectively.
Data Conclusion: AI-biopsy provided a data-driven and reproducible way to assess cancer risk from MR images and a per-
sonalized strategy to potentially reduce the number of unnecessary biopsies. AI-biopsy highlighted the regions of MR
images that contained the predictive features the algorithm used for diagnosis using the class activation map method. It is
a fully automatic method with a drag-and-drop web interface (https://ai-biopsy.eipm-research.org) that allows radiologists
to review AI-assessed MR images in real time.
Level of Evidence: 1
Technical Efficacy Stage: 2
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Prostate cancer is the most commonly diagnosed cancer in
adult men.1 Distinguishing patients with high-risk

(tumor tissue growing faster) and low-risk (tumor tissue
growing slowly) forms of prostate cancer is important because
early detection of high-risk prostate cancer improves survival
rate2 and accurate diagnosis prevents overtreatment.3

The European Society of Urogenital Radiology established
the Prostate Imaging Reporting and Data System (PI-RADS), a
standardized guideline for interpretation and reporting prostate
magnetic resonance imaging (MRI).4 PI-RADS is designed to
improve and standardize detection, localization, characterization,
and risk stratification in patients with suspected cancer.5 Radiol-
ogists apply PI-RADS’ subjective features such as lesion shape
and margins for categorization of prostate cancer6 and assign-
ment of a score ranging from 1 to 5.7 Although PI-RADS has
been found to be effective in evaluating the clinical risk associ-
ated with prostate cancer,8 it requires experts’ visual assessment,
which introduces an element of subjectivity.9

There are currently two main scoring systems used to
assess histology slides for prostate cancer aggressiveness. The
Gleason Score (GS) is the most commonly used prognostic
score to predict the clinical status of prostate cancer based on
biopsy material. The GS describes how much the tissue from
a biopsy looks like healthy tissue (lower score) or abnormal
tissue (higher score).10 GS is the sum of primary and second-
ary scores, each with a range of 3 to 5. Thus, GSs range from
6 (3 + 3) to 10 (5 + 5) (Table 1). Grade Group (GG) is an
alternative scoring system that subdivides prostate cancer into
five categories using pathological characteristics.11 Pathologists
use either of these scores in routine clinical practice.

Although a biopsy provides a definitive diagnosis of
prostate cancer, patients undergoing prostate biopsy may
experience incorrect staging and complications such as infec-
tion; 2% to 3% of patients will develop sepsis that is associ-
ated with life-threatening organ dysfunction and death.12

We hypothesized that prostate cancer aggressiveness can
be predicted directly from MR images using machine learning
(ML) techniques, perhaps reducing the need for a tissue

biopsy by optimizing PI-RADS assessment and increasing
diagnosis accuracy. In recent years, ML and especially deep learn-
ing (DL) approaches have been applied to a variety of medical
conditions,13-15 such as lung cancer subtype diagnosis using
pathology images,16 assessing human blastocyst quality after
in vitro fertilization,17 and prostate cancer classification by MR
images.18 In the latter study,18 the authors used DL and non-DL
algorithms to differentiate benign prostate from prostate cancer
using axial T2-weighted (T2w) MR images of 172 patients. They
were able to distinguish benign from malignant lesions with areas
under the receiver operating characteristic (ROC) curves (AUCs)
of 0.84 and 0.70 using DL and non-DL methods, respectively.18

In another related study, Kwon et al described a radiomics-based
approach to classify clinically important lesions in multiparametric
MRI (mp-MRI) using feature-based methods such as regression
trees and random forests. Random forest achieved the highest per-
formance with an AUC of 0.82.19

Recent research indicates that multimodal diagnosis
using DL methods has exhibited notable improvement over
conventional unimodal approaches in classifying radiology
and pathology images.20 Moreover, when MR images are lim-
ited, using convolutional neural networks (CNNs) for feature
extraction across data concatenation can yield better CNN-
based classification performance.

The aim of this study is to develop a CNN-based method
that uses MR imaging data as input and recognizes benign from
cancerous tumor and high-risk prostate cancer from low-risk
forms, as defined by pathology assessments such as GS and
GG. While the training combines MRI data with pathology
assessment, our objective was to develop predictive models that
could provide assessments from MR images alone.

Materials and Methods
Ethics Statement
All experiments and methods were performed in accordance with the
Institutional Review Board at Weill Cornell Medicine. The study
used fully de-identified data and was approved by the ethics commit-
tee of our institution (IRB number: 1601016896).

TABLE 1. Grade Group and Gleason Score and Their Association With the Risk Level of Prostate Cancer

Grade Group Gleason Score Combined Gleason Score Aggressiveness degree

Grade Group 1 3 + 3 6 Low risk

Grade Group 2 3 + 4 7 Intermediate risk but closer to low risk

Grade Group 3 4 + 3 7 Intermediate risk but closer to high risk

Grade Group 4 4 + 4, 3 + 5, 5 + 3 8 High risk

Grade Group 5 4 + 5, 5 + 4, 5 + 5 9 and 10 High risk

These two different systems are mapped together using the table that was provided and simplified based on the NCCN guidelines ver-
sion 4.2018 prostate cancer.27
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Combined Database
This study included 228 patients from our own urology center
(imaged between 2015/02 and 2019/03). We refer to this data set as
in-house throughout this manuscript. All images were acquired on
GE and Siemens platforms confirming to PI-RADS v2.1 specification
(T2w—slice thickness 3 mm, no gap; field of view: generally,
12–20 cm; in-plane dimension: ≤0.7 mm [phase] × ≤0.4 mm [fre-
quency]). The MR images were labeled by cancer GS and GG informa-
tion obtained from corresponding fusion-guided biopsy (transrectal and
transperineal). We also used four external public data sets obtained from
The Cancer Imaging Archive (TCIA)21 that de-identifies and hosts a
large archive of medical images from cancer patients that are accessible
for public download. We used data from the PROSTATEx Challenge
(n = 99 patients),22,23 PROSTATE-MRI (n = 26),24 PROSTATE-
DIAGNOSIS (n = 38 patients),25 and TCGA-PRAD (n = 9 patients).26

The collection of public data therefore comprised a total of 172 patients
with T2w prostate MR images along with histopathology information
from corresponding prostate core needle biopsy or prostatectomy speci-
mens. All public and in-house data were converted from DICOM to
PNG format and regularized for intensity inhomogeneity using a
Python script. For each patient, consistent sequences of seven axial
image slices containing the prostate gland (=2800 images interpolated to
512 × 512 pixels) were reviewed and selected by two radiologists (one
advanced imaging technologist with 6 years of experience and one
uroradiologist with 17 years of experience) (Fig. 1a). Also, for in-house
data, the assigned PI-RADS1-5 scores (if it is available) were reviewed by
these two radiologists. Then, we categorized all MR images based on
their corresponding pathology reports (Fig. 1b). This means that all the
patients’ MR images were labeled with a benign, GS,6-10 or GG1-5

pathology evaluation performed by experienced pathologists (from differ-
ent clinics) and then reviewed by one pathologist from our institution
(with 15 years of experience). Table 1 shows how we mapped the cancer

GG with GS that were obtained from different data sets to use for
determining the risk level of prostate cancer. This table was provided
and simplified based on the National Comprehensive Cancer Network
guidelines version 4.2018 prostate cancer.27 We have follow-up biopsy
for all in-house cases (benign and malignant) but not for publicly avail-
able cases. When multiple biopsies were available, we considered the
maximum GS or GG as the final label. In other words, only cases where
all biopsies were benign were labeled as benign. Characteristics of all five
data sets and their images are summarized in Table 2.

Models’ Architecture and Implementation
We used Google’s Inception-V128 (GoogLeNet) as the main archi-
tecture of our models, which offers an effective run-time and com-
putational cost. To train this architecture, we used transfer learning
and pretrained the network on the ImageNet data set.29 We then
fine-tuned all outer layers using the training set of MRI and evalu-
ated the trained model by validation and test sets of MR images
obtained from our in-house and public resources.

To implement our framework (AI-biopsy), we used TensorFlow,
version 1.7, and the TF-Slim Python library for defining, training, and
evaluating models. Training of our deep neural network (DNN) models
were performed on a server running the SMP Linux operating system.
This server was powered by four NVIDIA GeForce GTX 1080 GPUs
with 8 GB of memory for each GPU and 12 1.7-GHz Intel Xeon
CPUs.30 We used Python open-source libraries such as Pydicom, scikit-
learn, NumPy, SciPy, and Matplotlib for all the statistical analyses.

Training Method
The prostate cancer group (n = 283 patients) included high-risk
patients (n = 48, with GG = 4 and 5), intermediate-risk patients
(n = 153, with GG = 2 and 3), and low-risk patients (n = 82, with
GG = 1). The benign group contains 117 patients (Table 2).

FIGURE 1: Method flow chart. (a) Unsegmented consistent sequences of seven axial T2w magnetic resonance (MR) image slices for each
patient were selected that represent the prostate glands. (b) Each patient’s MRI slice labeled by their corresponding biopsy result based
on its Grade Group (GG) and Gleason Score (GS). (c) A convolutional neural network (CNN)-based model (Model 1) classifies the cancer
vs. benign and subsequently, and the second CNN-based model (Model 2) predicts the risk level for each patient. (d) We highlighted
the regions of MR images that algorithms focus on for prediction and compared the output of Model 2 with Prostate Imaging Reporting
and Data System (PI-RADS) using pathology labels as ground truth for a subset of test set. Receiver operating characteristic curves
(ROCs) were used to assess the performance of different models based on individual patient.
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For training the first model (cancer vs. benign), we grouped
GG = 3, 4, and 5 together in one class (n = 95 patients) and trained
the algorithm vs. the benign class (n = 117). We did not use GG = 1
and 2 patients for training this model so as to allow the algorithm to
learn the two ends of the spectrum and take more associated features for
classifying cancer vs. benign. However, we tested the trained model on
all GGs (GG = 1, 2, 3, 4, 5) as well as benign subjects (Table 3).

For training the second model (high-risk vs. low-risk), we
grouped GG = 3, 4, and 5 together in one class as high-risk (n = 95
patients) and trained the algorithm vs. the low-risk class that combined
GG = 1 and 2 (n = 188). We used one of the oversampling techniques,
adding Gaussian noise to the images, to address the class imbalance
problem. Noise injection consists of injecting a matrix of random values
usually drawn from a Gaussian distribution.31 Then, we tested the
trained model for all the GG groups (GG = 1, 2, 3, 4, 5) (Table 3).

The cancer/benign images (GG = 3, 4, 5/benign) from 212
patients include a total of 1484 images. One thousand two hundred
and seventy-four images (= 182 patients) were randomly selected for
training and validation, and 210 remaining images (= 30 patients for
GG = 3, 4, 5, benign) with the addition of 140 images (= 20
patients for GG = 1, 2) were selected for test set (Table 3). Also, the
high-risk/low-risk images (GG = 3, 4, 5/GG = 1, 2) for 283 patients
include a total of 1981 images. Out of these, 1701 images (= 243

patients for GG = 1, 2, 3, 4, 5) were randomly selected for training
and validation, and the 280 remaining images (= 40 patients for
GG = 1, 2, 3, 4, 5) were selected for test set (Table 3).

Deep Feature Analysis
We applied class activation map (CAM)32 using global average
pooling (GAP) in CNNs. Before the final output layer (softmax) of
the AI-biopsy, we performed GAP on the convolutional feature
maps and used those as features for a fully connected layer. Given
this connectivity structure, we could identify the importance of the
image regions by projecting back the weights of the output layer
onto the convolutional feature maps.

Evaluation and Statistical Analysis of the
Developed Method
We divided the images into training, validation, and test groups.
The images and the patients in training, validation, and test sets did
not overlap. For each model (Fig. 1c), we performed 5-fold cross-
validation (resampling procedure) and measured the performance of
the algorithm for the test set using AUCs with 95% confidence
interval (CI) (Fig. 1d). Characteristics of training, validation, and
test set images of each model are summarized in Table 3.

TABLE 2. Characteristics of All Five Cohorts and the Comprised Biopsy Reports and T2w Images Obtained from
TCIA21 and In-House

Databases and
references

Selected cases
and MRI types

Annotation
method
(biopsy types)

Cancer patients
Benign
cases

High-risk Low-risk
Intermediate-
risk

Intermediate-
risk

Benign

(GS ≥ 8) (GS = 6) (GS = 7) (GS = 7)
(GG = 4 &
GG = 5) (GG = 1) (GG = 2) (GG = 3)

Weill Cornell
Medicine

228, age
(52–85),
3.0 T

GS and GG (fusion
guided biopsy),
PI-RADS

11 48 37 15 117

PROSTATEx22,23 99, 3.0 T GG (core needle
biopsy)

13 29 38 19 0

PROSTATE-
DIAGNOSIS25

38, 1.5 T GS (core needle
biopsy)

9 5 15 9 0

PROSTATE-MRI24 26, 3.0 T GS (prostatectomy) 11 0 13 2 0

TCGA-PRAD26 9, 3.0 T GS and GG (core
needle biopsy)

4 0 3 2 0

Total 400, 1.5 T to
3.0 T

GG and GS
(reviewed
pathology report)

48 82 106 47 117

T = Tesla; GS = Gleason Score; GG = Grade Group; T2w = T2-weighted; TCIA = The Cancer Imaging Archive; MRI = magnetic reso-
nance imaging.
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To measure the accuracy of the trained algorithm for individ-
ual patients (with sequence of seven axial image slices), we used a
simple voting system. For Model 1 (differentiating between malig-
nant and benign tumor), if the number of image slices with cancer
(with P ≥ 0.5) from a patient was ≥1, the final label of that patient
was “cancer.” Otherwise, the final label of the patient was “benign.”
For Model 2 (differentiating between high-risk and low-risk tumor),
if the number of image slices with high-risk (with P ≥ 0.5) from a
patient was ≥2, the final label of the patient was “high-risk.” Other-
wise, the final label of the patient was “low-risk.” We employed
these threshold conditions on the outputs of the algorithms to
reduce false-negative prediction by giving more weight to the cancer
and high-risk classes.

To evaluate our method, we used negative predictive value,
positive predictive value, specificity, sensitivity, and accuracy. We
also calculated the AUCs and Cohen’s kappa.33

Code Availability
The source code and the guidelines for using the source code are
publicly available at https://github.com/ih-lab/AI-biopsy. In addi-
tion, AI-biopsy is available through a web-based user interface at
https://ai-biopsy.eipm-research.org.

Results
Classification of MR Images Based on their
Pathology Labels
Our trained Model 1 was able to distinguish cancer patients
from benign patients with an AUC of 0.89 (95% CI: [0.86–

0.92]), negative predictive value (= 81.6), positive predictive
value (= 81.9), specificity (= 82), sensitivity (= 81.5), and
accuracy (= 81.8) (Fig. 2a,b). Also, Model 2 was able to clas-
sify high-risk vs. low-risk (GS = 5 + 5, 5 + 4, 4 + 5, 4 + 4, 4
+ 3 vs. GS = 3 + 3, 3 + 4) cancer with an AUC of 0.78 (95%
CI: [0.74–0.82]), negative predictive value (= 73), positive
predictive value (= 67), specificity (= 68.9), sensitivity (=
71.3), and accuracy (= 70) (Fig. 2c,d). While the performance
of Model 2 in classifying GS ≥ 8 vs. GS = 3 + 3 was high
(AUC = 0.86), the ability of Model 2 to classify intermedi-
ate-risk cases (GS = 3 + 4 vs. GS = 4 + 3) of prostate cancer
was lower (AUC = 0.71).

Deep Learning Algorithm Outperforms PI-RADS for
Classification
To further evaluate our model (AI-biopsy), we were able
to compare the PI-RADS scores with the output of the
trained model applied to images that have not been used
in the training set. Specifically, we tested the trained
model with 28 patients (11 high-risk and 17 low-risk,
with available PI-RADS scores), which were not used for
training the algorithm (as a blind test set) obtained from
the in-house database. Our model correctly identified
75% (= 21/28 patients) of the labels for high-risk (= 7/11
patients) and low-risk (= 14/17 patients). Of the 28
patients, the PI-RADS score identified 11 patients as
high-risk (PI-RADS score = 4 and 5) and four patients as

TABLE 3. Characteristics of Both Trained Models and the Comprised Patients

Model
Data
resources

Number of patients
with cancerous tumor
in training and
validation sets

Number of patients
with benign tumor in
training and
validation sets

Number of
patients in
test set

Model 1:
Benign vs. cancer

In-house and
public

75 patients (37 GG = 3,
38 GG = 4 and
GG = 5)

107 patients (benign) 10 benign
10 GG = 1
10 GG = 2
10 GG = 3
10
GG = 4&5

Model Data resources Number of patients
with high-risk tumor
in training and
validation sets

Number of patients
with low-risk tumor
in training and
validation sets

Number of
patients in
test set

Model 2:
High-risk vs. low-risk

In-house and
public

75 patients (37 GG = 3,
38 GG = 4 and
GG = 5)

168 patients (72
GG = 1 and 96
GG = 2)

10 GG = 1
10 GG = 2
10 GG = 3
10
GG = 4&5

GG = Grade Group.
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low-risk (PI-RADS score = 2 and 3). When compared to
ground truth (pathology labels), the PI-RADS score
predicted 53.6% (= 15/28 patients) of the patients
correctly.

Cohen’s kappa values for AI-biopsy and PI-RADS in
comparison to pathology results as a reference standard were
0.467 (moderate) and 0.195 (slight), respectively.

Discriminative Localization Using Deep Feature
Detection
We reviewed the AI-biopsy results for the above test set
(n = 28 patients) to determine whether the disagreement
between AI-biopsy and pathology (reference standard) was
due to incorrect feature selection by the AI-biopsy. A compar-
ison of the CAM result with the radiologists’ results demon-
strated that AI-biopsy algorithm is able to detect the prostate
gland when it predicts the pathology label correctly (Fig. 3a),
while the AI biopsy prediction is incorrect, when the algo-
rithm does not detect the prostate gland (Fig. 3b).

Discussion
The early and precise diagnosis of prostate cancer is impor-
tant for proper management of patients. Integrating multi-
modal clinical data using DL methods has induced useful
perceptions and denoted harmonious implementations of this
approach to promise next-generation diagnosis.

The aim of this study was to determine whether a DL
method using MRI data that were labeled according to histol-
ogy results could improve accuracy of prostate cancer diagno-
sis. We trained a multimodal model to integrate the MR
image and pathology score as predictors and further encode
the interdependency between these diagnosis sets.

There are two main levels of data integration: early
fusion (data are integrated before feeding to the model) and
late fusing (different trained model will be integrated using
various ML techniques).20 We used the early fusion tech-
nique and proposed CNN-based system, AI-biopsy, to fully
utilize MR images and biopsy results to detect prostate can-
cer. We trained and validated AI-biopsy using MR images of

FIGURE 2: Performance of two trained models for individual patient in the test set. (a) Model 1 performance for classifying cancer
vs. benign. (b) The number of patients that were identified correct or incorrect by Model 1, negative predictive value, positive
predictive value, specificity, sensitivity, and accuracy for cancer vs. benign. (c) Model 2 performance for classifying high risk vs. low
risk. (d) The number of patients that were identified correct or incorrect by Model 2, negative predictive value, positive predictive
value, specificity, sensitivity, and accuracy for high risk vs. low risk.
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400 patients that were labeled with histopathology informa-
tion. In addition, compared to the PI-RADS score, our model
indicated higher agreement with biopsy results.

Several groups have attempted to use DL-based
approaches for assessment of prostate cancer aggressiveness
with varying degrees of success.34-36 Cao and colleagues pro-
posed a multiclass CNN (named FocalNet) to detect prostate
lesions.36 They used the MR images of 417 patients to pre-
dict GS using a homogeneous cohort and showed that their
method outperformed U-Net37 and DeepLab,38 both of
which are CNN-based methods.36 They trained their model
to predict four GSs: GS ≥ 7 vs. GS < 7; GS ≥ 4 + 3 vs.
GS ≤ 3 + 4; GS ≥ 8 vs. GS < 8; and GS ≥ 9 vs. GS < 9.
Their result showed that FocalNet achieved AUCs of 0.81,
0.79, 0.67, and 0.57, respectively.36 A recent study34 has
used apparent diffusion coefficient, a metric that is correlated
with GS and an important component of mp-MRI for deter-
mining aggressiveness of prostate cancer. They used MR
images of 165 patients and predicted high-risk (GS ≥ 7) from
low-risk (GS = 6) prostate cancer with an AUC of 0.79.34 In
addition, Yuan et al presented a DL-based method to classify
123 patients with high-risk cancer (GS = 4 + 3, and 8) and
98 patients with low-risk cancer (GS = 3 + 4, and 3 + 3)35

based on cropped mp-MRI images. The best performance

was obtained using a patch size of 28 × 28 pixels, which led
to classifying the two groups with an AUC of 0.896.35

Although these methods achieved good accuracy in
assessing prostate cancer aggressiveness, they required several
time-consuming preprocessing steps. Also, they were based
on limited homogeneous data sets that did not cover all GSs.
The advantage of our method is that instead of only focusing
on predetermined, segmented features to analyze, the
unsegmented image of the prostate (without bounding box)
is assessed, allowing for quantification of all the available data.
Our study used a large heterogeneous data set compared to
those used in previous studies and included all GS lesion
ranges (GS = 3 + 3, 3 + 4, 4 + 3, 4 + 4, 3 + 5, 5 + 3, 4 + 5,
5 + 4, and 5 + 5) as well as benign cases. Previous studies rev-
ealed that despite the heterogeneity between data, which is
likely due to a combination of technical differences during
data acquisition and the biological differences between study
cohorts, the deep CNN models are able to accurately extract
related signals from noises.16 These studies found that the
heterogeneity is gradually mitigated across the layers of the
deep CNN model. The heterogeneity is strongest at the input
layer but became insignificant at the output layer that makes
a CNN model robust and generalizable to data outside the
training data set.39

FIGURE 3: The highlighted prostate glands using class activation map (CAM) and radiologists. Model 2 classifies each image as high
risk or low risk, and the deep feature analysis highlights the discriminative regions of the images. A radiologist marked the prostate
gland of the images using green square dots. Biopsy results (based on Grade Groups [GGs]) as ground truth and Prostate Imaging
Reporting and Data System (PI-RADS) also are indicated in the figure. (a) Artificial intelligence (AI)-biopsy predicts the risk level of
cases (with a probability score for each class) and highlighted the prostate gland correctly. (b) AI-biopsy is not able to predict the
correct risk level of cases in which the prostate glands are not correctly detected. Red color illustrates features with higher weight.
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Limitations
Our data were obtained from five different data sets, and they
were provided by different techniques (eg, imaging parame-
ters and biopsy types) and annotated by various pathologists
and radiologists who may use slightly different methods to
assign the scores to each case. To address the heterogeneity
among cases as well as lack of details about the clinical infor-
mation of all cases (eg, patient’s age and PSA level), we evalu-
ated the algorithms through 5-fold cross-validation to indicate
the generalizability of our models to various data sets. In
addition, we only used axial T2w MR images in this study
because we had more data in this category for both public
and in-house data sets. T2w MRI is routinely used for

diagnosis and staging of prostate cancer; however, there is no
limitation for using other types of images such as T1w by
provided codes. Finally, our MR images were labeled using
pathology labels that may include inaccurate histologic find-
ings. Further studies are needed to consolidate the connection
between MRI and prostate cancer diagnosis, particularly with
available molecular subtypes of prostate cancer.

Conclusion
AI-biopsy is an automated DNN method (Fig. 4) that
increases the accuracy of PI-RADS scoring for prostate can-
cer. The trained model integrates complementary information
from biopsy report and improves prediction beyond what is

FIGURE 4: AI-biopsy is a fully automated framework to use in clinics for evaluation of the prostate cancer risk level. We employed a
threshold condition on the output of both models for diagnosis using minimum seven T2w axial image slices. (a) While for prediction
of benign diagnosis, all seven image slices should get P ≥ 0.5 for the benign class; (b) one image slice (out of seven imported image
slices) with P ≥ 0.5 is enough for Model 1 to result in cancer prediction; (c) Model 2 needs at least two image slices (out of seven
imported image slices) with high-risk P ≥ 0.5 for a patient to result in high-risk diagnosis; and (d) the result explanation could be
seen by clicking on “N/A” option in the web interface (https://ai-biopsy.eipm-research.org).
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possible with MR images alone. It does not require any man-
ual segmentation for testing new images and can be
implemented in clinical practice by providing a straightfor-
ward platform to use without requiring sophisticated compu-
tational knowledge (Fig. 4).

Acknowledgments
We thank Dr. Sohrab P. Shah and Dr. Nicole Rusk for helpful
comments on the manuscript. This work was supported by
start-up funds (Weill Cornell Medicine) to I.H. This work
used the Extreme Science and Engineering Discovery Environ-
ment (XSEDE) GPU servers through allocation IRI200018 to
P.K. The authors thank Richard Kneppe, Tom Maiden, John
Ruffing, and Hanif Khalak for their assistance with porting
and optimization, which was made possible through the
XSEDE Extended Collaborative Support Service (ECSS) pro-
gram. P.K. also thanks Sinan Ramazanoglu and Hamid
Mohamadi for their help with the source code and debugging.
I.H. also acknowledges NVIDIA for the donation of Titan Xp
to support this research through a GPU gift grant as well as
XSEDE GPU servers through allocation ASC180052.

Conflict of Interest
The authors declare no competing interests.

Author Contributions
P.K., A.Sb., O.E., B.C., and I.H. conceived the study. P.K.,
M.B., Q.L., E.K., and J.B. conceived the method and
designed the algorithmic techniques. P.K., M.L., and
M.E. generated the data sets and prepared and labeled the
images for various Grade groups and Gleason scores. P.K.,
Q.L., E.K., C.R., and D.M. wrote the codes. P.K. performed
computational analysis with input from A.Sb., O.E., B.C.,
and I.H. P.Z. and A.Si. developed the web interface.
T.D.M. and A.Y. reviewed the MR images and PI-RADS
scores. B.D.R. reviewed pathological images, Gleason scores,
and Grade groups. P.K. wrote the paper, and all authors read,
edited, and approved the final manuscript.

REFERENCES
1. Pilleron S, Sarfati D, Janssen-Heijnen M, et al. Global cancer incidence

in older adults, 2012 and 2035: A population-based study. Int J Cancer
2019;144(1):49-58.

2. Hricak H, Choyke PL, Eberhardt SC, Leibel SA, Scardino PT. Imaging
prostate cancer: A multidisciplinary perspective. Radiology 2007;243
(1):28-53.

3. Barrett T, Haider MA. The emerging role of MRI in prostate cancer
active surveillance and ongoing challenges. AJR Am J Roentgenol
2017;208(1):131-139.

4. Hamdy FC, Donovan JL, Lane JA, et al. 10-year outcomes after moni-
toring, surgery, or radiotherapy for localized prostate cancer. N Engl J
Med 2016;375(15):1415-1424.

5. Padhani AR, Weinreb J, Rosenkrantz AB, Villeirs G, Turkbey B,
Barentsz J. Prostate Imaging-Reporting and Data System Steering

Committee: PI-RADS v2 status update and future directions. Eur Urol
2019;75(3):385-396.

6. Krishna S, Schieda N, McInnes MD, Flood TA, Thornhill RE. Diagnosis
of transition zone prostate cancer using T2-weighted (T2W) MRI: Com-
parison of subjective features and quantitative shape analysis. Eur
Radiol 2019;29(3):1133-1143.

7. Vargas HA, Hotker AM, Goldman DA, et al. Updated prostate imaging
reporting and data system (PIRADS v2) recommendations for the detec-
tion of clinically significant prostate cancer using multiparametric MRI:
Critical evaluation using whole-mount pathology as standard of refer-
ence. Eur Radiol 2016;26(6):1606-1612.

8. Portalez D, Mozer P, Cornud F, et al. Validation of the European Soci-
ety of Urogenital Radiology Scoring System for prostate cancer diagno-
sis on multiparametric magnetic resonance imaging in a cohort of
repeat biopsy patients. Eur Urol 2012;62(6):986-996.

9. Khalvati F, Zhang Y, Le PHU, Gujrathi I, Haider MA. PI-RADS guided
discovery radiomics for characterization of prostate lesions with
diffusion-weighted MRI. SPIE Medical Imaging: Computer-Aided Diag-
nosis, Vol. 10950. San Diego, California, United States: International
Society for Optics and Photonics; 2019. 1095042 p. https://doi.org/10.
1117/12.2512550.

10. Donovan MJ, Fernandez G, Scott R, et al. Development and validation
of a novel automated Gleason grade and molecular profile that define
a highly predictive prostate cancer progression algorithm-based test.
Prostate Cancer Prostatic Dis 2018;21(4):594-603.

11. Epstein JI, Egevad L, Amin MB, Delahunt B, Srigley JR, Humphrey PA.
The 2014 International Society of Urological Pathology (ISUP) consen-
sus conference on Gleason grading of prostatic carcinoma: Definition
of grading patterns and proposal for a new grading system. Am J Surg
Pathol 2016;40(2):244-252.

12. Jones TA, Radtke JP, Hadaschik B, Marks LS. Optimizing safety and
accuracy of prostate biopsy. Curr Opin Urol 2016;26(5):472-480.

13. Litjens G, Kooi T, Bejnordi BE, et al. A survey on deep learning in med-
ical image analysis. Med Image Anal 2017;42:60-88.

14. Shen D, Wu G, Suk HI. Deep learning in medical image analysis. Annu
Rev Biomed Eng 2017;19:221-248.

15. Suzuki K. Overview of deep learning in medical imaging. Radiol Phys
Technol 2017;10(3):257-273.

16. Khosravi P, Kazemi E, Imielinski M, Elemento O, Hajirasouliha I. Deep
convolutional neural networks enable discrimination of heterogeneous
digital pathology images. EBioMedicine 2018;27:317-328.

17. Khosravi P, Kazemi E, Zhan Q, et al. Deep learning enables robust
assessment and selection of human blastocysts after in vitro fertiliza-
tion. NPJ Digit Med 2019;2(1):21.

18. Wang X, Yang W, Weinreb J, et al. Searching for prostate cancer by
fully automated magnetic resonance imaging classification: Deep learn-
ing versus non-deep learning. Sci Rep 2017;7(1):15415.

19. Kwon D, Reis IM, Breto AL, et al. Classification of suspicious lesions on
prostate multiparametric MRI using machine learning. J Med Imaging
(Bellingham) 2018;5(3):034502.

20. Lopez K, Fodeh SJ, Allam A, Brandt CA, Krauthammer M. Reducing
annotation burden through multimodal learning. Front Big Data 2020;
3:19.

21. Clark K, Vendt B, Smith K, et al. The cancer imaging archive (TCIA):
Maintaining and operating a public information repository. J Digit
Imaging 2013;26(6):1045-1057.

22. Litjens G, Debats O, Barentsz J, Karssemeijer N, Huisman H. Com-
puter-aided detection of prostate cancer in MRI. IEEE Trans Med Imag-
ing 2014;33(5):1083-1092.

23. Geert Litjens OD, Barentsz J, Karssemeijer N, Huisman H. ProstateX
Challenge data. Cancer Imaging Arch; 2017;10:K9TCIA.

24. Choyke PTB, Pinto P, Merino M, Wood B. Data from PROSTATE-MRI.
Cancer Imaging Arch; 2016;9. http://doi.org/10.7937K.

25. Bloch BN, Jain A, Jaffe CC. Data from PROSTATE-DIAGNOSIS. Cancer
Imaging Arch; 2015;9:10.7937.

470 Volume 54, No. 2

Journal of Magnetic Resonance Imaging

https://doi.org/10.1117/12.2512550
https://doi.org/10.1117/12.2512550


26. Zuley ML, Jarosz R, Drake BF, et al. Radiology Data from The Cancer
Genome Atlas Prostate Adenocarcinoma [TCGA-PRAD] collection. Can-
cer Imaging Arch; 2016;9. http://doi.org/10.7937K.

27. (NCCN) NCCN. Prostate Cancer (Version 4.2018). 2018.

28. Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions.
Computer vision and pattern recognition (CVPR). Boston, MA: IEEE;
2015. p 1-9.

29. Deng J, Dong W, Socher R, Li L, Kai L, Li F-F. ImageNet: A large-scale
hierarchical image database. 2009 IEEE Conference on Computer
Vision and Pattern Recognition. Miami, FL: IEEE; 2009. p 248-255.

30. Towns J, Cockerill T, Dahan M, et al. XSEDE: Accelerating scientific dis-
covery. Comput Sci Eng 2014;16(5):62-74.

31. Shorten C, Taghi M. Khoshgoftaar. A survey on image data augmenta-
tion for deep learning. J Big Data 2019;6(1):1-48.

32. Zhou B, Khosla A, Lapedriza A, Oliva A, Torralba A. Learning deep fea-
tures for discriminative localization. In: 2016 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR); 2016. p 2921–2929.

33. Cohen JA. Coefficient of agreement for nominal scales. Educ Psychol
Meas 1960;20(1):37-46.

34. Woo S, Kim SY, Cho JY, Kim SH. Preoperative evaluation of prostate
cancer aggressiveness: Using ADC and ADC ratio in determining
Gleason score. Am J Roentgenol 2016;207(1):114-120.

35. Yuan YX, Qin WJ, Buyyounouski M, et al. Prostate cancer classification
with multiparametric MRI transfer learning model. Med Phys 2019;46
(2):756-765.

36. Cao R, Bajgiran AM, Mirak SA, et al. Joint prostate cancer detection
and Gleason score prediction in mp-MRI via FocalNet. IEEE Trans Med
Imaging 2019;38:2496-2506.

37. Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for
biomedical image segmentation. Medical image computing and
computer-assisted intervention, Pt III, Vol 9351; Switzerland: Springer;
2015. p 234-241. https://doi.org/10.1007/978-3-319-24574-4_28.

38. Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. DeepLab:
Semantic image segmentation with deep convolutional nets, atrous
convolution, and fully connected CRFs. IEEE Trans Pattern Anal Mach
Intell 2018;40(4):834-848.

39. Hu Z, Tang A, Singh J, Bhattacharya S, Butte AJ. A robust and inter-
pretable end-to-end deep learning model for cytometry data. Proc Natl
Acad Sci U S A 2020;117(35):21373-21380.

August 2021 471

Khosravi et al.: Automated Diagnosis of PCa Using AI

https://doi.org/10.1007/978-3-319-24574-4_28

	 A Deep Learning Approach to Diagnostic Classification of Prostate Cancer Using Pathology-Radiology Fusion
	Materials and Methods
	Ethics Statement
	Combined Database
	Models' Architecture and Implementation
	Training Method
	Deep Feature Analysis
	Evaluation and Statistical Analysis of the Developed Method
	Code Availability

	Results
	Classification of MR Images Based on their Pathology Labels
	Deep Learning Algorithm Outperforms PI-RADS for Classification
	Discriminative Localization Using Deep Feature Detection

	Discussion
	Limitations
	Conclusion
	Acknowledgments
	Conflict of Interest
	Author Contributions
	REFERENCES


