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The ‘balance hypothesis’ predicts that non-stoichiometric variations in concentrations of proteins
participating in complexes should be deleterious. As a corollary, heterozygous deletions and
overexpression of protein complex members should have measurable fitness effects. However,
genome-wide studies of heterozygous deletions in Saccharomyces cerevisiae and overexpression
have been unable to unambiguously relate complex membership to dosage sensitivity. We test the
hypothesis that it is not complex membership alone but rather the topology of interactions within a
complex that is a predictor of dosage sensitivity. We develop a model that uses the law of mass action
to consider how complex formation might be affected by varying protein concentrations given a
protein’s topological positioning within the complex. Although we find little evidence for
combinatorial inhibition of complex formation playing a major role in overexpression phenotypes,
consistent with previous results, we show significant correlations between predicted sensitivity of
complex formation to protein concentrations and both heterozygous deletion fitness and protein
abundance noise levels. Our model suggests a mechanism for dosage sensitivity and provides
testable predictions for the effect of alterations in protein abundance noise.
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Introduction

Essentially all biological processes involve proteins frequently
acting as multi-component complexes (Eisenberg et al, 2000;
Vidal, 2005; Gavin et al, 2006; Krogan et al, 2006). However, it
remains a challenge to characterize how quantitative interac-
tion parameters, such as rates, affinities and protein concen-
trations, affect function at the cellular and organismal levels
(Kuriyan and Eisenberg, 2007). The balance hypothesis posits
that an imbalance in the relative concentrations of proteins
involved in a protein complex can disrupt complex formation
and should thus be deleterious. As a corollary, it has been
suggested that proteins involved in complexes should be more
likely to be dosage sensitive than other proteins (Papp et al,
2003).

Several means exist by which stoichiometric imbalances
could disrupt complex formation and lead to adverse
phenotypic effects: first, reducing the abundance of a

component of a protein complex, as might occur through a
heterozygous deletion mutation, would be predicted to have a
measurable effect on fitness. Accordingly, it has been shown
that a twofold reduction in the amount of a component protein
can result in a many fold reduction in complex formation, and
thus have an amplified effect on cell phenotype (Veitia, 2002,
2003). A second, somewhat less intuitive mechanism is
referred to as the pro-zone effect or combinatorial inhibition
(CI) (Bray and Lay, 1997; Burack and Shaw, 2000; Ferrell,
2000; Levchenko et al, 2000). CI can occur when a stoichio-
metric excess of one component of a protein complex is added
to a solution containing only moderate amounts of the other
components. If the component in excess satisfies certain
topological conditions in its interaction with other compo-
nents from the complex, and particularly if it acts as a bridge
between two separate parts of the complex, then this excess
will typically inhibit the formation of the full complex, by
instead favoring the formation of many incomplete subspecies
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(Bray and Lay 1997). Third, if overabundance or insufficient
concentrations of dosage-sensitive proteins significantly affect
cell function, it may be beneficial to reduce protein abundance
noise for these proteins. Hence, it may be possible to detect
evolutionary selection for reduced protein noise.

Several studies have investigated the balance hypothesis and
its corollaries. Papp et al (2003) have argued in favor of the
balance hypothesis based in part on the finding of enrichment
for complex membership among the products of haploinsuffi-
cient genes. However, Deutschbauer et al (2005) argued that the
mechanism of haploinsufficiency is not due to stoichiometric
imbalances, but instead reflects insufficient protein production
for a given rate of growth based on the fact that for 136 out of
184 genes in Saccharomyces cerevisiae, haploinsufficiency is
relieved under the slow-growth conditions produced by
growing in a minimal medium. Moreover, through a large-scale
gene overexpression study in S. cerevisiae, Sopko et al (2006)
concluded that there is no significant enrichment for over-
expression phenotypes among genes products participating in
protein complexes and no correlation between genes with
overexpression and haploinsufficiency phenotypes. Consistent
with the idea that reduced or increased levels of protein
complex members could cause deleterious stoichiometric
imbalances, Fraser et al (2004) found that proteins with
predicted lower expression noise are enriched for complex
membership. In contrast, a large-scale study that measured
protein abundance noise in single cells did not find a significant
association between protein level variations and participation in
protein–protein interactions (PPIs) (Newman et al, 2006).

To reconcile these contradictory findings, we reasoned that
complex membership alone might be an insufficient condition
to give rise to significant dosage sensitivity. Are there

additional topological requirements for the complex or the
protein’s positioning in that complex that might be needed to
generate significant sensitivity to increased and decreased
protein levels? The work of Bray and Lay (1997) and Veitia
(2003) suggests that this could be the case: for example, while
overexpression of bridge proteins could lead to the formation
of incomplete non-functional subcomplexes and thus CI,
proteins at the periphery of a complex and linked by a single
complex subunit interaction would appear to have relatively
little effect on complex formation if overexpressed; in addition,
closed, multiply bonded topologies typically show only a weak
tendency toward CI (Bray and Lay, 1997) (Figure 1A and B).
Hence, if a substantial fraction of proteins within complexes
were peripherally located, then one might not expect to see a
strong correlation between complex membership and over-
expression phenotypes. Similarly, topology may be related to
effects of decreases in protein abundance: dependent on a
protein’s topological position in a complex, a reduction in the
protein’s abundance could result in a higher than proportional
decrease in complex formation (Supplementary Figure 1A).
For these proteins, there may be a significant fitness effect on
heterozygous deletions, whereas for others the consequences
could be less severe (Supplementary Figure 1B).

Here, we hence ask the question whether dosage sensitivity
characterized by overexpression phenotypes, measurements
of fitness effects of heterozygous deletions and quantification
of protein abundance noise may be related to the topologies of
interactions within complexes rather than just complex
membership. Recently, Maslov and Ispolatov (2007) have
used a model based on the law of mass action to study the
propagation of concentration changes across the S. cerevisiae
PPI network. We have developed a similar approach that
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Figure 1 Complex formation model and response curve parameters. (A) A hypothetical protein complex represented as a graph. Each node is colored to correspond
to the response curve it generates. Component 1 (orange) acts as a bridge in the graph. Component 2 is peripherally located. (B) Response curves showing complex
formation as a function of the amount of each component protein in (A) assuming all interactions are of micromolar strength. (C) Log-width-at-half-max of a response
curve is computed to quantify tendency toward CI. (D) An effective Hill coefficient is computed to quantify response curve steepness.
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instead focuses on the local effects of protein concentrations
on complex formation by generating complex formation
response curves for each protein (Figure 1). A response curve
is defined as the dependence of the total amount of full
complex (i.e. all proteins in a complex interacting simulta-
neously) on variation of the concentration of one of its protein
components. We evaluate two parameters describing the
dosage sensitivity based on each protein’s response curves:
(i) the tendency toward CI (Figure 1C) or (ii) the steepness
(high Hill coefficient (HC)) of the response curve (Figure 1D).
To compare these computed measures of dosage sensitivity to
experimental characterization of heterozygous gene deletion,
gene overexpression and protein abundance noise, we apply
our model to manually curated complexes from the Munich
Information Center for Protein Sequences (MIPS) database
(Mewes et al, 2004) combined with high-confidence PPI data.
Affinity purification mass spectrometry experiments, a major
source of experimental data on protein complexes (Gavin et al,
2006; Krogan et al, 2006), do not contain explicit information
on protein complex topologies. To address this problem, we
derive topologies in our analysis in three different ways, using
two major interaction sets integrating data from multiple
sources (Batada et al, 2006; Collins et al, 2007) as well as a
separate set weighted to be enriched for direct physical
interactions (Kiemer et al, 2007) (see Materials and methods).
Contrary to our initial expectation, we find no significant
correlation between response curves that indicated CI and
overexpression phenotypes. However, we do find a significant
correlation for all three topology sets between steeply sloped
response curves and both haploinsufficiency and low noise.
Our results therefore suggest that not complex membership
alone, but features of complex topologies reflected in our
simple model (despite the fact that there are undoubtedly
errors in our topology assignments) can be linked to global
experimental observables.

Results

Representation of protein complexes

The model for protein complexes implemented here was
inspired by that previously described by Bray and Lay (1997).
Proteins are represented as nodes in a graph. These nodes are
linked by edges to represent binding interactions between
proteins; the overall organization of edges and nodes into a
graph thus describes a protein complex (Figure 1A). Rather
than considering hypothetical complexes as in Bray and Lay
(1997), here we aim to generate graphs representing experi-
mentally determined complex topologies. We built graphs
representing complexes from the high-confidence manually
curated set in the MIPS database (Mewes et al, 2004). A
separate graph was defined for each of 123 curated complexes.
Edges were drawn between the nodes (proteins) in each graph
if there was a binary interaction as indicated by the high-
confidence interaction network compiled by Kiemer et al
(2007) to be enriched for direct physical interactions. In
separate trials, binary interactions were identified from
interaction networks compiled by either Batada et al (2006)
or Collins et al (2007) (for further details, see Materials and
methods and Supplementary information). Complex subspe-

cies were determined by recursively deconstructing the full
complex into a set of subgraphs in a manner similar to the
algorithm described in Lay and Bray (1997). Our analysis
yields similar results using all three topology sets (Supple-
mentary Table I). Unless stated otherwise, we will be referring
to our analysis using the Kiemer interaction set (results using
the Batada or Collins interaction sets are shown in the
Supplementary information).

We make a number of simplifying assumptions about the
interactions between proteins and the formation of complexes.
We assign simplified association constants for all complexes
and their subspecies. To compute association constants, each
edge is given a strength: for example, if all edges in a complex
were assigned 106 or micromolar interaction strengths, the
association constant of the complex would be K¼106X, where
X is the number of edges in the complex. In the case of a dimer
of two interacting proteins, there would be one edge, and
hence the association constant of the dimer would be K¼106. If
both proteins can simultaneously interact with another protein
then the trimer formed would have three edges resulting in
K¼1018 as the association constant for the trimer. In separate
trials, we assign different uniform interaction strengths of 108,
106 or 104 to all edges in all complexes. In addition, to test
whether our results would hold in the more realistic situation
where interactions do not all have the same strength, we also
allowed edge strengths to vary between either 108 or 104 and
sampled each complex using strengths randomly assigned to
each edge. We also apply a simple model of cooperativity and
anticooperativity between interactions. We define association
constants for cooperativity (the free energy of a pair of
interactions is greater than the sum of the free energies of the
individual interactions) as K ¼ 106X1:15

, and for anticooper-
ativity (less than the sum of the free energies of the individual
interactions) as K ¼ 106X0:85

.

Computing response curves

Given a complex, a list of its subspecies, an idealized
association constant for each species and an assumed total
concentration of each protein, we can compute the equili-
brium concentration of the fully formed complex (Storer and
Cornish-Bowden, 1976), which is both stable and unique. We
start by assuming micromolar stoichiometric quantities of
each protein, which are in the range of the association
constants we assign. By varying the concentration of one
protein while holding the concentrations of the other proteins
constant, we compute a response curve for the formation of
complex as a function of varying amounts of one of its protein
components. The shape of this curve can then be used as a
description of the sensitivity of the system to changing
amounts of the protein. Examples of such curves are shown
in Figure 1B. We use two parameters to describe the response
curves: their width and their steepness, as illustrated in Figure
1C and D and described in the next two sections.

Measuring CI

To quantify a protein’s tendency toward CI, we measure the log
width-at-half-max of the response curve (Figure 1C). Narrow
widths correspond to strong CI (Figure 1B, orange) and broad
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widths correspond to mild CI potentially only occurring at non-
physiologically high protein concentrations (Figure 1B, green).
In cases where the amount of complex increases monotoni-
cally with increasing amounts of protein (Figure 1B, pink),
such as is characteristic of peripherally located proteins, we
label those proteins as being incapable of CI (or width¼N).

Measuring steepness

We compare the steepness of response curves by computing
the log width between the protein concentration at 10% of the
curve’s maximum and 90% of the curve’s maximum (on the
left-hand, increasing side of the curve, Figure 1D). Dividing
Log(81) by this number corresponds to an effective HC.
Although our computed HC values should not be quantita-
tively correct, it is a useful measure to distinguish qualitatively
between steep and shallow response curves within the context
of our model.

Relationship between topologies and computed
response curve characteristics

CI has a simple relationship to topology where bridge nodes
correspond to cases of strong CI, whereas multiply connected
non-bridging nodes show weaker CI and peripherally con-
nected nodes are incapable of CI (Figure 1A and B). Although
the relationship between topology and response steepness is
less intuitive than with CI, a correspondence is discernible.

Aside from the simple case of shallow response curves
represented by dimers, nodes of arbitrary degree can also
have shallow response curves when their adjacent nodes are
less densely connected, and nodes of equal degree can have
different steepnesses (Figure 2A). This effect may be thought
of as being related to the CI effect, but in this case complex
formation increases less steeply with increasing protein
concentration because a small portion of the protein ends up
forming incomplete complexes rather than the full complex
despite a relative overabundance of the other complex
components. The measures of clustering coefficient (the
number of links between adjacent nodes divided by how
many could exist) and betweenness (the number of shortest
paths that pass through a node relative to how many shortest
paths exist) thus relate to response curve steepness, as
illustrated in Figure 2B. High betweenness correspond to
proteins with shallow response curves and high clustering
coefficients correspond to proteins with steep response curves
(Figure 2B).

Sensitivity of width and steepness to varying
interaction strength

Because response curves depend not only on the topology of
interactions but also on the interaction strengths themselves,
we sampled interaction strengths to test whether our conclu-
sions hold when interaction strengths vary from strong to
weak. For each complex, we separately assigned a random
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strength to an edge of either 100 mM or 10 nM and for each
protein we computed a response curve and measured its width
and HC. We repeated this process 16 times and recorded the
average width and HC value for each protein. (If there are 16 or
fewer possible assignments, then the assignments are en-
umerated instead of being sampled.) Our general findings
comparing the predictions of our model to experimental
measurements of overexpression phenotypes (Sopko et al,
2006), fitness effects of heterozygous deletions (Deutschbauer
et al, 2005) and quantification of protein abundance noise
(Newman et al, 2006) (see sections below) remain unchanged
whether we consider average steepnesses or widths derived
from sampling or those derived assuming uniform interaction
strengths for all edges. Unless we state otherwise, we will be
referring to average HCs or widths.

Haploinsufficiency is linked to response
curve steepness

An imbalance in subunit amounts can be created by a
reduction in the amount of a component protein. In this
situation, the steepness of the left portion of the response
curve may indicate how severely complex formation may be
affected for a specified reduction in the amount of a
component protein. Steeper curves should suggest a higher
sensitivity to reduction in protein concentration (Veitia, 2002).
We first describe the behavior of our model under the
assumptions of different binding strengths and then present
a comparison of the model’s predictions with experimental
data. The average HCs we computed (Figure 3), tend to group
into two extremes. We observe a negative correlation between
the average HC and the variance of HCs derived from sampling
varying interaction strengths of each protein, suggesting that
proteins associated with shallower response curves (low HC)
might be made steeper by varying interaction strength,
whereas proteins associated with very steep response curves
(HC42) are not affected very much by changes in interaction
strengths (Supplementary Figure 2). The response curve
steepness within our model is related to the number or
strength of interactions with more or stronger interactions
often leading to steeper curves, but reaching a maximum
steepness, as measured by the HC, of B2 (Supplementary

Figure 3). If interaction strengths are not sampled, but are
instead fixed uniformly at micromolar interactions, the HCs
group tightly into two populations centered around B1.1 and
B2 (Supplementary Figure 4A). However, these populations
broaden out under the anticooperative assumption as the
formation of incomplete subcomplexes becomes more favor-
able (Supplementary Figure 4B).

Although approximately 3% of S. cerevisiae genes have been
identified as haploinsufficient under rich medium conditions
(Deutschbauer et al, 2005), we noted that protein complex
members within our set show some enrichment for haplo-
insufficiency (Papp et al, 2003) with approximately 6%
identified as haploinsufficient (N¼436, PB0.001). Proteins in
our set identified as having steep response curves (HC42)
show further enrichment beyond 6% to near 10% haploinsuf-
ficient (N¼94, PB0.04). Additionally, Figure 4 and Supple-
mentary Figure 5 show a clear increasing trend in the
proportion of steep response curves (HC42) as the fitness of
haploinsufficient mutants is decreased. This trend remains
qualitatively similar under our different assumptions about
interaction strength or cooperativity, different choices for the
HC threshold (HC¼1.7, 1.8 and 1.9) separating steep and
shallow responses, and additionally, on removal of dimer
complexes that represent a significant portion of the low HC
response curves (Supplementary Figure 6). Thus, proteins
with steep response curves according to our model appear to
be associated with haploinsufficiency.

Proteins with steep response curves tend to have
lower noise

It has been suggested that proteins that are members of
complexes may be expected to have lower abundance noise
(Fraser et al, 2004). We wondered whether we could detect a
reduction in noise not just for all members of protein
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complexes but also specifically for proteins where our model
predicts complex formation to be most sensitive to protein
concentration (steep response curves). This analysis of noise
in the context of concentration sensitivity is complicated by
the fact that there is a strong global correlation between mean
protein abundance and abundance noise defined by the
coefficient of variation (CV), as shown by Newman et al
(2006) in a large-scale study of protein abundance noise in S.
cerevisiae. The authors, however, find a finer structure in noise
levels by defining DM values, which represent the distance
from a running median of CV values around a given
abundance, effectively normalizing measured noise in CV
against protein abundance. Consistent with our hypothesis of
a relation between complex topology and dosage sensitivity,
we find that proteins with steep response curves (HC42) tend
to have lower noise as defined by their DM values than other
proteins with shallow response curves (HCo2) (Figure 5;
Supplementary Figure 7). To test the significance of this
difference, we compared the median DM values of sets of
proteins with steep (median¼�1.01, N¼50) and shallow
(median¼0.114, N¼82) response curves, using a randomiza-
tion test (see Materials and methods). The medians appear to
be drawn from different distributions with a PB0.002 level of
significance (alternatively, the Wilcoxon rank sum test gives
PB0.003). The difference in noise levels remains significant
(Po0.01) under the different assumptions about interaction
strength or cooperativity, different choices for the HC thresh-
old separating steep and shallow responses, and on limiting
the set to either essential or non-essential proteins, or
excluding haploinsufficient proteins (data not shown). We
did not find a significant correlation between noise levels and
response curve width.

Dosage sensitivity is not a simple function of
complex size

Because proteins participating in dimer complexes universally
tend toward shallow response curves within our model, it is
possible that our observed proclivity for lower noise among
proteins with steep response curves might also reflect a
tendency for lower noise among proteins participating in

higher order complexes versus dimers. This would be
consistent with the earlier hypothesis that dosage sensitivity
should be related to complex size: if disruption of complex
formation by a dosage imbalance of one subunit has a fitness
cost proportional to the wasted production of other subunits in
the complex (Fraser et al, 2004), one might expect that, as the
number of subunits in a complex increased, there would be a
greater waste, and consequently higher fitness costs for the
disruption of complex formation. To determine whether our
observed correlation might be due to complex size rather than
curve steepness, we looked for a correlation between the
number of subunits in a complex and the amount of
abundance noise observed for component proteins while
excluding dimer complexes (as dimer complexes are all
associated with shallow response curves). Such a correlation
did not exist (Spearman’s rank correlation r¼�0.052, PB0.49,
N¼199) and there were no significant differences between the
median noise levels on any partitioning of the set with respect
to complex size. The most significant partitioning compared
members of trimer complexes (median¼0.05, N¼30) to
members of pentamer or larger complexes (median¼�0.14,
N¼134) giving PB0.7. In contrast and in accordance with our
model, when excluding dimer complexes, proteins with steep
response curves (median DM value¼�1.01, N¼50) and those
with shallow response curves (median DM value¼0.12, N¼35)
still show distinct median noise levels (PB0.01, or by
Wilcoxon rank sum test PB0.01). Thus, our observations
support the idea that lower abundance noise is correlated with
steeper response curves and not more simply complex size.

Degree alone may not explain reduced noise
or haploinsufficiency

Although there is a correlation between the number of
interactions (degree) and the HC in our model, the correlation
between HC and noise may not solely be explained as being
due only to the previously observed correlation between
degree and noise (Batada et al, 2006). Proteins with the same
number of interactions and in the same size complex may
show distinct HCs based on differing position within the
overall complex topology (Figure 2A provides an illustration).
To test the influence of degree and modeled steepness (HC), we
investigated whether steep response curve proteins were likely
to be less noisy than shallow response curve proteins with
equal degree. Out of 213 pairs of steep and shallow HC
proteins, where the steep HC protein had a degree equal to the
shallow protein, in B61% of pairs the steep protein has the
lower DM value (PB0.0005). The same analysis considering
heterozygous deletion fitness data also finds a significant
difference between steep and shallow HC proteins with the
same degree: out of 968 pairs, in B53% of pairs the steep
protein has a lower fitness (PB0.02). As an additional control
designed to reassign topologies while preserving degree to test
for the influence of incorrect topology assignment, we
randomized the computed HC values within groups of proteins
having the same degree. We found that this assignment of
steep or shallow response curves based only on degree did not
show a significant difference in median DM values (PB0.1).
These results suggest that the relation between computed
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steepness and observed reduced noise or haploinsufficiency
may not be explained only by degree.

CI may play a limited role in overexpression
phenotypes

CI could be one of the causes of dosage sensitivity under the
balance hypothesis in cases of substantial excess of one of the
components. Although a previous study has linked the
lethality of overexpression to complex membership (Papp
et al, 2003), a subsequent large-scale study (Sopko et al, 2006)
was unable to find a significant increase in complex member-
ship among proteins displaying overexpression phenotypes.
Because complex membership alone is not sufficient to result
in CI, we asked whether a stronger CI signal might be observed
using our model to distinguish between complex member
proteins that are capable of CI and those that are not.

Using our width-at-half-max measurement for CI
(Figure 1C), we computed response curve widths for all
proteins in our set of complexes. A histogram of the average
widths measured for each protein in our set is shown in
Supplementary Figure 8. The histogram shows widths grouped
into populations centered aroundB1.2, B5, B10, and infinity
(CI incapable). When using either the cooperative or anti-
cooperative assumption, most widths shift to become sig-
nificantly narrower or wider, respectively (Supplementary
Figure 9B and C). This makes intuitive sense within the simple
model because the cooperative assumption shifts the associa-
tion constants to favor the formation of the full complex over
smaller subcomplexes, whereas the anticooperative assump-
tion significantly reduces the association constant for the full
complex, but has less effect on the association constants of
smaller subcomplexes.

For our analysis of the relationship between complex
topology and overexpression phenotype, we first used widths
computed using the assumption of micromolar interaction
strengths without cooperativity. We considered essential
proteins from our set and compared the mean overexpression
lethality scores (OLSs) (Sopko et al, 2006, ranging from 1:
lethal to 5: no effect) of two groups: those predicted to be
capable of CI (widthaN, N¼105, mean OLS¼4.69) and those
not capable (width¼N, N¼18, mean OLS¼4.52). Using a
randomization test (see Materials and methods), we were
unable to find a significant difference between the two sets
(P40.3). At large response curve widths, CI of complex
formation may occur only at non-physiological protein
concentrations (Figure 1B, green). Therefore, we tested
whether this lack of significance persisted when we compared
proteins with narrow widths (where inhibitory effects might
take place at lower physiologically achievable protein con-
centrations) against all other proteins. This was the case under
all binding strength assumptions (100, 1mM, 10 nM, coopera-
tive and anticooperative). Thus, based on available data we
are unable to identify a role for CI in overexpression
phenotypes.

We do not see this as inconsistent with the importance of
topology in affecting dosage sensitivity. Instead, the lack of
correspondence may be due to a principle difference between
response curve steepness, which may result from having

stronger interactions or a higher clustering coefficient and
smaller betweenness (Figure 2), and CI, which results
primarily from the presence of a bridging-type interaction
(Figure 1A and B) that may be especially difficult to infer from
available data. Therefore, due to the substantial sensitivity of
the CI effect to complex topology (i.e. small errors in assigning
topologies may mask the detection of small true dependency),
current data may be insufficient to reveal correlations. In
addition, cooperativity effects could reduce the potential for CI
even for proteins with bridge-like interactions. For example, a
scenario of sequential complex assembly, where one protein
needs to bind a bridging protein in a trimeric complex before
the third protein can bind would prevent CI (Veitia, 2002). For
other, non-bridging proteins, a limited role for CI in over-
expression phenotypes could be explained by the requirement
for non-physiologically high concentrations to cause the effect
(Figure 1B). A final possible explanation for the absence of a
clear CI phenotype follows from the hypothesis that non-
specific interactions not modeled here could be deleterious at
elevated concentrations for a wide range of ‘sticky’ proteins,
independent of their topologies within their functional
complexes (Zhang et al, 2008).

Discussion

Relying on the basic principles of the law of mass action, we
make qualitative predictions about the amount of complex
formation as a function of the changing concentrations of
individual subunits within protein complexes. Through this
simple model, we observe correlations between sharper
responses in complex formation and both reduction in protein
abundance noise and greater likelihood of haploinsufficiency.
Our key assumptions going into this analysis are the
interaction strengths and types of (non-)cooperative behavior
of the PPIs that form complexes and perhaps most importantly,
our ability to infer complex topologies from available data (see
below). Within our study, we consider proteins from data sets
that are limited to relatively abundant proteins. Thus, the
equilibrium model we use to compute complex formation
seems applicable. To account for the assumptions we have
made about association constants, we have tested our results
under varying interaction strengths and different assumptions
about the cooperative nature of interactions. We observe
similar correlations using most of these different assumptions
about interaction strengths (the only exception is the extreme
case when all interactions are assumed to be very weak,
100 mM).

The interaction sets we have used as indicators of direct
physical interactions between proteins are based at least in
part on affinity purification data that by their nature identify
interactions between proteins that exist in the same complex,
but may not interact directly. Ideally, the interactions that we
model would be based solely on experimental evidence that
represented direct physical interactions less ambiguously,
such as crystal structures or yeast two-hybrid assays. However,
given that state-of-the-art yeast two-hybrid interactomes cover
only B20% interactions (Yu et al, 2008), the analysis was not
possible with such a limited interaction set. Although there are
sure to be cases where incorrectly assigned complexes,
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topologies or association constants lead us to the wrong
conclusion about response curve characteristics, these mis-
classifications may tend to underestimate the significance of
our observations relating interaction topology with protein
abundance noise and haploinsufficiency. This is consistent
with the observation that when we used the original set of
interactions obtained by Krogan et al (2006), the identified
relations were weak, whereas using the higher confidence
interactions from combined data sets by Batada et al (2006)
or Collins et al (2007) and overlaying them with manually
curated complexes, we were able to observe significant
correlations. Because neither the Batada et al or Collins et al
interactomes were specifically designed to identify direct
physical interactions between proteins and thus might be
prone to higher false-positive rates when used to define direct
physical interactions represented as edges in our graphs, we
chose to perform our analysis using an interaction set created
by Kiemer et al (2007) that was enriched for direct physical
interactions (although we cannot exclude the possibility that
this set still contains indirect interactions). Using the Kiemer
interaction set reduced the total number of interactions by
B40% compared to the Batada set, while reducing the total
number of connected graphs required for our analysis by only
B10% (Supplementary Table I). Despite this significant
change in interactome size favoring the removal of indirect
interactions, the correlations observed in our model remained
significant.

It might be argued that HCs of 1 and 2 do not seem
sufficiently different to cause the observed effects. However,
simple estimates show a substantial reduction in the complex
formation under noisy expression of a protein with a steep
response curve versus a shallow response curve (see
Supplementary information and Supplementary Figure 10).
Additionally, the range of HCs produced in our model is likely
to be more confined than the actual range. Specific coopera-
tivity effects not modeled here might extend this range further.
The upper and lower bounds of our computed HCs could also
be broadened if the abundance of one protein component was
closely correlated with the abundance of another component
such that a change in the concentration of one protein
component implied a similar change in the concentration of
another and their abundances varied simultaneously. Hence,
the effects of observed coexpression of complex subunits
(Stuart et al, 2003) could be significant. The range of HCs
would additionally be extended if a complex contained
multiple copies of the same protein. Information describing
complex stoichiometry is an element missing from our model.
In some situations, such as when a protein interacts with a
larger complex as a tight homodimer, it may be possible to treat
the homodimer as a single entity. In this case, one would
obtain results that are qualitatively similar to those presented
here. However, in general complex stoichiometry may have a
significant impact on complex formation. We also set aside
modeling situations where complexes share or compete for
subunits as well as potential non-functional interactions
(Zhang et al, 2008).

The role of noise in biological systems has recently gained
attention. Although noise may serve useful purposes in certain
situations (Samoilov et al, 2006), we find that noise tends to be
reduced when there is a sharp relationship between a protein’s

concentration and the formation of a complex. We hence
speculate that dosage sensitivity, which may occur, in part,
due to complex topology, leads to selection against the noisy
expression of a given protein. Consistent with this idea we note
that there are fewer proteins with high noise (DM41) and low
heterozygous deletion fitness (o0.98) than might be expected
if DM values and heterozygous deletion fitness were paired
randomly (N¼1917, Po0.00001) (Batada and Hurst, 2007).
Proteins with low noise (DMo1) and low heterozygous
deletion fitness (o0.98) correspond to dosage-sensitive
proteins whose noise levels are near the minimum. On the
other hand, proteins with high noise and high heterozygous
deletion fitness correspond to dosage-insensitive proteins that
may have larger levels of abundance noise without detrimental
effects. The former group tends to be populated by proteins
with steep response curves (11 proteins with steep versus 4
proteins with a shallow response curve), whereas the
latter group tends to be populated by proteins whose response
curves are shallow (9 proteins with steep versus 29
proteins with shallow response curves, P¼0.001, Fisher’s test;
Figure 6).

Finally, we note that correlations with DM values typically
yielded higher levels of significance than correlations with
heterozygous deletion fitness (in rich media) and appeared
slightly more robust to varying model parameters or interac-
tion data sets. We believe that this is because the effect of
protein dosage on growth rate is dependent on the growth
environment and, thus, significant growth defects due to
reductions in specific complexes may only appear under a
subset of environmental conditions. For example, there is only
a weak correlation between heterozygous deletion fitnesses in
minimal and rich media (Kendall’s t¼0.25). On the other
hand, one might expect protein expression noise to be less
variable between different environments (Kendall’s t¼0.56
for minimal and rich media CVs) and optimized to satisfy
constraints imposed by many possible environments. Thus,
the degree to which expression noise is tuned higher or lower
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Figure 6 A scatter plot of DM versus heterozygous deletion fitness is divided
into quadrants representing low fitness–low noise, low fitness–high noise, high
fitness–low noise and high fitness–high noise. Red stars represent proteins
classified as being likely to have steep response curves. Blue squares represent
proteins classified as having shallow response curves. Gray dots represent
proteins with known heterozygous deletion fitness values and DM values that
were not analyzed with our model because they were not members of MIPS
complexes or because the complexes did not generate connected graphs of nine
or less nodes when combined with the interaction data set.
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may reflect, in part, a dosage sensitivity that is generalized to
the variety of environments that a cell might find itself in.

Our simple model for the response of complex formation to
varying concentrations of component proteins provides a
possible mechanistic explanation for the observed significant
correlation between dosage sensitivity and the steepness of
the formation response as classified by the model. Dosage
sensitivity in our model is dependent in large part on the
topological arrangement of the protein within the complex
(Figure 2) and it is the topological element of this effect that
our conclusions are based on. Hence, the model, although
based on significant assumptions about complex topology,
makes predictions that are testable. For example, increasing
the noise levels of proteins with predicted steep response
curves should have measurable fitness effects, dependent on
the position of the protein’s mean abundance relative to that
optimal for complex formation. Moreover, altering the
abundance noise levels for proteins within the same complex
(and hence functionally related) but with different predicted
steepnesses in their response curves could have differential
effects on fitness. The analyses we describe may be relevant to
understanding copy number variation or predicting interac-
tions that would be more sensitive to removal. We find it
remarkable that under relatively broad assumption, models
such as this and that earlier produced by Maslov and Ispolatov
(2007) are sufficient to extract important trends and correla-
tions from large-scale genetic and proteomic data. As
proteomic data become more detailed and more accurate, we
look forward to seeing how more complex models can
highlight local network properties leading to hypotheses for
specific complexes (Supplementary Figure 11) that can be
characterized in mechanistic detail.

Materials and methods

Complex and interaction data

To keep response curves readily computable, we limit our set of
complexes to those composed of nine proteins or less and further omit
any complexes from the MIPS database that did not result in connected
graphs when overlaid with edges from interaction sets. Supplementary
Table I lists details for the three interaction sets used in our analysis. If
a protein appeared in multiple complexes, HC and CI values were
averaged over both complexes. There was general agreement between
steepness classifications using the different datasets (Supplementary
Figure 12).

Fitness and viability data

For our analysis related to dosage sensitivity, we used deletion viability
data from the MIPS database (Mewes et al, 2004), heterozygous
deletion data from Deutschbauer et al (2005), overexpression data
from Sopko et al (2006) and abundance noise data from Newman et al
(2006). For all cases, except deletion viability data, we consider results
from growth in rich medium.

Response curve algorithm

To compute response curves for concentrations of complexes, complex
subspecies and free concentrations of proteins, we used an algorithm
described by Storer and Cornish-Bowden (1976). This algorithm has
most recently been explained by Maslov and Ispolatov (2007). Given
all total concentrations, Ai, of n proteins (we fix all proteins at 1mM
concentrations except for the protein of varying concentration in the

response curve), all association constants, Kj, for m complexes, and
matrix elements aij describing the number of occurrences of protein i in
the jth complex, the free concentration of each of the proteins is
obtained by iteratively solving equation (1) starting with the initial
condition of ai¼Ai inserted into the right-hand side of the equation. We
allow iterations to continue until the change in free concentration is
less than 0.1% for each protein during a single iteration. We have
implemented this algorithm in the C programming language and in
Mathematica. We find convergence to be generally very rapid
matching results published by Bray and Lay (1997) and Lay and Bray
(1997) who used a different algorithm.

ai ¼
Aiai

ai þ
Pm

j¼1

ðaijKj

Qn

k¼1

a
akj

k Þ
ð1Þ

Statistics and randomization testing

Randomization tests were used to determine whether the observed
difference between the medians of two sets was large enough to reject
the null hypothesis that the values in the two sets are drawn from the
same probability distribution. These tests were performed by first
computing the observed difference of the medians of the two sets. The
values of the two sets were then pooled and sampled without
replacement to generate a sample of two new sets where medians are
computed and the differences are recorded. This was repeated to
generate 10 000 samples of the difference of medians and a P-value was
determined from this distribution.

To test randomization while preserving degree, HC assignments
were shuffled within groups of proteins of the same degree 10 000
times to produce 10 000 shuffled assignments that preserved any
overall relationship between degree and HC. A P-value was then
determined by comparison of the difference in steep and shallow
median DMs of the 10 000 degree preserving assignments to 10 000
reshuffled assignments not forced to preserve degree.

Computing clustering coefficient
and betweenness

The clustering coefficient is defined as the number of links between
adjacent nodes divided by the number of links that could possibly exist
between them. Betweenness is defined as the fraction of shortest paths
that pass through a node and was normalized by the number of pairs of
nodes. Both clustering coefficient and betweenness were computing
using the NetworkX python package, available at http://networkx.
lanl.gov/.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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